SI20877A - Lipopeptides, their preparation and their use for inactivation of gram-negative bacteria, gram-positive bacteria and neutralization of endotoxins - Google Patents

Lipopeptides, their preparation and their use for inactivation of gram-negative bacteria, gram-positive bacteria and neutralization of endotoxins Download PDF

Info

Publication number
SI20877A
SI20877A SI200100080A SI200100080A SI20877A SI 20877 A SI20877 A SI 20877A SI 200100080 A SI200100080 A SI 200100080A SI 200100080 A SI200100080 A SI 200100080A SI 20877 A SI20877 A SI 20877A
Authority
SI
Slovenia
Prior art keywords
arg
gln
gram
peptide
lys
Prior art date
Application number
SI200100080A
Other languages
Slovenian (sl)
Inventor
Roman Jerala
Andreja Majerle
Original Assignee
Kemijski inštitut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kemijski inštitut filed Critical Kemijski inštitut
Priority to SI200100080A priority Critical patent/SI20877A/en
Publication of SI20877A publication Critical patent/SI20877A/en

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention refers to new lipopeptide compounds with the formula P-B, where P designates a peptide containing a high proportion (higher than 20%) of basic aminoacids Arg and/or Lys or nonpolar aminoacids Phe, Tyr, Trp, Ile, Leu or Val and where the group B designates a satuared or insaturated aliphatic chain containing 6 to18 carbon atoms. It refers also to the procedure of preparation of these compounds and their use for inactivation of Gram-negative and Gram-positive bacteria and neutralization of endotoxins. The invention is demonstrated by antimicrobial acting against Gram-negative and Gram-positive bacteria and endotoxin-neutralizing acting of compounds on the basis of recombinant cationic antimicrobial peptide LF12 (aminoacid sequence: Phe-Gln-Trp-Gln-Arg-Asn-Ile-Arg-Lys-Val-Arg-hSer), prepared by derivatization of peptide LF12 with unsaturated and saturated alkyl chains of different lengths.

Description

Lipopeptidi, njihova priprava in njihova uporaba za inaktivacijo Gram-negativnih bakterij, Gram-pozitivnih bakterij in za nevtralizacijo endotoksinovLipopeptides, their preparation and their use for inactivation of Gram-negative bacteria, Gram-positive bacteria and for neutralization of endotoxins

Področje tehnike, v katero spada izumFIELD OF THE INVENTION

Predstavljeni izum spada v področje farmacevtske industrije in se nanaša na nove antimikrobne in/ali endotoksin nevtralizirajoče učinkovine, to je lipopeptide s formulo P-B, kjer P označuje peptid z visokim deležem (> 20 %) bazičnih aminokislin Arg in/ali Lys in nepolarnih aminokislin Phe, Tyr, Trp, lle ali Val, skupina B pa označuje nasičeno ali nenasičeno alifatsko verigo, ki vsebuje 6 do 18 ogljikovih atomov.The present invention is within the scope of the pharmaceutical industry and relates to novel antimicrobial and / or endotoxin neutralizing agents, i.e., lipopeptides of the formula PB, wherein P denotes a peptide with a high proportion (> 20%) of the basic amino acids Arg and / or Lys and nonpolar amino acids Phe , Tyr, Trp, lle, or Val, and group B indicates a saturated or unsaturated aliphatic chain containing 6 to 18 carbon atoms.

Tehnični problemA technical problem

Z naraščanjem odpornosti patogenih mikroorganizmov proti konvencionalnim antibiotikom narašča potreba po novih učinkovinah, ki bi imele širok spekter delovanja, tako proti Gram-pozitivnim kot tudi Gram-negativnim bakterijam. Dodaten problem je, da ne poznamo učinkovitega zdravljenja septičnega šoka, ki lahko nastopi zaradi okužbe krvi z Gram-negativnimi in/ali Grampozitivnimi bakterijami in drugimi mikroorganizmi. Tudi v razvitih državah umre zelo visok odstotek bolnikov s sepso (20-40 %). Sepso sprožijo sestavine celičnih sten bakterij, v prvi vrsti lipopolisaharidi (LPS), imenovani tudi endotoksini, ki so prisotni v zunanji membrani Gram-negativnih bakterij. Tako se iskanje učinkovitih antimikrobnih sredstev ujema tudi z iskanem učinkovin, ki bi hkrati nevtralizirale endotoksine in delovale antimikrobno.As the resistance of pathogenic microorganisms to conventional antibiotics increases, there is a growing need for new agents that have a broad spectrum of action against both Gram-positive and Gram-negative bacteria. An additional problem is that we do not know the effective treatment for septic shock that can occur due to infection of the blood by Gram-negative and / or Gram-positive bacteria and other microorganisms. Even in developed countries, a very high percentage of patients with sepsis (20-40%) die. Sepso is triggered by bacterial cell wall components, primarily lipopolysaccharides (LPS), also called endotoxins, which are present in the outer membrane of Gram-negative bacteria. Thus, the search for effective antimicrobial agents also matches the search for active ingredients that would simultaneously neutralize endotoxins and act antimicrobially.

Predhodno znanje (Stanje tehnike)Prior knowledge (state of the art)

Učinkovine, ki vežejo LPS, ki se je sprostil iz bakterijskih celičnih sten v krvni obtok, lahko nevtralizirajo njegovo toksično delovanje. Vretenčarji, nevretenčarji, rastline in glive imajo v cirkularnem sistemu proteine in peptide, ki lahko vežejo LPS in služijo kot prva obrambna črta za boj proti mikrobom (antimikrobni peptidi mikrobnega izvora, npr. polimiksin B, oktapeptin; endogeni peptidi ali fragmenti večjih proteinov, npr. defenzini, magainin, laktofericin, peptidi iz proteina BPI (bacteriacidal permeability increasing protein)...). {Swanson, P.E., et al. (1980) Biochemistry 19, 33073314}, {Odeli, E.W., Sarra, R., Foxworthy, M., Chapple, D.S. & Evans, R.W. (1996) FEBS Lett. 382, 175-178}, {Marra, M.N., et al. (1990) J.Immunol. 144, 662-666}, {Su, G.L., et al. (1995) Crit.Rev.Immunol. 15, 201-214}, {Tobias, P.S., et al. (1997) J.Biol.Chem. 272, 18682-18685}.LPS-binding agents released from bacterial cell walls into the bloodstream can counteract its toxic action. Vertebrates, invertebrates, plants and fungi have circulatory system proteins and peptides that can bind LPS and serve as the first line of defense against germs (antimicrobial peptides of microbial origin, eg polymyxin B, octapeptin; endogenous peptides or fragments of major proteins, e.g. Defensins, magainin, lactoferricin, peptides from BPI (bacteriacidal permeability increasing protein) ...). {Swanson, P.E., et al. (1980) Biochemistry 19, 33073314}, {Odeli, E.W., Sarra, R., Foxworthy, M., Chapple, D.S. & Evans, R.W. (1996) FEBS Lett. 382, 175-178}, {Marra, M. N., et al. (1990) J. Immunol. 144, 662-666}, {Su, G.L., et al. (1995) Crit.Rev.Immunol. 15, 201-214}, {Tobias, P.S., et al. (1997) J. Biol.Chem. 272, 18682-18685}.

V zadnjih 50-ih letih so odkrili stotine peptidnih antibiotikov, ki jih lahko razdelimo v dve skupini. V prvo skupino uvrščamo neribosomalne (gramicidini, polimiksini, bacitracini, glikopeptidi idr.), v drugo pa ribosomalne peptidne antibiotike. Prvi večinoma nastajajo v bakterijah, medtem ko drugi nastajajo tudi v evkariontskih organizmih kot sestavni del sistema na ravni odpornosti teh organizmov {Hancock, R.E. & Chapple, D.S. (1999) Antimicrob.Agents Chemother. 43, 1317-1323}.Over the last 50 years, hundreds of peptide antibiotics have been discovered that can be divided into two groups. The first group includes non-ribosomal (gramicidins, polymyxins, bacitracins, glycopeptides, etc.), and the second group includes ribosomal peptide antibiotics. The former are mainly formed in bacteria, while the latter are also formed in eukaryotic organisms as an integral part of the system at the level of resistance of these organisms {Hancock, R.E. & Chapple, D.S. (1999) Antimicrob.Agents Chemother. 43, 1317-1323}.

Sprejeto mnenje je, da antimikrobna specifičnost peptidov za različne mikroorganizme izhaja iz razlik v interakcijah peptidov z membranami z različno lipidno sestavo {Epand, R.M. & Vogel, H.J. (1999) Biochim.Biophys.Acta 1462, 11-28}. S študijem morfologije Gram-negativnih in Gram-pozitivnih bakterij, na katere so delovali kationski antimikrobni peptidi, so s pomočjo elektronskega mikroskopa ugotovili, da je vzrok smrti celic razpad citoplazemske membrane {Sitaram, N. & Nagaraj, R. (1999) Biochim.Biophys.Acta 1462, 29-54}, v kateri so v veliki meri prisotni anionski lipidi, kar ne velja za membrane pri sesalcih. Zelo verjetno ne obstaja en sam univerzalen mehanizem antimikrobnega delovanja, ki bi ga imeli kationski peptidi. Očitno pa interakcija peptidov z membranami določa antimikrobno specifičnost posameznega peptida.It is an accepted view that the antimicrobial specificity of peptides for different microorganisms stems from differences in peptide interactions with membranes with different lipid composition {Epand, R.M. & Vogel, H.J. (1999) Biochim.Biophys.Acta 1462, 11-28}. By studying the morphology of Gram-negative and Gram-positive bacteria that have been affected by cationic antimicrobial peptides, electron microscopes have determined that cell death is caused by the breakdown of the cytoplasmic membrane {Sitaram, N. & Nagaraj, R. (1999) Biochim. Biophys.Acta 1462, 29-54}, in which anionic lipids are largely present, which is not the case for mammalian membranes. There is very likely no single universal mechanism of antimicrobial action that cationic peptides would have. Obviously, the interaction of peptides with membranes determines the antimicrobial specificity of each peptide.

Večina antimikrobnih peptidov, ki se vežejo na LPS, ima amfipatično strukturo z visoko vsebnostjo hidrofobnih in pozitivno nabitih aminokislin. Kationski ciklični peptidni antibiotik mikrobnega izvora polimiksin B je zelo učinkovito sredstvo za nevtralizacijo LPS, ki je v fizioloških pogojih negativno nabita molekula, vendar je preveč toksičen za uporabo kot zdravilo, saj povzroči poškodbe membran in hemolizo. Poznavanje interakcij med temi peptidi in proteini z LPS in še posebej z membranami tako bakterijskih celic kot tudi celic višjih evkariontov, je nujno potrebno za uspešen razvoj novih učinkovin za boj proti sepsi, ki ne bi imele toksičnih stranskih učinkov. Menijo, da je asimetrična porazdelitev bazičnih in nepolarnih skupin v polimiksinu B, ker povzroči amfifilnost, potreben pogoj za nevtralizacijo molekul LPS {Thomas, C.J., et al. (1999) J.Biol.Chem. 274, 29624-29627}. Podobno segregacijo kationskih in hidrofobnih skupin najdemo tudi v kationskih antimikrobnih peptidih in nekaterih serumskih proteinih, ki se vežejo na LPS {Frecer, V., et al. (2000) Eur.J.Biochem. 267, 837-852}.Most LPS-binding antimicrobial peptides have an amphipathic structure with a high content of hydrophobic and positively charged amino acids. The cationic cyclic peptide antibiotic of microbial origin of polymyxin B is a very effective LPS neutralizing agent that is a negatively charged molecule under physiological conditions but is too toxic to be used as a drug because it causes membrane damage and hemolysis. Knowledge of the interactions between these peptides and proteins with LPS, and in particular the membranes of both bacterial and higher eukaryotic cells, is indispensable for the successful development of novel anti-sepsis agents without toxic side effects. The asymmetric distribution of base and nonpolar groups in polymyxin B is thought to be because it causes amphiphilicity, a necessary condition for the neutralization of LPS molecules {Thomas, C.J., et al. (1999) J. Biol.Chem. 274, 29624-29627}. Similar segregation of the cationic and hydrophobic groups is also found in cationic antimicrobial peptides and some serum proteins that bind to LPS {Frecer, V., et al. (2000) Eur.J.Biochem. 267, 837-852}.

Ker se povečuje pogostost Gram-pozitivne sepse, je potrebno iskanje učinkovin, ki bi delovale tako proti Gram-negativnim kot tudi Gram-pozitivnim bakterijam. Smrtnost pacientov z Gram-negativno sepso je sicer večja kot tistih z Gram-pozitivno sepso. O tem pa ne smemo zanemariti pomena sestavin celične stene Gram-pozitivnih bakterij (npr. lipoteihoična kislina), ki tudi sprožijo imunski odziv, ki lahko vodi do sepse. Za nekaj sintetičnih kationskih peptidov, ki se vežejo na LPS in delujejo antimikrobno proti Gramnegativnim bakterijam, se je pokazalo, da pride do interakcije tudi z lipoteihoično kislino, ki je glavna sestavina Gram-pozitivnih bakterij, ki sproži aktivacijo celic {Scott, M.G., et al. (1999) Infect.lmmun. 67, 6445-6453}. Manjše sintetične molekule, ki nevtralizirajo LPS in niso toksične za človeške celice, bi lahko bile uporabne kot potencialna zdravila za preprečitev in zaustavitev septičnega šoka. Ob tem velja poudariti, da sta antimikrobno delovanje in vezava na LPS, ki je prisoten le pri Gram-negativnih bakterijah, dva ločena pojava, ki pa se pogosto prekrivata, ter da vezava molekul LPS še ne pomeni nujno tudi nevtralizacije LPS.As the frequency of Gram-positive sepsis increases, it is necessary to look for active ingredients that work against both Gram-negative and Gram-positive bacteria. The mortality of patients with Gram-negative sepsis is higher than that of Gram-positive sepsis. However, the importance of cell wall components of Gram-positive bacteria (eg, lipoteichoic acid), which also trigger an immune response that can lead to sepsis, should not be overlooked. Some synthetic cationic peptides that bind to LPS and act antimicrobially against Gramnegative bacteria have also been shown to interact with lipoteichoic acid, a major component of Gram-positive bacteria that triggers cell activation {Scott, MG, et al. (1999) Infect.lmmun. 67, 6445-6453}. Smaller synthetic molecules that neutralize LPS and are not toxic to human cells could be useful as potential drugs to prevent and stop septic shock. It should be noted that antimicrobial activity and binding to LPS, which is present only in Gram-negative bacteria, are two separate phenomena, which often overlap, and that binding of LPS molecules does not necessarily mean neutralization of LPS.

Za učinkovito terapevtsko sredstvo proti sepsi pa je zaželjeno, da nevtralizira sproščene molekule LPS, ne povzroča stranskih učinkov v pacientu ter deluje hkrati kot antimikrobno sredstvo.An effective anti-sepsis therapeutic agent, however, is desirable to neutralize the released LPS molecules, not cause side effects in the patient, and act simultaneously as an antimicrobial agent.

Različni lipopeptidi mikrobnega izvora so učinkoviti antibiotiki {Vater, J. (1986) Progr.Colloid and Polymer Sci. 72, 12-18}. Pred kratkim so pokazali, da nekateri lipopoliamini učinkovito nevtralizirajo LPS in da nimajo škodljivih stranskih učinkov na sesalske celice {David, S.A., et al. (1999) Antimicrob.Agents Chemother. 43, 912-919 in US 5,998,482 }. V primeru polimiksina B so pokazali, da odstranitev lipidne verige povzroči zmanjšanje antimikrobnega delovanja in slabše anti-endotoksično delovanje tako spremenjenega antibiotika. Kemijsko modifikacijo lipopeptidov mikrobnega izvora iz Actinoplanes so uporabili za pripravo učinkovin z izboljšanimi farmakološkimi lastnostmi - t.j. znižano hemolitično aktivnostjo (US 6,194,383) in dobro antimikrobno aktivnostjo proti Gram-pozitivnim bakterijam.Different lipopeptides of microbial origin are effective antibiotics {Vater, J. (1986) Progr.Colloid and Polymer Sci. 72, 12-18}. It has recently been shown that some lipopoliamines effectively neutralize LPS and have no adverse side effects on mammalian cells {David, S.A., et al. (1999) Antimicrob.Agents Chemother. 43, 912-919 and US 5,998,482}. In the case of polymyxin B, removal of the lipid chain has been shown to result in a decrease in antimicrobial activity and a poorer anti-endotoxic effect of the antibiotic thus altered. Chemical modification of lipopeptides of microbial origin from Actinoplanes has been used to prepare active ingredients with improved pharmacological properties - i.e. decreased hemolytic activity (US 6,194,383) and good antimicrobial activity against Gram-positive bacteria.

Fragmenti človeških proteinov kot so BPI, baktenecin in laktoferin so bili že uporabljeni kot učinkovine za nevtralizacijo endotoksina (US 6,153,730;Human protein fragments such as BPI, bactenecin and lactoferrin have already been used as endotoxin neutralizing agents (US 6,153,730;

EP 1 074 561 A2; US 6,172,185; US 5,856,438; WO 0049040).EP 1 074 561 A2; US 6,172,185; US 5,856,438; WO 0049040).

Tehnični problemA technical problem

Najpomembnejši cilj izuma je bil pripraviti nove učinkovine, ki bi delovale antimikrobno proti Gram-negativnim in Gram-pozitivnim orgnizmom in hkrati nevtralizirale endotoksin in bi bile tako uporabne za zdravljenje infekcij in septičnega šoka.The most important object of the invention was to provide novel agents that would act antimicrobially against Gram-negative and Gram-positive organisms while neutralizing endotoxin and thus being useful for the treatment of infections and septic shock.

Prav tako je namen izuma priprava novih farmacevtskih pripravkov, ki bi bili uporabni za zdravljeneje infekcij in septičnega šoka.It is also an object of the invention to provide novel pharmaceutical compositions useful for the treatment of infections and septic shock.

Podroben opis izuma z izvedbenimi primeriDetailed description of the invention with embodiments

Prvi predmet našega izuma so novi lipopeptidi na osnovi človeških peptidnih fragmentov.The first object of our invention is novel lipopeptides based on human peptide fragments.

Drugi predmet izuma je priprava zgoraj navedenih novih lipopeptidov.Another object of the invention is the preparation of the above novel lipopeptides.

Tretji predmet izuma je uporaba navedenih novih lipopeptidov za pripravo farmacevtskih sredstev proti Gram-pozitivnim bakterijam, Gram-negativnim bakterijam in za nevtralizacijo endotoksina.A third object of the invention is the use of said novel lipopeptides for the preparation of pharmaceutical agents against Gram-positive bacteria, Gram-negative bacteria and for neutralizing endotoxin.

Po predmetnem izumu smo pripravili nove lipopeptide na osnovi peptidnih fragmentov človeških proteinov, ki vsebujejo visok delež bazičnih in hidrofobnih aminokislin.According to the present invention, novel lipopeptides have been prepared based on peptide fragments of human proteins containing a high proportion of basic and hydrophobic amino acids.

Nove spojine po predmetnem izumu so predstavljene v obliki splošne formule P-B (1), kjer P označuje peptid, z zaporedjem podobnim fragmentu človeškega proteina, ki vsebuje visok delež (> 20 %) bazičnih aminokislin Arg in/ali Lys in hidrofobnih aminokislin Phe, Tyr, Trp, Ile ali Val in kjer skupina B označuje nasičeno ali nenasičeno alifatsko verigo, ki vsebuje od 6 do 18 ogljikovih atomov.The novel compounds of the present invention are presented in the form of the general formula PB (1), wherein P denotes a peptide with a sequence similar to a human protein fragment containing a high proportion (> 20%) of the basic amino acids Arg and / or Lys and the hydrophobic amino acids Phe, Tyr , Trp, Ile or Val and wherein group B denotes a saturated or unsaturated aliphatic chain containing from 6 to 18 carbon atoms.

Specifični primeri vsebujejo kot del zgornje formule P peptide na osnovi zaporedja človeškega laktoferina z zaporedjem:Specific examples include, as part of the above formula P, peptides based on a sequence of human lactoferrin with the following sequence:

Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer, kjer hSer označuje homoserin, medtem ko primeri skupine B v splošni formuli (1) vključujejo:Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer, where hSer stands for homoserin, while examples of group B in general formula (1) include:

C6, C8, C12, C14, C16, C18:1 (cis) alifatske verige, povezane z amidno vezjo s homoserinom.C6, C8, C12, C14, C16, C18: 1 (cis) aliphatic chains linked by an amide bond with homoserine.

Omenjene spojine so bile po predmetnem izumu pridobljene iz rekombinantnega fuzijskega proteina med ketosteroid-izomerazo, izbranim peptidom in heksahistidinskim dodatkom z metioninskim aminokislinskim ostankom prisotnim samo med vsemi tremi deli {Kuliopulos, A. & Walsh, C.T. (1994) J.Am.Chem.Soc. 4599-4607}.These compounds were, according to the present invention, obtained from recombinant fusion protein between ketosteroid isomerase, selected peptide and hexahistidine supplementation with methionine amino acid residue present only in all three parts {Kuliopulos, A. & Walsh, C.T. (1994) J.Am.Chem.Soc. 4599-4607}.

S cepitvijo omenjenega fuzijskega proteina s CNBr se sprosti peptid, ki na Cterminalnem delu vsebuje homoserin laktonsko skupino, nakar ga izoliramo in derivatiziramo z alkilamini. Lipopeptidne spojine, ki so predmet našega izuma, lahko pridobimo tudi s kemijsko sintezo.Cleavage of said fusion protein with CNBr releases a peptide that contains a homoserine lactone group at the Cterminal portion and is then isolated and derivatized with alkylamines. The lipopeptide compounds of the present invention can also be obtained by chemical synthesis.

Spojine v izumu imajo povečano antimikrobno delovanje tako proti Grampozitivnim kot Gram-negativnim bakterijam in izboljšano nevtralizacijo lipopolisaharida.The compounds of the invention have increased antimicrobial activity against both Gram-positive and Gram-negative bacteria and improved lipopolysaccharide neutralization.

Pokazali smo, da peptid LF12 z alifatsko verigo dolgo 6, 8, 12, 14, 16 in 18 ogljikovih atomov deluje antimikrobno proti Gram-negativnim in Grampozitivnim bakterijam ter da podaljšanje peptida LF12 z različno dolgimi lipidnimi verigami izboljša antimikrobno delovanje peptida. Tako smo opazili največje izboljšanje pri lipopeptidu LF12-C12, ki je deloval antimikrobno proti E. coli DC2 kar pri 50-krat nižji koncentraciji, proti S. aureus pri 80-krat nižji koncentraciji ter proti S. epidermidis pri 400-krat nižji koncentraciji kot izhodiščni peptid LF12.We have shown that the LF12 peptide with an aliphatic chain of 6, 8, 12, 14, 16 and 18 carbon atoms acts antimicrobially against Gram-negative and Gram-positive bacteria, and that prolongation of the LF12 peptide with differently long lipid chains enhances the antimicrobial activity of the peptide. Thus, we observed the greatest improvement in the lipopeptide LF12-C12, which had antimicrobial activity against E. coli DC2 at 50 times lower concentration, against S. aureus at 80 times lower concentration, and against S. epidermidis at 400 times lower concentration than the starting peptide LF12.

Pri lipopeptidih s še daljšimi lipidnimi verigami (LF12-C14, LF12-C16, LF12C18) smo opazili ponovno zmanjšanje učinkovitosti antimikrobnega delovanja v primerjavi z lipopeptidom LF12-C12. Z LAL testom smo izmerili, da lipopeptid LF12-C12 povzroči 50 % inhibicijo LAL reakcije pri 12-krat nižji koncentraciji, kot to velja za sam peptid LF12. Učinkovita nevtralizacija LPS z lipopeptidom LF12-C12 potrjuje našo domnevo na začetku dela, da bomo s povečanjem lipofilnosti rekombinantnega kationskega peptida LF12 izboljšali nevtralizacijo molekul LPS. Naši rezultati se skladajo s podatkom o nevtralizaciji LPS s sintetičnim peptidom iz 33 aminokislin človeškega laktofericina, ki vsebuje del, na katerem temelji naš rekombinantni peptid LF12 {Zhang, G.H., et al. (1999) Infect. Immun. 67, 1353-1358}.For lipopeptides with even longer lipid chains (LF12-C14, LF12-C16, LF12C18), a decrease in the effectiveness of antimicrobial activity was observed compared to the lipopeptide LF12-C12. The LAL assay measured that the lipopeptide LF12-C12 caused a 50% inhibition of the LAL reaction at 12 times lower concentration than that of the LF12 peptide itself. The efficient neutralization of LPS with the LF12-C12 lipopeptide confirms our assumption at the beginning of the work that by increasing the lipophilicity of the recombinant cationic peptide LF12, we will improve the neutralization of LPS molecules. Our results are consistent with the LPS neutralization data of a synthetic peptide from 33 human lactofericin amino acids, containing the part on which our recombinant peptide LF12 is based {Zhang, G.H., et al. (1999) Infect. Immun. 67, 1353-1358}.

Omenjeno antimikrobno delovanje spojin po predmetnem izumu lahko uporabimo za profilakso ali zdravljenje infekcij in septičnega šoka v sesalcih, vključno s človekom.Said antimicrobial activity of the compounds of the present invention can be used for the prophylaxis or treatment of infections and septic shock in mammals, including humans.

Spojine se lahko vključi v farmacevtske pripravke, ki se uporabljajo bodisi parenteralno bodisi intravensko z uporabo različnih farmacevtskih nosilcev in dodatkov. Spojine po predmetnem izumu lahko uporabimo v različnih biofarmacevtskih pripravkih kot so tablete, pilule, praški, aerosoli, vodne raztopine ali suspenzije, injekcijske in infuzijske raztopine; same ali v kombinaciji z drugimi antimikrobnimi učinkovinami, tudi za in vitro nevtralizacijo endotoksina.The compounds may be incorporated into pharmaceutical preparations for use either parenterally or intravenously using a variety of pharmaceutical carriers and additives. The compounds of the present invention can be used in various biopharmaceutical preparations such as tablets, pills, powders, aerosols, aqueous solutions or suspensions, injectable and infusion solutions; alone or in combination with other antimicrobial agents, including for in vitro neutralization of endotoxin.

Izum pojasnjujemo, nikakor pa ne omejujemo z nasednjimi izvedbenimi Primeri. Kjerkoli v navedenih Primerih niso omenjeni viri uporabljenih reagentov, so ti reagenti kvalitete, ki je potrebna za delo v molekularni biologiji in biokemiji.The invention is explained, but by no means limited to the present embodiments. Wherever in the Examples cited there are no references to the sources of reagents used, these are reagents of the quality required for work in molecular biology and biochemistry.

PRIMER 1EXAMPLE 1

Priprava rekombinantnega peptida LF12Preparation of the recombinant peptide LF12

Vključitev kodirajočega zaporedja za peptid v ekspresijski vektor pET31b(+) (Novagen, Madison, Wl, ZDA) omogoča prepoznavno mesto za restrikcijski encim A/ivNI (New England Biolabs, Beverly, MA, ZDA), ki povzroči nastanek komplementarnih koncev s tremi nukleotidi (AGT), ki kodirajo za metionin, na obeh koncih prepoznavnega mesta, sestavljenega iz treh nukleotidov.Incorporation of the peptide coding sequence into the pET31b (+) expression vector (Novagen, Madison, Wl, USA) provides a recognition site for the A / ivNI restriction enzyme (New England Biolabs, Beverly, MA, USA), which results in the formation of complementary three-nucleotide ends (AGT) coding for methionine at either end of a recognition site composed of three nucleotides.

Ketosteriod-izomeraza (KSI) je tako modificirana, da ne vsebuje metioninskih ostankov. Tako sta edini mesti v fuzijskem proteinu, ki ju cepi CNBr, na meji med KSI in peptidom ter peptidom in heksahistidinskim repom. Takšen konstrukt omogoča tudi razvrstitev nekaj povezanih zaporedij za peptid, ločenih med sabo z nukleotidi za metionin {Kuliopulos, A. & Walsh, C.T. (1994) J.Am.Chem.Soc. 4599-4607}. Celotno kodirajoče zaporedje za peptid LF12 je bilo vsebovano v dveh fosforiliranih začetnih oligonukleotidih (The Great American Gene Company, Ramona, CA, ZDA), ki smo ju subklonirali v ekspresijski vektor pET31b(+).The ketosteriod isomerase (KSI) is modified so that it does not contain methionine residues. Thus, the only sites in the fusion protein cleaved by CNBr are at the boundary between the KSI and the peptide and the peptide and hexahistidine tail. Such a construct also allows the classification of several related sequences for a peptide separated by nucleotides for methionine {Kuliopulos, A. & Walsh, C.T. (1994) J.Am.Chem.Soc. 4599-4607}. The entire coding sequence for the LF12 peptide was contained in two phosphorylated starting oligonucleotides (The Great American Gene Company, Ramona, CA, USA), which were subcloned into the pET31b (+) expression vector.

Začetna oligonukleotida za rekombinantni peptid LF12, to je LF12-5' (5'P-TTTCAGTGGCAACG CAACATTCGTAAAGTGCGCATG-3' (v fosforilirani obliki na 5'koncu)) in LF12-3' (5'P-GCG CACTTTA CGAATGTTGCGTTGCCACTGAAACAT-3'(v fosforilirani obliki na 5'koncu)), smo denaturirali 10 min pri 95°C, ju zlepili v ligacijskem pufru in ligirali v ekspresijski vektor pET31b(+) s T4 DNA ligazo (New England Biolabs) čez noč pri 16°C.Initial oligonucleotides for the recombinant peptide LF12, i.e. LF12-5 '(5'P-TTTCAGTGGCAACG CAACATTCGTAAAGTGCGCATG-3' (in phosphorylated form at 5'end)) and LF12-3 '(5'P-GCG CACTTTA CGAATGTGTGTGTGTGTGTGTGTGTG in phosphorylated form at 5'end)), denatured for 10 min at 95 ° C, glued in ligation buffer and ligated into pET31b (+) expression vector with T4 DNA ligase (New England Biolabs) overnight at 16 ° C.

Po transformaciji v E. coli DH5a smo kolonije z rekombinantnim ekspresijskim vektorjem določili z reakcijo verižne polimerizacije z uporabo začetnih oligonukleotiodov KSI (GGCAAGGTGGTGAGCATC) in T7term (TGCTAGTTATTGCTCAGC) (The Great American Gene Company, Ramona, CA, ZDA). Rekombinantni peptid LF12 smo pridobili v bakteriji E. coli BL21(DE3)pLysS v obliki inkluzijskih telesc fuzijskega proteina KSILF12-His6. Pripravili smo ustrezno količino vcepka (1/100 do 1/20 končnega volumna) v gojišču LBA in ga inkubirali čez noč pri 37°C in 200 obr/min. Bakterijsko kulturo smo naslednji dan razredčili s tolikšno količino gojišča LBA, da je bila Οϋθοο med 0.15 in 0.2, in inkubirali v Erlenmeyer steklenicah pri 37°C ob stresanju 220 obr/min. Ko je vrednost absorbance pri 600 nm fermentacijske zmesi narasla do 0.8, smo dodali 0.4 mM IPTG (izopropil-1 tio-p-D-tiogalaktozid). Fermentacija je potekala še naslednji 2 uri, nakar smo fermentacijsko zmes centrifugirali 10 minut pri 4°C in 8000 obr/min. Po centrifugiranju smo supernatant odlili, pelet pa resuspendirali v pufru za lizo (0.1 % deoksiholat, 50 mM fenilmetilsulfonilfluorid, 1 mM etilendiamintetraocetna kislina (EDTA), 10 mM Tris/HCI pH 8.0). Suspenzijo smo prelili v čašo in inkubirali na ledu. Sprostitev celičnega materiala smo dosegli z razbijanjem bakterijskih celičnih sten z ultrazvokom (razbijalec celic ΤΜΧ400, Tekmar). Sondo smo potopili v čašo z vzorcem, ki smo jo imeli ves čas na ledu, in sonicirali 3 minute (impulz 1 sekunda, pavza 2 sekundi), dokler viskoznost raztopine ni padla. Suspenzijo smo centrifugirali 10 minut pri 4°C in 12.000 obr/min. Pelet, v katerem je bil protein v obliki inkluzijskih telesc, smo nato sprali dvakrat s pufrom za lizo, dvakrat z 2 M ureo (sečnino) v 10 mM Tris/HCI pH 8.0 in enkrat z 10 mM Tris/HCI pH 8.0, s tem, da smo suspenzijo vsakokrat centrifugirali 10 minut pri 4°C in 12.000 obr/min in zavrgli supernatant. Tako očiščena inkluzijska telesca smo shranili v zamrzovalniku na -20°C. Produkcija fuzijskega proteina je znašala v gojišču LBA 400 mg/l gojišča, kar ustreza 40 mg peptida LF12 na 1 L gojišča LB (kazeinski hidrolizat, 10 g/L, kvasni ekstrakt, 5 g/L , NaCI, 10 g/L, pH nastavljen na 7.0 z NaOH). Navedeni dobitek fuzijskega proteina velja za stresano kulturo v Erlenmeyer steklenicah. Fuzijski protein KSI-LF12-His6 smo pridobili tudi z gojenjem v fermentorju z gojiščem LBA (gojišče LB z dodatkom ampicilina do 100 pg/l). V tem primeru je bila produkcija proteina do 1 g/L gojišča. Inkluzijska telesca fuzijskega proteina smo raztopili v 6 M GuHCI (gvanidinijev hidroklorid), 20 mM Tris pH 8.0. Po centrifugiranju 15 minut pri 12.000 obr/min in sobni temperaturi smo supernatant nanesli na Ni2+-NTA kolono (Ouiagen), ki smo jo predhodno nasitili z 1 M NiS04 in ekvilibrirali s pufrom, ki je vseboval 5 mM imidazol, 0.5 M NaCI, 6 M GuHCI in 20 mM Tris/HCI pH 8.0. Po nanosu vzorca smo kolono 2-krat sprali s po 4 ml raztopin za spiranje I (5 mM imidazol, 0.5 M NaCI, 6 M GuHCI, 20 mM Tris/HCI pH 8.0) in II (16 mM imidazol, 0.5 M NaCI, 6 M GuHCI, 20 mM Tris/HCI pH 8.0), oziroma dokler ni bila vrednost absorbance pri 280 nm pod 0.01. Fuzijski protein smo eluirali z raztopino za eluiranje (300 mM imidazol, 0.5 M NaCI, 6 M GuHCI, 20 mM Tris/HCI pH 8.0). Eluirane frakcije smo združili in dializirali preko noči proti deionizirani vodi z 1 mM EDTA pH 8.0 v dializni vrečki, ki je neprepustna za molekule večje od 10 kDa.After transformation into E. coli DH5a, colonies with recombinant expression vector were determined by chain polymerization reaction using the initial KSI oligonucleotides (GGCAAGGTGGTGAGCATC) and T7term (TGCTAGTTATTGCTCAGC) (The Great American Gene Company, Ramona, CA, USA). The recombinant peptide LF12 was obtained in E. coli BL21 (DE3) pLysS in the form of inclusion bodies of the KSILF12-His 6 fusion protein. An appropriate amount of injection (1/100 to 1/20 of the final volume) was prepared in the LBA medium and incubated overnight at 37 ° C and 200 rpm. The bacterial culture was diluted the next day with an amount of LBA medium that was 0.1θοο between 0.15 and 0.2, and incubated in Erlenmeyer bottles at 37 ° C with shaking 220 rpm. When the absorbance value at 600 nm of the fermentation mixture increased to 0.8, 0.4 mM IPTG (isopropyl-1 thio-pD-thiogalactoside) was added. The fermentation was continued for the next 2 hours, after which the fermentation mixture was centrifuged for 10 minutes at 4 ° C and 8000 rpm. After centrifugation, the supernatant was decanted and the pellet resuspended in lysis buffer (0.1% deoxycholate, 50 mM phenylmethylsulfonylfluoride, 1 mM ethylenediaminetetraacetic acid (EDTA), 10 mM Tris / HCl pH 8.0). The suspension was poured into a beaker and incubated on ice. The release of cellular material was achieved by breaking down bacterial cell walls by ultrasound (razb400 cell breaker, Tekmar). The probe was immersed in a beaker containing the sample we had on ice for all time and sonicated for 3 minutes (pulse 1 second, pause 2 seconds) until the viscosity of the solution dropped. The suspension was centrifuged for 10 minutes at 4 ° C and 12,000 rpm. The pellet containing the inclusion body protein was then washed twice with lysis buffer, twice with 2 M urea (urea) in 10 mM Tris / HCl pH 8.0 and once with 10 mM Tris / HCI pH 8.0, to centrifuge each suspension for 10 minutes at 4 ° C and 12,000 rpm and discard the supernatant. The cleaned inclusion bodies were stored in the freezer at -20 ° C. Fusion protein production was 400 mg / l in LBA medium corresponding to 40 mg of LF12 peptide per 1 L of LB medium (casein hydrolyzate, 10 g / L, yeast extract, 5 g / L, NaCI, 10 g / L, pH set to 7.0 with NaOH). The indicated fusion protein yield is considered to be shaken culture in Erlenmeyer bottles. The KSI-LF12-His6 fusion protein was also obtained by growing in a fermentor with LBA medium (LB medium with ampicillin up to 100 pg / l). In this case, the protein production was up to 1 g / L of culture medium. The inclusion bodies of the fusion protein were dissolved in 6 M GuHCI (guanidinium hydrochloride), 20 mM Tris pH 8.0. After centrifugation for 15 minutes at 12,000 rpm and room temperature, the supernatant was loaded onto a Ni 2+ -NTA column (Ouiagen), pre-saturated with 1 M NiS0 4 and equilibrated with buffer containing 5 mM imidazole, 0.5 M NaCl, 6 M GuHCI and 20 mM Tris / HCI pH 8.0. After application of the sample, the column was washed twice with 4 ml each of rinse solutions I (5 mM imidazole, 0.5 M NaCI, 6 M GuHCI, 20 mM Tris / HCl pH 8.0) and II (16 mM imidazole, 0.5 M NaCI, 6 M GuHCI, 20 mM Tris / HCI pH 8.0), or until the absorbance value at 280 nm was below 0.01. The fusion protein was eluted with an elution solution (300 mM imidazole, 0.5 M NaCl, 6 M GuHCI, 20 mM Tris / HCl pH 8.0). The eluted fractions were pooled and dialyzed overnight against deionized water with 1 mM EDTA pH 8.0 in a dialysis bag impermeable to molecules larger than 10 kDa.

Izoliran fuzijski protein KSI-LF12-His6 smo raztopili v 70 % TFA (trifluoroocetna kislina) (Sigma) ali v 80 % mravljični kislini (Fluka) do končne koncentracije proteina 10 mg/ml in prenesli v 100 ml stekleno bučko. V digestoriju smo raztopini dodali trden CNBr (Aldrich) v 100-kratnem molarnem prebitku nad vsemi metionini v fuzijskem proteinu. Vsebino bučke smo nato 1 minuto prepihavali z dušikom, nato pa bučko zaprli, ovili v aluminijasto folijo in inkubirali 24 ur ali več pri sobni temperaturi. Produkte reakcije smo posušili do suhega na rotavaporju (rotacijskem uparilniku) pri 30°C in trikrat sprali z dvakrat deionizirano vodo.The isolated fusion protein KSI-LF12-His 6 was dissolved in 70% TFA (trifluoroacetic acid) (Sigma) or in 80% formic acid (Fluka) to a final protein concentration of 10 mg / ml and transferred to a 100 ml glass flask. In digestion, solid CNBr (Aldrich) was added to the solution in 100-fold molar excess over all methionine in the fusion protein. The contents of the flask were then purged with nitrogen for 1 minute, then the flask was sealed, wrapped in aluminum foil and incubated for 24 hours or more at room temperature. The reaction products were dried to dryness on a rotavapor (rotary evaporator) at 30 ° C and washed three times with twice deionized water.

-1010-1010

Suspenzijo produktov v dvakrat deionizirani vodi, prepihano z dušikom, smo mešali čez noč pri 50 obr/min in sobni temperaturi, zaščiteno pred svetlobo. Naslednji dan smo suspenzijo centrifugirali 15 minut pri 12000 obr/min in sobni temperaturi. Supematant, ki je vseboval odcepljeni peptid, smo skoncentrirali v vakuumski centrifugi. Netopni pelet je vseboval hidrofoben nosilni protein KSI.The suspension of the products in twice-deionized nitrogen-purged water was stirred overnight at 50 rpm and protected from light at room temperature. The next day, the suspension was centrifuged for 15 minutes at 12,000 rpm and room temperature. The supernatant containing the cleaved peptide was concentrated in a vacuum centrifuge. The insoluble pellet contained the hydrophobic carrier protein KSI.

Odcepljeni peptid v supernatantu smo ločili od primesi ostalih peptidov (predvsem od peptida, ki je vseboval terminalni heksahistidinski rep) z RPHPLC (tekočinska kromatografija visoke ločljivosti z reverzno fazo) (Knauer, VWM) z uporabo kolone LiChrospher 100 RP-18. Pri eluciji z gradientom ΟΙ 00 % pufra B (80 % acetonitril, 0.1 % TFA v dvakrat deionizirani vodi) v 20 minutah ob pretoku 0.5 ml/min se je odcepljeni peptid eluiral pri 60 % pufra B, pri 100 % pufra B pa seje eluiral nerazcepljeni fuzijski protein KSI-LF12His6 Končni dobitek izoliranega peptida LF12 je znašal 6 mg na 1 L gojišča LB. Učinkovitost cepitve s CNBr in čistost izoliranega peptida LF12 smo preverili s SDS poliakrilamidno elektroforezo na 12 % poliakrilamidnem gelu (Protean II, Bio Rad).The separated peptide in the supernatant was separated from the admixture of other peptides (mainly peptide containing terminal hexahistidine tail) by RPHPLC (reverse phase high resolution liquid chromatography) (Knauer, VWM) using a LiChrospher 100 RP-18 column. Eluting with a gradient of ΟΙ 00% buffer B (80% acetonitrile, 0.1% TFA in twice deionized water) for 20 minutes at a flow rate of 0.5 ml / min, the cleaved peptide was eluted at 60% buffer B and eluted at 100% buffer B untreated fusion protein KSI-LF12His6 The final yield of the isolated peptide LF12 was 6 mg per 1 L of LB medium. The efficacy of CNBr cleavage and the purity of the isolated peptide LF12 was verified by SDS polyacrylamide electrophoresis on a 12% polyacrylamide gel (Protean II, Bio Rad).

PRIMER 2EXAMPLE 2

Priprava polsintetičnih lipopeptidov na osnovi peptida LF12Preparation of semi-synthetic lipopeptides based on peptide LF12

Rekombinanten peptid LF12 po cepitvi s CNBr vsebuje na C-terminalnem delu reaktivno homoserin laktonsko skupino, ki jo lahko uporabimo za vezavo na primarno ali sekundarno amino skupino druge molekule. Očiščen peptid LF12 (170-260 nmol) smo najprej posušili do suhega v vakuumski centrifugi, nato pa popolnoma laktonizirali z dodatkom 20 μΙ 70 % TFA in takoj zatem posušili do suhega. Posušen pelet smo raztopili v 50 μΙ brezvodnega DMF (Ν,Ν-dimetilformamid) (Fluka), ki smo ga dodali s Hamilton injekcijsko iglo, ki tesni pline, in nato dodali 8 μΙ Et3N. Nato smo dodali izbran alifatski amin v 100-kratnem molarnem prebitku in inkubirali čez noč pri 45°C.The recombinant peptide LF12 after cleavage with CNBr contains a reactive homoserine lactone group at the C-terminal portion that can be used to bind to the primary or secondary amino group of another molecule. The purified peptide LF12 (170-260 nmol) was first dried to dryness in a vacuum centrifuge, then completely lactonized with 20 μ 20 70% TFA and then dried to dryness. The dried pellet was dissolved in 50 μΙ anhydrous DMF (Ν, Ν-dimethylformamide) (Fluka), which was added with a Hamilton needle to seal the gases, and then 8 μΙ Et 3 N. was added, then the selected aliphatic amine was added to 100 multiple molar excess and incubated overnight at 45 ° C.

-1111-1111

Za derivatizacije rekombinantnega peptida LF12 smo uporabili alifatske amine z različno dolgimi nasičenimi in nenasičenimi verigami (Tabela 1).For derivatization of the recombinant peptide LF12, aliphatic amines with different long saturated and unsaturated chains were used (Table 1).

Tabela 1. Polsintetični lipopeptidi na osnovi peptida LF12, ki smo jih pripravili.Table 1. Semi-synthetic lipopeptides based on the LF12 peptide prepared.

LF12 lipopeptid LF12 lipopeptide Dodana funkcionalna skupina Functional group added LF12-etilendiamin LF12-Ethylenediamine -NH-(CH2)2-NH2 -NH- (CH 2 ) 2 -NH 2 LF12-spermidin LF12-spermidine -NH-(CH2)3-NH-(CH2)4-NH2 -NH- (CH 2 ) 3-NH- (CH 2 ) 4-NH 2 LF12-C6 LF12-C6 -NH-CH3(CH2)5 -NH-CH 3 (CH 2 ) 5 LF12-C8 LF12-C8 -NH-CH3(CH2)7 -NH-CH 3 (CH 2 ) 7 LF12-C12 LF12-C12 -NH-CH^CH^n -NH-CH ^ CH ^ n LF12-C14 LF12-C14 -NH-CH3(CH2)i3 -NH-CH 3 (CH 2 ) and 3 LF12-C16 LF12-C16 -NH-CH3(CH2)15 -NH-CH 3 (CH 2 ) 15 LF12-C18 LF12-C18 -NH-CH3(CH2)8=(CH2)9 -NH-CH 3 (CH 2 ) 8 = (CH 2 ) 9

Po končani reakciji smo reakcijski zmesi v DMF dodali enak volumen kloroforma in deionizirane vode in 5 minut intenzivno stresali epruveto z vzorcem. Po centrifugiranju 5 minut pri 10000 obr/min in sobni temperaturi smo zgornjo (vodno) fazo prenesli v čisto epruveto ter še dvakrat ponovili ekstrahiranje, tako da smo vsakič dodali enak volumen dvakrat deionizirane vode kot na začetku. Vsebnost lipopeptida v vodni fazi po ekstrakciji smo preverili z merjenjem absorbance pri 280 nm.After completion of the reaction, the same volume of chloroform and deionized water was added to the reaction mixture in DMF and the sample tube was shaken vigorously for 5 minutes. After centrifugation for 5 minutes at 10,000 rpm and room temperature, the upper (aqueous) phase was transferred to a clean tube and the extraction was repeated twice by adding the same volume of twice deionized water twice as initially. The content of lipopeptide in the aqueous phase after extraction was verified by measuring the absorbance at 280 nm.

Lipopeptide iz vodne faze smo izolirali z RP-HPLC kolono kot prej sam peptid (linearni gradient 30-70 % pufra B v 20 minutah in 70-100 % pufra B v 10 minutah pri pretoku 0,5 ml/min). Lipopeptidi so se eluirali pri višjem deležu pufra B kot osnovni peptid (Tabela 2).The aqueous phase lipopeptides were isolated by RP-HPLC column as previously the peptide itself (linear gradient of 30-70% buffer B in 20 minutes and 70-100% buffer B in 10 minutes at a flow rate of 0.5 ml / min). Lipopeptides eluted at a higher proportion of buffer B than the basic peptide (Table 2).

-1212-1212

Tabela 2. Elucije peptida LF12 in polsintetičnih lipopeptidov pri RP-HPLC.Table 2. Elution of LF12 peptide and semi-synthetic lipopeptides by RP-HPLC.

Peptid Peptide Elucija pri % pufra B # Elution at% buffer B # LF12 LF12 45 45 (15N)LF12( 15 N) LF12 45 45 LF12-etilendiamin LF12-Ethylenediamine 45 45 LF12-spermidin LF12-spermidine 46 46 LF12-C6 LF12-C6 52 52 LF12-C8 LF12-C8 54 54 LF12-C12 LF12-C12 58 58 LF12-C14 LF12-C14 72 72 LF12-C16 LF12-C16 76 76 LF12-C18 LF12-C18 80 80

# Pri linearnem gradientu 30-70 % pufra B v 20 minutah in 70-100 % pufra B v 10 minutah pri pretoku 0,5 ml/min.# With a linear gradient of 30-70% buffer B in 20 minutes and 70-100% buffer B in 10 minutes at a flow rate of 0.5 ml / min.

Izoliran LF12 in pripravljene lipopetide smo analizirali s FAB masnim spektrometrom (Tabela 3).Isolated LF12 and prepared lipopetides were analyzed with a FAB mass spectrometer (Table 3).

Tabela 3. Primerjava teoretičnih in eksperimentalnih molekulskih masTable 3. Comparison of theoretical and experimental molecular masses

peptidov, ki smo jih pripravili. of the peptides we prepared. Peptid Peptide Teoretična molekulska masa (Da) Theoretical molecular mass (Yes) Eksperimentalna molekulska masa (Da) Experimental molecular weight (Yes) LF12 LF12 1613,8 1613,8 1613,6 1613,6 (15N)LF12( 15 N) LF12 1639,8 1639,8 1640,2 1640,2 LF12-etilendiamin LF12-Ethylenediamine 1673,9 1673,9 1674,3 1674,3 LF12-spermidin LF12-spermidine 1759,0 1759,0 1759,3 1759,3 LF12-C6 LF12-C6 1714,9 1714,9 1715,0 1715,0 LF12-C8 LF12-C8 1743,2 1743,2 1743,2 1743,2 LF12-C12 LF12-C12 1798,7 1798,7 1798,7 1798,7 LF12-C14 LF12-C14 1827,2 1827,2 1828,1 1828,1 LF12-C16 LF12-C16 1854,3 1854,3 1854,3 1854,3 LF12-C18 LF12-C18 1881,3 1881,3 1881,6 1881,6

-1313-1313

PRIMER 3EXAMPLE 3

Nevtralizacija LPS in vitro s peptidom LF12 in polsintetičnimi lipopeptidi na osnovi peptida LF12Neutralization of LPS in vitro with LF12 peptide and semi-synthetic lipopeptides based on LF12 peptide

Zmožnost pripravljenih peptidov za nevtralizacijo delovanja LPS in vitro smo testirali z encimskim testom amebocitnega lizata ostvarja Limulus polyphemus (LAL test). LPS v živalih sproži proteolitsko kaskado, ki vodi do želiranja hemolimfe. Z dodatkom kromogenega substrata, ki ga razgradijo aktivirane proteaze iz hemolimfnega lizata, pa lahko pri testu spremljamo razvoj barve.The ability of the prepared peptides to neutralize the action of LPS in vitro was tested by the enzyme test of the amoebocyte lysate of Limulus polyphemus (LAL test). LPS in animals triggers a proteolytic cascade leading to hemolymph gelling. With the addition of a chromogenic substrate, which is degraded by activated proteases from the hemolymph lysate, color development can be monitored in the test.

Uporabili smo kromogeni LAL test proizvajalca Cape Cod Associates, ZDA. Test smo izvajali v apirogenih steklenih epruvetah ali sterilnih mikrotitrskih ploščah za gojenje celičnih kultur (Costar). V žepke smo nanesli 50 pl raztopine s konstantno koncentracijo LPS (3,2 EU/ml) in posameznih peptidov različnih koncentracij v apirogeni vodi (LAL voda). Dodali smo še 50 pl reagenta Pyrochrome, ki je vseboval kromogen substrat in ekstrakt iz amebocit ostvarja, ter inkubirali 22 minut pri 37°C. Reakcijo smo ustavili z dodatkom stop reagenta (50 % ocetna kislina), tako da je bila končna koncentracija ocetne kisline 10 %.We used a chromogenic LAL test from Cape Cod Associates, USA. The test was performed in pyrogen-free glass tubes or sterile microtiter plates for cell culture cultivation (Costar). 50 µl of solution with constant concentration of LPS (3.2 EU / ml) and individual peptides of different concentrations in pyrogen-free water (LAL water) were loaded into the pockets. Another 50 µl of Pyrochrome reagent containing the chromogenic substrate and amoebocyte extract was added and incubated for 22 minutes at 37 ° C. The reaction was stopped by the addition of stop reagent (50% acetic acid) so that the final acetic acid concentration was 10%.

S spektrofotometrom smo izmerili absorbanco pri 405 nm. Rezultate smo primerjali z delovanjem antibiotika polimiksina B, ki učinkovito nevtralizira LPS, ter še s pozitivno kontrolo, kjer smo inkubirali sam LPS brez prisotnosti peptidov, in negativno kontrolo (LAL voda).The absorbance at 405 nm was measured with a spectrophotometer. The results were compared with the action of the antibiotic polymyxin B, which effectively neutralizes the LPS, and with the positive control, where we incubated the LPS alone without the presence of peptides, and the negative control (LAL water).

Z LAL testom smo pokazali, da tako peptid LF12 kot njegovi derivati inhibirajo aktivacijo faktorjev v LAL reagentu, ki jo sproži LPS. Ugotovili smo, da vsi peptidi inhibirajo LAL reakcijo na LPS v odvisnosti od koncentracije (Tabela 4).With the LAL assay, we have shown that both the LF12 peptide and its derivatives inhibit the activation of LPS-triggered factor LAG reagent. All peptides were found to inhibit the LAL response to LPS in a concentration-dependent manner (Table 4).

-1414-1414

Tabela 4. 50 % inhibicija (IC50) LAL reakcije v prisotnosti peptidov.Table 4. 50% inhibition (IC50) of LAL reaction in the presence of peptides.

Peptid Peptide IC50 (μΜ)*IC 50 (μΜ) * ± napaka* ± error * LF12 LF12 29,98 29,98 2,47 2.47 LF12-C6 LF12-C6 11,22 11,22 2,24 2.24 LF12-C8 LF12-C8 8,84 8.84 3,32 3,32 LF12-C12 LF12-C12 2,43 2.43 1,62 1.62 LF12-C14 LF12-C14 19,72 19,72 1,00 1.00 LF12-C16 LF12-C16 12,09 12.09 1,41 1.41 polimiksin B polymyxin B 1,40 1,40 0,56 0.56

* Izračun (IC50 ± napaka) s sigmoidnim prileganjem.* Calculation (IC50 ± error) with sigmoid fit.

PRIMER 4EXAMPLE 4

Določanje antimikrobnega delovanja peptida LF12 in polsintetičnih lipopeptidov na osnovi peptida LF12Determination of antimicrobial activity of LF12 peptide and semi-synthetic lipopeptides based on LF12 peptide

Za poskus smo uporabili bakterijske seve, ki so navedeni v Tabeli 5.The bacterial strains listed in Table 5 were used for the experiment.

Tabela 5. Bakterijski sevi, ki smo jih uporabili za določanje antimikrobnega delovanja peptida LF12 in polsintetičnih lipopeptidov na osnovi peptide LF12.Table 5. Bacterial strains used to determine the antimicrobial activity of the LF12 peptide and semi-synthetic lipopeptides based on the LF12 peptide.

• Gram-negativni bakterijski sevi: • Gram-negative bacterial strains: Escherichia coli DC2 Escherichia coli DC2 CGSC 7139 (E. coli Genetic Stock Center, Yale University, ZDA) CGSC 7139 (E. coli Genetic Stock Center, Yale University, USA) Escherichia coli UB1004 Escherichia coli UB1004 CGSC 7138 (E. coli Genetic Stock Center, Yale University, ZDA) CGSC 7138 (E. coli Genetic Stock Center, Yale University, USA) Escherichia coli Escherichia coli Zbirka kultur na Kemijskem Collection of Cultures in Chemical BL21(DE3)pLysS BL21 (DE3) pLysS inštitutu, Ljubljana, Slovenija Institute, Ljubljana, Slovenia • Gram-oozitivna bakterijska seva: • Gram-positive bacterial strain: Staphylococcus aureus Staphylococcus aureus ATCC 25923 (American Type Culture Collection, Manassas, ZDA) ATCC 25923 (American Type Culture Collection, Manassas, United States) Staphylococcus epidermidis Staphylococcus epidermidis ATCC 12228 (American Type Culture Collection, Manassas, ZDA) ATCC 12228 (American Type Culture Collection, Manassas, United States)

-1515-1515

Pripravili smo zmes iz 1,8 ml LB top agaroze, avtoklavirane in ohlajene na 50°C, in 0,2 ml prekonočne kulture bakterijskih celic v gojišču LB ter jo prelili na ploščo z gojiščem LB, ki smo jo predhodno ogreli na temperaturo 37°C. V pol ure se je polje bakterij na plošči strdilo. Na tako pripravljene plošče s poljem bakterij smo nanesli po 10 μΙ peptidov v območju koncentacij od 10'7 do IO'2 M in inkubirali 3 ure pri 37°C. Antibakterijsko delovanje smo ugotovili, če je okrog mesta nanosa peptida na ploščo nastala bistra cona brez celic. Dodatno smo preverili tudi antimikrobno delovanje vseh sestavin, ki smo jih uporabili za pripravo polsintetičnih lipopeptidov.A mixture of 1.8 ml of LB top agarose, autoclaved and cooled to 50 ° C, and 0.2 ml of overnight bacterial cell culture in LB medium were prepared and poured onto a plate of LB medium, pre-heated to 37 ° C. C. In half an hour the field of bacteria on the plate solidified. 10 μΙ of peptides in the concentration range of 10 ′ 7 to IO ′ 2 M were applied to the prepared bacterial array plates and incubated for 3 hours at 37 ° C. Antibacterial activity was determined if a clear, cell-free zone formed around the peptide application site. The antimicrobial activity of all the ingredients used to prepare the semi-synthetic lipopeptides was further checked.

Pokazali smo, da peptid LF12, podaljšan z alifatsko verigo dolgo 6, 8, 12, 14, 16 in 18 ogljikovih atomov, deluje antimikrobno proti Gram-negativnim in Gram-pozitivnim bakterijam ter da to podaljšanje peptida LF12 izboljša antimikrobno delovanje peptida proti bakterijam E. coli DC2, S. aureus in S. epidermidis (Tabela 6).We have shown that the LF12 peptide, extended by an aliphatic chain of 6, 8, 12, 14, 16 and 18 carbon atoms, has antimicrobial activity against Gram-negative and Gram-positive bacteria, and that this prolongation of the LF12 peptide enhances the antimicrobial activity of the peptide against E bacteria coli DC2, S. aureus and S. epidermidis (Table 6).

Tabela 6. Antimikrobno delovanje peptidov proti Gram-negativni bakteriji E. coli DC2 in Gram-pozitivnim bakterijam S. aureus in S. epidermidis.Table 6. Antimicrobial activity of peptides against Gram-negative bacterium E. coli DC2 and Gram-positive bacteria S. aureus and S. epidermidis.

Peptid Peptide E. coli DC2 (M) # E. coli DC2 (M) # S. aureus (M) # S. aureus (M) # S. epidermidis (M) # S. epidermidis (M) # LF12 LF12 1,0*10'3 1,0 * 10 ' 3 7,5*10’4 7.5 * 10 ' 4 3,8*10'4 3,8 * 10 ' 4 LF12-C6 LF12-C6 5,0*10'4 5.0 * 10 ' 4 3,8*10'4 3,8 * 10 ' 4 LF12-C8 LF12-C8 1,0*10'4 1.0 * 10 ' 4 5,0*10'5 5.0 * 10 ' 5 LF12-C12 LF12-C12 2,0*105 2.0 * 10 5 9,5*10'6 9.5 * 10 ' 6 9,5*10‘7 9.5 * 10 ' 7 LF12-G14 LF12-G14 1,0*10'4 1.0 * 10 ' 4 5,0*10'5 5.0 * 10 ' 5 LF12-C16 LF12-C16 5,0*10'4 5.0 * 10 ' 4 2,5*105 2.5 * 10 5 LF12-C18 LF12-C18 5,0*10'4 5.0 * 10 ' 4 5,0*10'5 5.0 * 10 ' 5 LF12- LF12- 7,7*10'5 7.7 * 10 ' 5 spermidin spermidine polimiksin B polymyxin B 2,0*10'6 2.0 * 10 ' 6 2,0*10'4 2.0 * 10 ' 4 5,0*10’5 5.0 * 10 ' 5

# Koncentracije peptidov, pri katerih je nastala na plošči z gojiščem LB z navedenimi bakterijami bistra cona brez celic.# Concentrations of peptides formed on a LB culture plate with the indicated bacteria clear cell free zone.

-1616-1616

Polsintetični lipopeptidi, opisani v izumu, delujejo antimikrobno proti Gramnegativnim in Gram-pozitivnim bakterijam pri koncentracijah nekaj 10- do 100-krat nižjih, kot to velja za izhodni peptid, ter nevtralizirajo delovanje molekul LPS pri nekajkrat nižjih koncentracijah kot izhodni peptid. Nove spojine po predmetnem izumu omogočajo uničenje Gram-negativnih in Gram-pozitivnih bakterij in nevtralizacijo endotoksina, in so zato uporabne za preprečevanje infekcij, zdravljenje sepse in drugih podobnih obolenj.The semi-synthetic lipopeptides of the invention have antimicrobial activity against Gram-negative and Gram-positive bacteria at concentrations 10- to 100-fold lower than that of the parent peptide, and neutralize the activity of LPS molecules at several-fold lower concentrations than the parent peptide. The novel compounds of the present invention allow the destruction of Gram-negative and Gram-positive bacteria and neutralize endotoxin, and are therefore useful for the prevention of infections, the treatment of sepsis and other similar diseases.

Zaradi podobnosti peptida s človeškim zaporedjem je zmanjšana verjetnost za imunski odziv na peptide v človeškem telesu. To je zelo ugodno tudi v luči iskanja novih tipov antimikrobnih učinkovin zaradi naraščajoče, odpornosti bakterij na konvencionalne antibiotike. /Due to the similarity of the peptide to the human sequence, the likelihood of an immune response to peptides in the human body is reduced. This is also very advantageous in the light of the search for new types of antimicrobial agents due to the increasing resistance of bacteria to conventional antibiotics. /

Claims (14)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Spojine s formulo P-B, kjer P označuje peptidni del z visoko vsebnostjo (> 20 %) bazičnih aminokislin Arg in/ali Lys in hidrofobnih aminokislin Phe, Tyr, Trp, Ile ali Val, skupina B pa označuje nasičeno ali nenasičeno alifatsko verigo, ki vsebuje od 6 do 18 ogljikovih atomov.Compounds of formula PB, wherein P denotes a peptide moiety having a high content (> 20%) of the basic amino acids Arg and / or Lys and the hydrophobic amino acids Phe, Tyr, Trp, Ile or Val, and group B denotes a saturated or unsaturated aliphatic chain, containing from 6 to 18 carbon atoms. 2. Spojine po zahtevku 1, značilne po tem, da je peptidni del P podoben aminokislinskemu zaporedju fragmenta človeškega proteina ali peptida.Compounds according to claim 1, characterized in that the peptide moiety P is similar to the amino acid sequence of a fragment of a human protein or peptide. 3. Spojine po zahtevku 1, značilne po tem, da je aminokislinsko zaporedje peptidnega dela P: Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer.Compounds according to claim 1, characterized in that the amino acid sequence of the peptide moiety is P: Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer. 4. Spojina s formulo:4. A compound of the formula: Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer.Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer. 5. Spojina s formulo:5. A compound of the formula: Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer-heksilamid.Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer-hexylamide. 6. Spojina s formulo:6. A compound of the formula: Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer-oktilamid.Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer-octylamide. 7. Spojina s formulo:7. A compound of the formula: Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer-dodecilamid.Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer-dodecylamide. 8. Spojina s formulo:8. A compound of the formula: Phe-GIn-T rp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer-oleilamid.Phe-GIn-T rp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer-oleylamide. 9. Spojina s formulo:9. A compound of the formula: Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer-tetradecilamid.Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer-tetradecylamide. -1818-1818 10. Spojina s formulo:10. A compound of the formula: Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer-heksadecilamid.Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer-hexadecylamide. 11. Spojina s formulo:11. A compound of the formula: Phe-Gln-Trp-Gln-Arg-Asn-lle-Arg-Lys-Val-Arg-hSer-2-amino-etilenamid.Phe-Gln-Trp-Gln-Arg-Asn-11-Arg-Lys-Val-Arg-hSer-2-amino-ethyleneamide. 12. Postopek za pripravo spojin po zahtevku 1, značilen po tem, da je peptidni del pridobljen v mikroorganizmih.A process for the preparation of compounds according to claim 1, characterized in that the peptide moiety is obtained in microorganisms. 13. Uporaba spojin po zahtevku 1 za pripravo farmacevtskih sredstev za inaktivacijo Gram-negativih bakterij, Gram-pozitivnih bakterij in za nevtralizacijo endotoksina.Use of the compounds of claim 1 for the preparation of pharmaceutical agents for inactivating Gram-negative bacteria, Gram-positive bacteria and for neutralizing endotoxin. 14. Uporaba spojin po zahtevku 1 za pripravo antimikrobnih sredstev proti Gram-pozitivnim bakterijam Staphyloccocus aureus in/ali Staphyloccocus epidermidis.The use of the compounds of claim 1 for the preparation of antimicrobial agents against Gram-positive bacteria Staphyloccocus aureus and / or Staphyloccocus epidermidis.
SI200100080A 2001-03-21 2001-03-21 Lipopeptides, their preparation and their use for inactivation of gram-negative bacteria, gram-positive bacteria and neutralization of endotoxins SI20877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200100080A SI20877A (en) 2001-03-21 2001-03-21 Lipopeptides, their preparation and their use for inactivation of gram-negative bacteria, gram-positive bacteria and neutralization of endotoxins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI200100080A SI20877A (en) 2001-03-21 2001-03-21 Lipopeptides, their preparation and their use for inactivation of gram-negative bacteria, gram-positive bacteria and neutralization of endotoxins

Publications (1)

Publication Number Publication Date
SI20877A true SI20877A (en) 2002-10-31

Family

ID=20432859

Family Applications (1)

Application Number Title Priority Date Filing Date
SI200100080A SI20877A (en) 2001-03-21 2001-03-21 Lipopeptides, their preparation and their use for inactivation of gram-negative bacteria, gram-positive bacteria and neutralization of endotoxins

Country Status (1)

Country Link
SI (1) SI20877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2668827C2 (en) * 2013-02-28 2018-10-02 Лаборатуар Теа С.А.С. Topical antimicrobial dermatological composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2668827C2 (en) * 2013-02-28 2018-10-02 Лаборатуар Теа С.А.С. Topical antimicrobial dermatological composition

Similar Documents

Publication Publication Date Title
Le et al. Intracellular targeting mechanisms by antimicrobial peptides
US7960339B2 (en) Antimicrobial peptides
De Zoysa et al. Antimicrobial peptides with potential for biofilm eradication: synthesis and structure activity relationship studies of battacin peptides
US8686113B2 (en) Antibiotic peptides
US7078380B2 (en) Antibacterial agents comprising conjugates of glycopeptides and peptidic membrane associating elements
Mangoni et al. Biological characterization and modes of action of temporins and bombinins H, multiple forms of short and mildly cationic anti‐microbial peptides from amphibian skin
US20240294572A1 (en) Antimicrobial Peptides
Park et al. Synergism of Leu–Lys rich antimicrobial peptides and chloramphenicol against bacterial cells
EP3150627B1 (en) Antimicrobial peptides based on cmap27
US6043220A (en) Threonine-containing protegrins
KR20100116612A (en) Anti-bacterial compositions
WO1997002287A1 (en) Parevins and tachytegrins
US6307016B1 (en) Parevins and tachytegrins
Güell et al. Design, synthesis, and biological evaluation of cyclic peptidotriazoles derived from BPC194 as novel agents for plant protection
CA2451310A1 (en) Antimicrobial peptides
SI20877A (en) Lipopeptides, their preparation and their use for inactivation of gram-negative bacteria, gram-positive bacteria and neutralization of endotoxins
Knijnenburg et al. Tuning hydrophobicity of highly cationic tetradecameric Gramicidin S analogues using adamantane amino acids
JPH06504260A (en) Amphipathic peptide compositions and analogs thereof
KR100849162B1 (en) Antimicrobial Peptide Having Reduced Hemolytic Activity
Ahn et al. Enhancement of Antibacterial Activity of Short Tryptophan-rich Antimicrobial Peptide Pac-525 by Replacing Trp with His (chx).
Kim et al. Characterization of antibacterial activity and synergistic effect of cationic antibacterial peptide-resin conjugates
USRE38828E1 (en) Parevins and tachytegrins
AU714294C (en) Parevins and tachytegrins
Varnava Synthesis and Antibacterial Potential of Novel Antibiotics
Güell Costa et al. Design, synthesis and biological evaluation of cyclic peptidotriazoles derived from BPC194 as novel agents for plant protection

Legal Events

Date Code Title Description
IF Valid on the prs date
KO00 Lapse of patent

Effective date: 20051230