SI20167A - Breaking disk and the procedure for its manufacturing - Google Patents

Breaking disk and the procedure for its manufacturing Download PDF

Info

Publication number
SI20167A
SI20167A SI9900009A SI9900009A SI20167A SI 20167 A SI20167 A SI 20167A SI 9900009 A SI9900009 A SI 9900009A SI 9900009 A SI9900009 A SI 9900009A SI 20167 A SI20167 A SI 20167A
Authority
SI
Slovenia
Prior art keywords
disc
casting
mmc
melt
disk
Prior art date
Application number
SI9900009A
Other languages
Slovenian (sl)
Inventor
Janez Pišek
Srečo Sečnik
Zmago Stadler
Original Assignee
Sinter Ljubljana D.O.O.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinter Ljubljana D.O.O. filed Critical Sinter Ljubljana D.O.O.
Priority to SI9900009A priority Critical patent/SI20167A/en
Publication of SI20167A publication Critical patent/SI20167A/en

Links

Landscapes

  • Braking Arrangements (AREA)

Abstract

The breaking disk is meant to be used in smaller motor driven vehicles, particularly go-carts, where compared to currently known solutions it should be considerably lighter and feature improved physical properties therefore providing a number of technical advantages. Such a disk includes at least two disk areas (1, 2) which are at a certain distance, where each time there is at least one friction surface (10, 20) available, as well as appropriately distributed cooling ribs (3) between them. By this the breaking disk operates as an axial-radial fan. This provides an appropriate air throughput through the disk, which ensures effective cooling. This way the temperature on the disk surface during breaking is lower, thus providing lesser thermal stress to the brake linings, while additionally a more stable friction factor or enhanced efficiency of the breaking assembly is provided. For this purpose at least one disk area (1, 2) located directly next to the ribs (3) is equipped with a step-like rounding (11), the ratio between the width or thickness (b) of each disk area (1, 2) and the distance (c) between the disk areas (1, 2) is between 0,8 and 1,2. The disk is manufactured through a casting process from light composite material, the so-called Al.MMC and during mechanical processing or even after it, if required, it can be subject to additional thermal and/or surface finishing.

Description

Zavorni disk in postopek izdelave le-tegaBrake disc and manufacturing process

Izum se nanaša na zavorni disk, zlasti za manjša motoma vozila, še zlasti za manjša tekmovalna motoma vozila, namreč za takoimenovane gokarte. Hkrati je predmet izuma tudi postopek izdelave tovrstnega zavornega diska.The invention relates to a brake disk, in particular for smaller vehicle motos, in particular for smaller vehicle racing motors, namely the so-called go-karts. At the same time, the subject of the invention is a method of manufacturing such a brake disc.

Pri tem je izum osnovan na problemu, kako zasnovati zavorni disk, ki bo uporaben pri manjših tekmovalnih motornih vozilih, zlasti gokartih, pri čemer naj bi zavorni disk v primerjavi z doslej znanimi rešitvami ob bistveno zmanjšani teži nudil bistveno izboljšane fizikalne lastnosti ter iz slednjih izhajajoče tehnične prednosti.The invention is based on the problem of how to design a brake disk, which will be useful for smaller rival motor vehicles, especially go-karts, whereby the brake disk, in comparison with the known solutions, is expected to offer significantly improved physical properties and from the results thereof. technical advantages.

Pri zaviralnih sklopih manjših tekmovalnih motornih vozil, npr. gokartov, so doslej uporabljali zavorne diske, ki so bili izvedeni bodisi iz sive litine ali nerjavnega jekla ali tudi aluminija. Pri tem so znane izvedbe polnih diskov, razen tega pa tudi izvedbe zaradi možnosti hlajenja oblikovno razčlenjenih oz. iz vsaj dveh kolutastih območij sestoječih zavornih diskov. Zavorne površine znanih diskov so bile prav tako razčlenjene ter v ta namen opremljene bodisi z zarezami, čepi ali tudi z različno razporejenimi krožnimi utori. Namen takšne razčlenitve zavornih površin zavornega diska je predvsem odstranjevanje oblog, ki nastajajo zlasti pri intenzivnejšem zaviranju, ko se temperatura zavornih površin povzpne celo na 400 - 500°C.In the case of braking assemblies of smaller competing motor vehicles, e.g. Go-karts, so far, have used brake discs made of either cast iron or stainless steel or also aluminum. Full-disk versions are known, as well as embodiments due to the possibility of cooling formatted or. from at least two annular zones of standing brake discs. The braking surfaces of the known disks were also broken down and, for this purpose, equipped with notches, studs or also with differently spaced circular grooves. The purpose of such a breakdown of the brake disc surfaces is primarily to remove linings, which are caused especially by more intensive braking when the temperature of the brake surfaces rises even to 400-500 ° C.

Nastajanje omenjenih oblog pa ni edina pomanjkljivost doslej uporabljanih zavornih diskov iz sive litine. Siva litina je namreč gradivo, ki ima po eni strani resda dokaj dobre livne sposobnosti in po drugi strani tudi sorazmerno tudi kar dobre fizikalne lastnosti. Dejstvo pa je, da je to gradivo z razmeroma veliko gostoto oz. specifično težo. Zato so zavorni diski iz sive litine razmeroma težki, kar še zlasti pri uporabi na področju lahkih tekmovalnih vozil predstavlja veliko pomanjkljivost. Neugodne posledice se kažejo predvsem v velikih vrtilnih masah oz. inerciji pri pospeševanju oz. zaviranju, kot tudi v razmeroma visokih dinamičnih obremenitvah posameznih sestavnih delov vozila. Po drugi strani je siva litina kot gradivo lahko problematična tudi z vidika neugodnih posledic razmeroma slabe toplotne prevodnosti. Med zaviranjem se namreč neizogibno ustvarja toplotna energija, ki se koncentrira v zavornem sklopu, v dobršni meri prav v disku. Povišanje temperature drsnih površin ima med drugim za posledico zmanjšanje koeficienta trenja in učinkovitost zaviranja, hkrati pa nastajanje že omenjenih oblog in tudi sicer povečanja obrabe površin diska.The formation of these liners, however, is not the only drawback of the gray cast iron discs used so far. Gray cast iron is a material that, on the one hand, has a really good casting ability and, on the other hand, relatively good physical properties. The fact is that this material is of relatively high density or density. specific gravity. Therefore, gray alloy brake discs are relatively heavy, which is a major drawback especially when used in light racing vehicles. Adverse effects are manifested mainly in high rotational masses or. inertia when accelerating or braking, as well as in relatively high dynamic loads of individual vehicle components. On the other hand, gray cast iron as a material can also be problematic in view of the adverse effects of relatively poor thermal conductivity. During braking, it is inevitable that thermal energy is concentrated, which is concentrated in the brake assembly, to a great extent in the disc itself. Increasing the temperature of the sliding surfaces results in, among other things, a decrease in the coefficient of friction and the braking efficiency, while at the same time the formation of the already mentioned deposits and also an increase in the wear of the disc surfaces.

Opisanim pomanjkljivostim so se sicer skušali izogniti bodisi z nanašanjem proti obrabi odpornih oblog (DK 1891/88; CH 312.880 oz. FR 8.011.646; DK 7790; ) vstavljanjem segmentov (EP 0 030 791 Al) ali s posebnimi nadaljnjimi operacijami v zvezi z obdelavo zavornih površin zavornega diska zaradi zagotovitve sposobnosti proti obrabi (DK 77/90; DK 189188; EP 0 742 379 Al), boljše toplotne prevodnosti (DE 4.426.091) ali neposredno preprečevanja nastajanja omenjenih oblog (FR 9.403.972). Dasiravno so z vsakovrstnimi ukrepi skušali in izboljšati problematiko zagotavljanja kar najboljših fizikalnih lastnosti zavornega diska, ostaja v vseh naštetih primerih problem razmeroma velike teže diska in iz tega izhajajočih neugodnih posledic v celoti nerešen.The disadvantages described were otherwise sought to be avoided either by the application of wear-resistant linings (DK 1891/88; CH 312,880 or FR 8011,646; DK 7790;) by the insertion of segments (EP 0 030 791 Al) or by specific follow-up operations treatment of brake disc surfaces to provide abrasion resistance (DK 77/90; DK 189188; EP 0 742 379 Al), better thermal conductivity (DE 4.426.091) or directly prevent the formation of said liners (FR 9.403.972). By all means, every effort was made to try and improve the problem of ensuring the best physical properties of the brake disc, in all of the above cases the problem of a relatively high weight of the disc remains, and the resulting adverse consequences are completely unsolved.

S problemom teže zavornih diskov so se v zadnjih letih spopadali zlasti proizvajalci zavornih diskov pri težjih vozilih, npr. železniških lokomotivah in podobnih, kjer je mogoče zaradi večjega števila diskov pri vozilu ustvariti občutne prihranke pri teži vozila, porabi goriva in podobno. Kot posledica tega so bili pri zavornih diskih poleg drugih zlitin (EP 0 868 538 Al) uvedeni takoimenovani kompozitni materiali (EP 0 705 397 Al). Ti kompozitni materiali so sicer lažji, vendar v večini primerov težje livni in zahtevnejši glede zagotavljanja vseh potrebnih mehanskih lastnosti. Problem zahtevnega litja sicer ni toliko pereč pri polnih diskih (EP 0 705 397 Al) razmeroma enostavne oblike. Vendar pa je npr. pri zavornih diskih tekmovalnih vozil potrebno računati s tem, da polni diski ne omogočajo zadostnega odvajanja toplote in so zato neizogibno potrebni oblikovno dokaj razčlenjeni, hlajeni diski.The problem of the weight of the brake disks has been faced in recent years especially by manufacturers of brake discs for heavier vehicles, e.g. railway locomotives and the like, where significant number of discs on the vehicle can create significant savings in vehicle weight, fuel consumption and the like. As a consequence, the so-called composite materials (EP 0 705 397 Al) were introduced on the brake discs in addition to other alloys (EP 0 868 538 Al). These composite materials are lighter, but in most cases more difficult to cast and more demanding to provide all the necessary mechanical properties. The problem of demanding casting is not so much the case with full discs (EP 0 705 397 Al) of relatively simple design. However, e.g. in the brake discs of competing vehicles, it is necessary to take into account that the full disks do not allow sufficient heat dissipation and, therefore, the formally split, cooled disks are inevitably needed.

Podjetje Knorr Bremse je skupaj s podjetjem Honsel nedavno predstavilo zavorne diske iz Al-MMC materiala za hitre (tkzv. ICE) vlake v Nemčiji. Konstrukcija teh zavornih diskov je prilagojena voznim karakteristikam ICE vlakov. Način konstrukcije in izdelave zavornih diskov je opisan v reviji Giesserei 85, (1998), Nr. 2, 10. Februar in Giesserei 85, (1998), Nr. 3, 10. Marž. Vozne in zavorne karakteristike lahkih motornih vozil, še zlasti tekmovalnih vozil, npr. gokartov in podobnih, se bistveno razlikujejo od navedenih lastnosti hitrih vlakov, zato opisanih konstrukcijskih rešitev na želenem področju nikakor ni možno uporabiti.Knorr Bremse, together with Honsel, recently introduced brake disks made of Al-MMC material for high-speed (so-called ICE) trains in Germany. The design of these brake discs is adapted to the running characteristics of the ICE trains. The method of construction and construction of brake discs is described in Giesserei 85, (1998), Nr. 2, February 10 and Giesserei 85, (1998), Nr. 3, 10. Margin. Driving and braking characteristics of light motor vehicles, especially racing vehicles, e.g. go-karts and the like differ significantly from the stated properties of high-speed trains, so the described design solutions in the desired area cannot be used in any way.

Po izumu je zavorni disk izveden v novi in bistveno izboljšani konstrukcijski zasnovi, hkrati pa sestoji iz ustreznega, v nadaljevanju podrobneje opisanega gradiva ter je hkrati izveden po postopku, ki bo prav tako podrobneje obrazložen v nadaljevanju. Disk sestoji iz vsaj dveh med seboj vzporedno razmaknjenih kolutastih območij, katerih zunanji površini predstavljata vsakokrat ustrezni torni površini. Med omenjenima kolutastima območjema so na voljo rebra, ki pripomorejo k izboljšanju ventilacije oz. cirkulacije zraka med kolutastima območjema. Poleg tega pa k izboljšanju cirkulacije pripomore tudi značilna stopničasta zaokrožitev, ki je na voljo na enem od omenjenih kolutnih območij v neposredni bližini vsakokrat razpoložljivih reber. Pri tem je vsako od omenjenih reber - gledano v smeri radialno navznoter proti središču diska - lahko izvedeno bodisi z ravnim končnim območjem ali z upoševljenim končnim območjem. Na ta način zavorni disk med vrtenjem učinkuje kot aksialno-radialni ventilator, tako da je zagotovljen ustrezen pretok zraka skozi disk, kar ima za posledico učinkovito hlajenje. Na ta način je temperatura na površini diska med zaviranjem nižja, temu primemo nižje so toplotne obremenitve materiala zavornih oblog, razen tega pa dosežemo stabilnejši torni koeficient oz. večjo učinkovitost zavornega sklopa. Uvodoma zastavljeni problem je ob upoštevanju v nadaljevanju opisanih zahtev glede izbire ustreznega gradiva in tehnološkega postopka izdelave zavornega diska med drugim rešen tudi s tem, da znaša razmerje med debelino vsakega od omenjenih kolutastih območij in razmikom med omenjenima območjema med 0,8 in 1,2, prednostno pa približno 0,9.According to the invention, the brake disk is implemented in a new and substantially improved structural design, and at the same time consists of appropriate material described below, and at the same time is performed according to a procedure, which will also be explained in more detail below. The disk consists of at least two parallel spaced annular regions, the outer surfaces of which each represent the corresponding friction surfaces. There are ribs between the two annulus areas which help to improve ventilation and / or ventilation. air circulation between the annular areas. In addition, the characteristic stepped rounding, which is available in one of the aforementioned disc areas in the immediate vicinity of the ribs available, also contributes to the improvement of circulation. In doing so, each of said edges - viewed radially inwardly toward the center of the disk - can be made either with a straight end zone or with a considered end zone. In this way, the brake disk acts as an axial-radial fan during rotation, ensuring adequate airflow through the disk, resulting in efficient cooling. In this way, the temperature on the surface of the disk is lower during braking, the lower the thermal loads of the brake lining material, the more stable the coefficient of friction and / or friction are. increased efficiency of the brake assembly. Taking into account the requirements for selecting the appropriate material and technological process for making the brake disc, the problem described above is solved, inter alia, by the ratio between the thickness of each of said annular areas and the distance between said regions between 0.8 and 1.2 and preferably about 0.9.

Za izdelavo zavornega diska po izumu je uporabljen aluminijev kompozitni material, opredeljen v literaturi (Knorr Bremse in Honsel - Giesserei 85, (1998), Nr. 2, 10. Februar in Giesserei 85, (1998), Nr. 3, 10. Marž.), označen z okrajšavo Al-MMC, na trgu pa znan pod blagovno znamko Duralcan®. Natančneje gre npr. za Al-MMC oz. Duralcan® tip F3S.20S, ki vsebuje 20 prostorninskih deležev SiC delcev ali npr. Duralcan® tip F3K.20S, ki vsebuje aluminijevo zlitino z dodatkom Cu. Dasiravno je možno tudi litje v kokile, je pri izdelavi diskov uvodoma opredeljene konstrukcijske zasnove iz omenjenega gradiva nedvomno povsem uporaben tudi postopek litja v pesek, pri čemer se v livarski peči raztali osnovniAn aluminum composite material, as defined in the literature (Knorr Bremse and Honsel - Giesserei 85, (1998), Nr. 2, 10 February and Giesserei 85, (1998), Nr. 3, 10, is used to make the brake disc according to the invention. .), abbreviated as Al-MMC, and marketed under the trademark Duralcan®. Specifically, for example, for Al-MMC or. Duralcan® type F3S.20S containing 20 parts by volume of SiC particles or e.g. Duralcan® type F3K.20S containing Cu alloy with aluminum alloy. Casting into the molds is possible as well, while in the manufacture of the disks of the pre-defined structural design from the mentioned material, the sand casting process is undoubtedly quite useful, whereby the basic furnace melts

Al-MMC material ter se ga med samim procesom litja počasi in neprestano meša. Temperatura taline pred litjem v peščene forme prednostno znaša 725-735°C. Forme so opremjene z ustreznimi keramičnimi vlivnimi filtri s poroznostjo 20 PPI. V peščeni formi je potrebno pravilno razporediti napajalnik in odduške, ker je le s tem mogoče zagotoviti, da odlitek ne bi vseboval vključkov por ali zraka. V splošnem je možno - kot rečeno - zavorni disk iz Al-MMC materiala izdelati tudi z litjem v kokilo, pri čemer se uporabi bodisi klasični način litja (s pomočjo teže same taline) ali pa postopek nizkotlačnega litja. Po litju se surove odlitke zavornih diskov očisti in peska ter jih nato še mehansko obdela na vnaprej določene dimenzije, in sicer prednostno z obdelovalnimi orodji na osnovi diamanta ali borovega karbida.Al-MMC material, which is slowly and continuously mixed during the casting process. The melt temperature prior to sand casting is preferably 725-735 ° C. The molds are equipped with suitable ceramic cast filters with a porosity of 20 PPI. In sand form it is necessary to arrange the power supply and the vents properly, as this can only ensure that the cast does not contain any inclusions of pores or air. Generally speaking, it can be made - as mentioned - a brake disc made of Al-MMC material by casting into a mold using either the conventional casting method (using the weight of the melt itself) or the low-pressure casting process. After casting, the raw castings of the brake discs are cleaned of sand and then mechanically machined to predetermined dimensions, preferably using diamond or pine carbide based machining tools.

Razen tega so po izumu možna še nadaljnja izboljšanja fizikalnih ter s tem tehničnih lastnosti zavornih diskov iz Al-MMC. Pri tem gre predvsem za povečanje trdote na površini diska, kar se doseže s pomočjo trde anodne oksidacije, možno pa je tudi povečanje trdote površine s pomočjo ionskega nitriranja. Tako obdelana površina je še odpornejša na obrabo in ima izboljšano odpornost proti razenju.In addition, further improvements to the physical and thus technical properties of Al-MMC brake discs are possible according to the invention. This is mainly due to the increase of the hardness on the surface of the disk, which is achieved by hard anodic oxidation, and it is also possible to increase the hardness of the surface by ion nitration. The treated surface is even more resistant to abrasion and has improved abrasion resistance.

Po izumu je predvidena tudi naknadna termična obdelava diskov pri temperaturi 400°C v trajanju 2 uri in popuščanju notranjih napetosti v aluminijevi matrici v trajanju 6 ur pri temperaturi 160°C. Na ta način izboljšamo mehansko trdnost kompozitnega materiala ter zvišamo razteznost oz. zmanjšamo krhkost izdelka.The invention also provides for the subsequent thermal treatment of the disks at a temperature of 400 ° C for 2 hours and a reduction of the internal stresses in the aluminum matrix for 6 hours at a temperature of 160 ° C. In this way, the mechanical strength of the composite material is improved and the elongation or elongation is increased. reduce product fragility.

Uporaba alternativnega aluminijevega kompozitnega materiala Duralcan® tip F3K.20S, ki vsebuje aluminijevo zlitino z dodatkom Cu, privede do še nadaljnjega povečanja mehanske trdnosti in še boljše temperaturne obstojnost zavornega diska.The use of an alternative aluminum composite material, Duralcan® type F3K.20S, containing an aluminum alloy with Cu added, will further increase the mechanical strength and even better the thermal stability of the brake disc.

Tudi iz tega materiala izdelamo zavorne diske s pomočjo litja v pesek ter naknadne mehanske obdelave.Brakes are also made of this material by means of sand casting and subsequent mechanical treatment.

Izum bo v nadaljevanju podrobneje obrazložen na podlagi konkretnih primerov izvedbe diskov, prikazanih na priloženi skici, pri čemer je na sl. 1 prikazan prvi primer izvedbe zavornega diska v prerezu v diametralni ravnini, na sl. 2 pa drugi primer izvedbe zavornega diska, in sicer prav tako v prerezu v diametralni ravnini. Razen tega bo tudi postopek izdelave tovrstnega diska z vsemi za izum bistvenimi koraki obrazložen na osnovi konkretnih primerov in podkrepljen z dobljenimi rezultati.The invention will now be explained in more detail on the basis of specific examples of the disks shown in the accompanying drawing, in which Figs. 1 shows a first example of a cross-sectional embodiment of the brake disc in the diametrical plane; FIG. 2 is another example of a brake disc embodiment, also in cross section in the diametrical plane. In addition, the process of making such a disc, with all the essential steps of the invention, will be explained on the basis of specific examples and supported by the results obtained.

Kot je razvidno na sl. 1 in 2, je zavorni disk po izumu izveden iz dveh med seboj vzporedno razmaknjenih kolutastih območij 1, 2. Zunanji površini 10, 20 le-teh predstavljata torni površini, kamor med zaviranjem s svojimi tornimi površinami pritiskajo vsakokrat razpoložljivi sojemalni deli zavornega sklopa. Med omenjenima kolutastima območjema 1, 2 so na voljo rebra 3, ki pripomorejo k izboljšanju ventilacije oz. cirkulacije zraka med območjema 1, 2 med zaviranjem ter s tem k intenzivnejšemu odvajanju toplote s kolutastih območij 1, 2 oz. z zavornega diska. Še zlasti pa k izboljšanju cirkulacije pripomore stopničasta zaokrožitev 11, ki je na voljo na enem od omenjenih kolutnih območij 1, 2 v neposredni bližini vsakokrat razpoložljivih reber 3.As can be seen in FIG. 1 and 2, the brake disc according to the invention is made of two spaced discs 1, 2 in parallel. The outer surfaces 10, 20 thereof represent friction surfaces, where during the braking with their friction surfaces, the available retaining parts of the brake assembly are pressed. Ribs 3 are provided between the two annular zones 1, 2 which help to improve ventilation and / or ventilation. the circulation of air between zones 1, 2 during braking, and thus to more intense heat dissipation from the annular zones 1, 2 and. from the brake disc. In particular, stepwise rounding 11, which is available in one of the aforementioned reel regions 1, 2 in the immediate vicinity of the ribs available at all times 3, contributes to the improvement of circulation.

Pri tem je vsako od omenjenih reber 3 - gledano v smeri radialno navznoter proti središču diska - lahko izvedeno bodisi z ravnim končnim območjem 30 (sl. 1) ali z upoševljenim končnim območjem 30'. Izbira med možnima izvedbama območij 30, 30' prav tako vpliva na učinkovitost delovanja zavornega sklopa in je odvisna predvsem od pričakovanega režima cirkulacije zraka med kolutnima območjema 1, 2 zavornega diska.In doing so, each of said ribs 3 - viewed radially inwardly toward the center of the disk - can be made either with a straight end zone 30 (Fig. 1) or with a considered end zone 30 '. The choice between the possible embodiments of the zones 30, 30 'also affects the efficiency of the brake assembly and depends primarily on the expected air circulation regime between the brake disk disc regions 1, 2.

Kot je razvidno na sl. 1, je širina oz. debelina kolutastih območij 1, 2 označena z b, razmik oz. medsebojna oddaljenost v aksialni smeri med območjema 1, 2 pa s c. Uvodoma zastavljeni problem je ob upoštevanju v nadaljevanju opisanih zahtev glede izbire ustreznega gradiva in tehnološkega postopka izdelave zavornega diska med drugim rešen tudi s tem, da znaša razmerje med debelino b vsakega od obeh kolutastih območij 1, 2 in razmikom c med 0,8 in 1,2. Pri danih primerih izvedbe znaša razmerje b/c = 0,9.As can be seen in FIG. 1, is the width or. the thickness of the annular regions 1, 2 indicated by b, the spacing respectively. the axial distance between zones 1 and 2 by c. Taking into account the following requirements regarding the selection of the appropriate material and technological procedure for the manufacture of the brake disk, the problem posed above is also solved by the fact that the ratio of the thickness b of each of the two annular regions 1, 2 and the distance c between 0.8 and 1 , 2. In the given embodiments, the ratio b / c = 0.9.

Za izdelavo zavornega diska po izumu smo oporabili aluminijev kompozitni material (gl. Knorr Bremse, Honsel - Giesserei 85, (1998), Nr. 2, 10. Februar in Giesserei 85, (1998), Nr. 3, 10. Marž.), ki bo v nadaljevanju označen z okrajšavo Al-MMC in je v prodaji pod blagovno znamko Duralcan®. Natančneje gre za AlMMC oz. Duralcan® tip F3S.20S, ki vsebuje 20 prostorninskih deležev SiC delcev. Pri tem smo uporabili postopek litja v pesek, in sicer smo predhodno v livarski peči za taljenje aluminija raztalili osnovni Al-MMC material ter ga med samim procesom litja počasi in neprestano mešali. Temperatura taline pred vlivanjem v peščene forme je znašala 725-735°C. Forme so morale biti opremljene z ustreznimi keramičnimi vlivnimi filtri s poroznostjo 20 PPI, V peščeni formi smo na ustrezen način razporedili napajalnik in odduške ter s tem zagotovili, da odlitek ni vseboval vključkov por ali zraka. V splošnem je možno zavorni disk iz Al-MMC materiala izdelati tudi z litjem v kokilo, pri čemer se uporabi bodisi klasični način litja (teža same taline) ali pa postopek nizkotlačnega litja. Po litju smo surove odlitke zavornih diskov očistili in peskali ter jih nato še mehansko obdelali na vnaprej določene dimenzije. Pri tem smo v danem primeru uporabili obdelovalna orodja na osnovi diamanta in/ali borovega karbida.For the manufacture of the brake disc according to the invention, aluminum composite material was used (see Knorr Bremse, Honsel - Giesserei 85, (1998), Nr. 2, February 10, and Giesserei 85, (1998), Nr. 3, 10. Margin.) , hereinafter referred to as Al-MMC, and marketed under the Duralcan® brand. More specifically, it is AlMMC or. Duralcan® type F3S.20S containing 20 volumes of SiC particles. We used a sand casting process and previously melted the basic Al-MMC material in an aluminum smelter and mixed it slowly and continuously during the casting process. The melt temperature before pouring into the sand form was 725-735 ° C. The molds had to be fitted with suitable ceramic cast filters with a porosity of 20 PPI. In sand form, the power supply and vents were appropriately arranged to ensure that the cast did not contain any inclusions of pores or air. In general, a brake disc of Al-MMC material can also be fabricated by die casting using either the conventional casting method (weight of the melt itself) or the low pressure casting process. After casting, the raw castings of the brake discs were cleaned and blasted and then machined to predefined dimensions. In this case, we used diamond and / or pine carbide based machining tools.

Še dodatno povečanje trdote na površini diska smo dosegli s pomočjo trde anodne oksidacije, možno pa je tudi povečanje trdote površine s pomočjo ionskega nitriranja. Tako obdelana površina je še odpornejša na obrabo in ima izboljšano odpornost proti razenju.An additional increase in hardness on the surface of the disk was achieved by hard anodic oxidation, and it is also possible to increase the surface hardness by ionic nitration. The treated surface is even more resistant to abrasion and has improved abrasion resistance.

Razen tega nam je uspelo še izboljšati mehansko trdnost kompozitnega materiala in povečati razteznost oz. zmanjšati krhkost izdelka, in sicer s pomočjo naknadne termične obdelave diskov pri temperaturi 400°C v trajanju 2 uri ter zatem popuščanja notranjih napetosti v aluminijevi matrici v trajanju približno 6 ur pri temperaturi 160°C.In addition, we were able to further improve the mechanical strength of the composite material and increase the elasticity or elasticity of the composite material. reduce the fragility of the product by subsequent thermal treatment of the discs at 400 ° C for 2 hours and then loosen the internal stresses in the aluminum matrix for approximately 6 hours at 160 ° C.

Po drugi strani je bil za izdelavo zavornega diska uvodoma opredeljenih značilnosti uporabljen tudi alternativni material, in sicer aluminijev kompozitni material Duralcan® tip F3K.20S, ki vsebuje aluminijevo zlitino z dodatkom Cu, kar je imelo za posledico še višjo mehansko trdnost in še boljšo temperaturno obstojnost zavornega diska. Tudi iz tega materiala smo izdelali zavorne diske s pomočjo litja v pesek ter naknadne mehanske obdelave.On the other hand, an alternative material was used in the manufacture of the brake disc, as described above, namely the aluminum composite material Duralcan® type F3K.20S, which contains an aluminum alloy with Cu added, resulting in even higher mechanical strength and an even better temperature. brake disc durability. Also made of this material are brake discs by sand casting and subsequent mechanical treatment.

Za preskušanje tornih lastnosti izdelanih zavornih diskov smo uporabili zavorne ploščice Sinter MMC 2032 in Sinter F3000, ki smo jih razvili upoštevajoč lastnosti Al-MMC materialov.To test the friction properties of the manufactured brake disks, we used the Sinter MMC 2032 and Sinter F3000 brake pads, which were developed taking into account the properties of Al-MMC materials.

Primer 1:Example 1:

V tem primeru gre za izdelavo zavornega diska, pri katerim naj bi razmerje med debelino in razmikom kolutnih območij 1, 2, namreč razmerje b/c. znašalo 0,9. Izbrana je bila prva izvedba oblike reber 3 po sl. lin na tej osnovi je bila izvedena priprava forme oz. kalupa. V okviru tega koraka postopka je bil izdelan model in jedrovnik, čemur je sledila ročna izdelava jeder iz mešanice kremenčevega peska in vodnega stekla, zatem pa smo jedra utrjevali s CO2. Jedra je možno izvesti tudi iz mešanice peska in vsakokrat ustreznih fenolnih smol. Jedra smo sušili na zraku preko noči, možno pa jih je sušiti tudi v sušilniku v trajanju pol ure pri 150°C. S pomočjo zgornjega in spodnjega dela modela smo izdelali gornji in spodnji del peščene forme. Oba dela forme smo združili in vmes vstavili predhodno izdelano jedro. V peščeni formi smo oblikovali še vlivni sistem s keramičnim filtrom 20PPI kot tudi oddušno-izravnalne odprtine. Medtem smo v peči za predgrevanje pri 200250°C posebej predgrevali ingote iz Al-MMC tip F3S.20S. Tako predgrete ingote smo vstavili v že ogreto peč za taljenje aluminija in počakali da so se raztalili. Po približno 1 uri (v splošnem je to lahko odvisno seveda od količine in prostornine peči) smo pričeli talino previdno mešati, in sicer vse dokler SiC delci niso bili enakomerno razporejeni po talini. Zatem smo posneli nastalo žlindro s površine taline, ter pri temperaturi taline 725-735°C pričeli z litjem v predhodno izdelane forme. Ko seje vsak od odlitkov ohladil, smo ga vzeli iz forme, odstranili peščeno jedro in s peskanjem očistili površino. Sledila je končna obdelava s struženjem do zahtevanih dimenzij. Pri tem smo v danem primeru uporabili stružne nože z diamantno konico.In this case, it is a construction of a brake disk, in which the ratio of the thickness to the spacing of the disc zones 1, 2, namely the ratio b / c. was 0.9. The first embodiment of the rib shape 3 according to FIG. On this basis, the preparation of the form was carried out. mold. As part of this process step, a model and a core were made, followed by the manual fabrication of cores from a mixture of silica sand and water glass, and then the cores were cured with CO 2 . The cores can also be derived from a mixture of sand and the corresponding phenolic resins. The cores were air-dried overnight and can also be dried in an oven for 150 hours at 150 ° C. With the help of the upper and lower part of the model, we made the upper and lower part of the sand form. We combined the two parts of the form and inserted a pre-made kernel in between. In the sand form, we also designed a casting system with a ceramic filter 20PPI as well as air vents. Meanwhile, ingots of Al-MMC type F3S.20S were specially preheated in the 200250 ° C preheating oven. We put such preheated ingots in an already heated aluminum smelter and waited for them to melt. After about 1 hour (in general, this may depend, of course, on the amount and volume of the furnace), the melt was carefully mixed until the SiC particles were evenly distributed throughout the melt. Subsequently, the resulting slag was taken from the surface of the melt, and at a melt temperature of 725-735 ° C, we began casting into preformed molds. After each cast had cooled, it was taken out of shape, the sand core was removed and the surface was sandblasted. This was followed by finishing with turning to the required dimensions. In this case, diamond-tipped knives were used.

Frikcijske lastnosti zavornih diskov iz Al-MMC smo preskušali na avtomatskem stroju za testiranje zavornih elementov tipa Krauss RWS 75B po standardnem testnem programu ECE R90 annex 8 z zavornimi ploščicami Sinter tip MMC 2032 oziroma Sinter tip F3000. Rezultati meritev so podani v tabelah 1 in 2.The friction properties of Al-MMC brake disks were tested on an automatic Krauss RWS 75B brake element testing machine according to the standard ECE R90 annex 8 test program with Sinter type MMC 2032 or Sinter type F3000 brake pads. The results of the measurements are given in Tables 1 and 2.

Primer 2:Example 2:

Potek je bil enak kot v primeru 1, le daje bil v tem primeru uporabljen aluminijev kompozitni material (Al-MMC) Duralcan® tip F3K.20S. Rezultati frikcijskih lastnosti tako izdelanih zavornih diskov po izumu so spet podani v tabelah 1 in 2.The procedure was the same as in Example 1, except that in this case aluminum composite material (Al-MMC) Duralcan® type F3K.20S was used. The results of the frictional properties of the brake discs thus produced according to the invention are again given in Tables 1 and 2.

Primer 3:Example 3:

Potek ustreza tistemu v primeru 1, le da smo končno obdelan zavorni disk iz AlMMC materiala naknadno še trdo anodno oksidirali pri temperaturi kopeli 0°C in ob postopnem naraščanju napetosti od 20 do 100 V. Debelina trde prevleke A12O3 je znašala med 20 in 30 μιη. Rezultati frikcijskih lastnosti tako dobljenih zavornih diskov so podani v tabelah 1 in 2.The procedure corresponds to that in Example 1, except that the finally treated brake disc made of AlMMC material was subsequently anodized hard at an bath temperature of 0 ° C and with a gradual increase in voltage from 20 to 100 V. The thickness of the A1 2 O 3 hard coating was between 20 and 30 μιη. The results of the friction properties of the brake discs thus obtained are given in Tables 1 and 2.

Primer 4:Example 4:

Postopali smo kot v primeru 1, le da smo končno obdelan zavorni disk iz Al-MMC materiala naknadno še ionsko nitrirali pri 390°C v trajanju 12-14 ur v atmosferi Ar in NH3. Debelina trde prevleke A1N je znašala približno 30 pm. Rezultati frikcijskih lastnosti zavornih diskov po izumu so spet podani v tabelah 1 in 2.We proceeded as in Example 1, except that the final treated disk of Al-MMC material was subsequently ionically nitrated at 390 ° C for 12-14 hours under an atmosphere of Ar and NH 3 . The A1N hard coating thickness was approximately 30 pm. The results of the friction properties of the brake discs according to the invention are again given in Tables 1 and 2.

Primer 5:Example 5:

Postopek je potekal enako kot v primeru 1 in/ali primeru 2, le da smo zgolj delno obdelan zavorni disk iz Al-MMC materiala naknadno toplotno obdelali pri temperaturi 400°C približno 2 uri in ga zatem popuščali pri 160°C v trajanju 16 ur. Sledila je končna obdelava do končnih dimenzij. Rezultati frikcijskih lastnosti tako dobljenih zavornih diskov naknadno toplotno obdelanih so podani v tabelah 1 in 2.The procedure was the same as in Example 1 and / or Example 2 except that only the partially treated Al-MMC brake disc was subsequently heat treated at 400 ° C for about 2 hours and then allowed to cool at 160 ° C for 16 hours. . Finishing to the final dimensions followed. The results of the frictional properties of the brake discs thus obtained after heat treatment are given in Tables 1 and 2.

Frikcijske lastnosti iz Al-MMC materialov izdelanih zavornih diskov po izumu so upoštevajoč relevantne pogoje (Test ECE R90 annex 8) tabelarično predstavljeni v nadaljevanju v tabeli 1.The friction properties of the Al-MMC materials of the manufactured brake discs according to the invention are presented in the table below in accordance with the relevant conditions (Test ECE R90 annex 8).

nn

Zavorne obloge:Braking pads:

Sinter ident: 11-420-00 Tip mase: MMC 2032Sinter ident: 11-420-00 Mass type: MMC 2032

Tehnični podatki meritve: Zavorni sistem: TonykartMeasurement Specifications: Brake System: Tonykart

Disk:Disk:

Efektivni radij:Effective radius:

Površina obloge:Lining surface:

Specifični tlak:Specific pressure:

Hidravlični tlak:Hydraulic pressure:

Število obratov: 660 miriNumber of revolutions: 660 mi

207x14 mm mm 22,4 cm2 65 N/cm2 20,8 bar207x14 mm mm 22.4 cm 2 65 N / cm 2 20.8 bar

Lastnosti Features Primer 1 Example 1 Primer 2 Example 2 Primer 3 Example 3 Primer 4 Example 4 Primer 5 Example 5 Srednji torni koefic.(μ)Mean friction coefficient (μ ) 0,39 0.39 0,38 0.38 0,36 0.36 0,35 0.35 0,39 0.39 Minimalni torni keofic. (pmjn)Minimum friction keofic. (p m j n ) 0,25 0.25 0,24 0.24 0,19 0.19 0,21 0.21 0,26 0.26 Maksimalni torni koefic. (pmax)Maximum friction coefficient. (p ma x) 0,52 0.52 0,50 0.50 0,53 0.53 0,51 0.51 0,49 0.49 Torni koefic. pri maks. temp.(pF) The friction coefficient. at max. temp (pF) 0,39 0.39 0,38 0.38 0,20 0.20 0,25 0.25 0,39 0.39 Torni koefic. v hladnem (μ«) The friction coefficient. cold (μ «) 0,35 0.35 0,34 0.34 0,35 0.35 0,33 0.33 0,36 0.36 Maksimalna temp. med testom (°C) Maximum temp. during the test (° C) 297 297 290 290 292 292 287 287 289 289 Specifična obraba plošč: masna (g/MJ) Specific plate wear: oily (g / MJ) 0,15 0.15 0,17 0.17 0,23 0.23 0,15 0.15 0,20 0.20 •i dimenzijska (mm /MJ) • i dimensional (mm / MJ) 83 83 90 90 85 85 70 70 87 87 Ocena odpornosti proti razenju Assessment of resistance to smashing dobro good z. dobro z. good odlično great odlično great z. dobro z. good

(Tabela 1)(Table 1)

Frikcijske lastnosti iz Al-MMC materialov izdelanih zavornih diskov po izumu so upoštevajoč relevantne pogoje (Test ECE R90 annex 8) in hkrati primerjalno glede na tiste iz sive litine (z zavorne plošče pod oznako Sinter 114) tabelarično predstavljeni v nadaljevanju v tabeli 2.The friction properties of the Al-MMC materials of the manufactured brake discs according to the invention are given in the table below in accordance with the relevant conditions (Test ECE R90 annex 8) and at the same time compared to those of the gray cast iron (from the brake plate under the code Sinter 114).

Zavorne obloge:Braking pads:

Sinter ident: 11-420-00Sinter ident: 11-420-00

Tip mase: F 3000Type of mass: F 3000

Tehnični podatki meritve: Measurement specifications: Zavorni sistem: Braking system: Tonykart Tonykart Disk: Disk: 207x14 mm 207x14 mm Efektivni radij: Effective radius: 85 mm 85 mm Površina obloge: Lining surface: 22,4 cm2 22,4 cm 2 Specifični tlak: Specific pressure: 65 N/cm2 65 N / cm 2 Hidravlični tlak: Hydraulic pressure: 20,8 bar 20,8 bar Število obratov: Number of revolutions: 660 min'1 660 min ' 1

Lastnosti Features Primer 3 Example 3 Primer 4 Example 4 Siva litina * Gray cast iron * Srednji torni koefic.(μορ) Mean friction coefficient (μορ) 0,44 0.44 0,43 0.43 0,45 0.45 Minimalni torni keofic. (pmjn)Minimum friction keofic. (p m j n ) 0,17 0.17 0,19 0.19 0,30 0.30 Maksimalni torni koefic. (pmax)Maximum friction coefficient. (p ma x) 0,75 0.75 0,60 0.60 0,61 0.61 Tomi koefic. pri maks. temp.(pp) Tomi coefficient. at max. temp (pp) 0,49 0.49 0,43 0.43 0,45 0.45 Tomi koefic. v hladnem (μκ)Tomi coefficient. cold (μ κ ) 0,39 0.39 0,37 0.37 0,37 0.37 Maksimalna temp. med testom (°C) Maximum temp. during the test (° C) 314 314 302 302 387 387 Specifična obraba plošč: masna (g/MJ) Specific plate wear: oily (g / MJ) 0,80 0.80 0,60 0.60 0,66 0.66 dimenzijska (mm3/MJ)dimensional (mm 3 / MJ) 250 250 180 180 196 196 Ocena odpornosti proti razenju Assessment of resistance to smashing z. dobro z. good z. dobro z. good - -

(Tabela 2)(Table 2)

Zavorni disk, pripravljen v skladu s primerom 1 in v kombinaciji z zavornimi ploščami MMC 2032, se odlikuje z visokim srednjim tornim koeficientom μΟρ, nizko specifično obrabo plošč in zadovoljivo odpornostjo proti razenju. V primeru zamenjave Al-MMC materiala (primer 2) ali naknadni toplotni obdelavi zavornega diska (primer 5) se torne lastnosti ne spremenijo bistveno, delno se izboljša odpornost proti razenju. Oboje lahko povežemo z izboljšanimi mehanskimi lastnostmi matrične aluminijeve zlitine (tip F3K.20S) oziroma s strukturnimi spremembami matrične zlitine po toplotni obdelavi. Prednost toplotno obdelanih diskov je tudi zmanjšana krhkost materiala (Tabela 1). Zavorni disk pripravljeni v skladu s primeroma 3 in 4 ter v kombinaciji z zavornimi ploščami MMC 2032, imajo nekoliko nižji srednji torni koeficient (10-15%), vendar odlično odpornost proti razenju. Specifična obraba plošč MMC 2032 je tudi v tem primeru nizka (manj kot 100 mm3/MJ). Rezultati meritev so navedeni v Tabeli 1. Večje vrednosti srednjega tornega koeficienta μ so bile izmerjene na zavornih diskih, izdelanih v skladu s primeroma 3 in 4 v kombinaciji z zavornimi ploščami Sinter F3000. Vrednosti so presegale 0,49 vendar je bila po drugi strani specifična obraba plošč skoraj še enkrat višja (Tabela 2). Odpornost proti razenju je bila dobra, vendar slabša kot v primeru zavornih plošč tipa MMC 2032. V Tabeli 2 so za primerjavo navedene torne lastnosti diska iz sive litine v kombinaciji s klasičnimi zavornimi ploščami Sinter 114. Očitno je, da so maksimalne temperature, izmerjene med testom pri zavornih diskih po izumu, vsaj za 90 do 100°C nižje kot pri doslej uporabljanih diskih iz sive litine. Opravka imamo torej z zaviranjem pri bistveno nižjih temperaturah, kar nam omogoča nova konstrukcija, izbira materiala ter postopek izdelave zavornega diska v smislu predloženega izuma.The brake disc, prepared in accordance with Example 1 and in combination with the MMC 2032 brake discs, is characterized by a high mean friction coefficient μ Ο ρ, low specific plate wear and satisfactory tear resistance. In the event of replacement of Al-MMC material (Example 2) or subsequent heat treatment of the brake disk (Example 5), the friction properties do not change significantly, and partially the resistance to tearing is improved. Both can be related to the improved mechanical properties of the matrix aluminum alloy (type F3K.20S) or to the structural changes of the matrix alloy after heat treatment. The advantage of heat treated disks is the reduced material fragility (Table 1). The brake discs prepared in accordance with Examples 3 and 4 and in combination with the MMC 2032 brake discs have a slightly lower mean friction coefficient (10-15%), but excellent resistance to tearing. The specific wear of the MMC 2032 is also low (less than 100 mm 3 / MJ). The measurement results are listed in Table 1. Higher values of the mean friction coefficient μ were measured on the brake discs made in accordance with Examples 3 and 4 in combination with the Sinter F3000 brake pads. Values exceeded 0.49 but, on the other hand, specific plate wear was almost twice as high (Table 2). The blasting resistance was good but worse than in the case of the MMC 2032 type brake pads. Table 2 lists the friction properties of the cast iron disc in combination with the classic Sinter 114. brake pads. It is obvious that the maximum temperatures measured between tests on brake discs according to the invention, at least 90 to 100 ° C lower than the gray cast iron discs used so far. Therefore, we have the advantage of braking at significantly lower temperatures, which enables us new construction, material selection and the process of making a brake disc according to the present invention.

Claims (13)

PATENTNI ZAHTEVKIPATENT APPLICATIONS 1. Zavorni disk, zlasti za lahka motoma vozila, še zlasti za lahka tekmovalna motoma vozila, namreč gokarte, obsegajoč vsaj dve med seboj razmaknjeni kolutni območji (1,2), na katerih je vsakokrat na voljo vsaj ena torna površina (10, 20) in med katerima so na voljo na ustrezen način razporejena hladilna rebra (3), označen s tem, da pri zavornem disku, katerega vsaj eno kolutno območje (1, 2) je neposredno ob rebrih (3) opremljeno s stopničasto zaokrožitvijo (11), znaša razmerje med širino oz. debelino (b) vsakokratnega kolutnega območja (1, 2) in razmikom (c) med vsakokratnima kolutnima območjema (1,2) med 0,8 in 1,2, pri čemer je disk izdelan po postopku litja iz lahkega kompozitnega gradiva Al-MMC ter pred vsaj delom vsakokrat potrebnih korakov vsakokrat ustrezne mehanske obdelave ali po njej podvržen dodatni termični in/ali površinski obdelavi.A brake disc, in particular for light motor vehicles, in particular for light racing vehicles, namely go-karts, comprising at least two spaced disc regions (1,2) each having at least one friction surface (10, 20) ) and between which there are suitably arranged cooling fins (3), characterized in that in the case of a brake disk having at least one disc area (1, 2) provided with a stepped rounding (11) directly adjacent to the ribs (3) , is the ratio of width to width. the thickness (b) of each disc region (1, 2) and the spacing (c) of each disc area (1,2) between 0.8 and 1.2, the disc being made by the casting process of lightweight Al-MMC composite material and prior to at least a portion of the necessary mechanical machining steps, or subjected to additional heat and / or surface treatment, at least every time. 2. Zavorni disk po zahtevku 1, označen s tem, da pri zavornem disku, katerega vsaj eno kolutno območje (1, 2) je neposredno ob rebrih (3) opremljeno s stopničasto zaokrožitvijo (11) in pri katerem je vsako od med kolutnima območjema (1, 2) nahajajočih se reber (3) gledano v smeri radialno navznoter zasnovano z zaokroženim stopničastim zaključkom (30'), znaša razmerje med širino oz. debelino (b) vsakokratnega kolutnega območja (1, 2) in razmikom (c) med vsakokratnima kolutnima območjema (1, 2) med 0,8 in 1,2, pri čemer je disk izdelan po postopku litja iz lahkega kompozitnega gradiva Al-MMC ter pred vsaj delom vsakokrat potrebnih korakov vsakokrat ustrezne mehanske obdelave ali po njej podvržen dodatni termični in/ali površinski obdelavi.Brake disc according to claim 1, characterized in that, in the case of a brake disc whose at least one disc region (1, 2) is provided with a stepped rounding (11) directly adjacent to the ribs (3) and each of which is between disc regions (1, 2) of the located ribs (3) when viewed radially inwardly with a rounded stepped end (30 '), is the ratio of width to width. a thickness (b) of each disc region (1, 2) and a spacing (c) between each disc area (1, 2) between 0.8 and 1.2, the disc being made by the casting process of lightweight Al-MMC composite material and prior to at least a portion of the necessary mechanical machining steps, or subjected to additional heat and / or surface treatment, at least every time. 3. Zavorni disk po zahtevku 1, označen s tem, da pri zavornem disku, katerega vsaj eno kolutno območje (1, 2) je neposredno ob rebrih (3) opremljeno s stopničasto zaokrožitvijo (11) in pri katerem je vsaj del od med kolutnima območjema (1, 2) nahajajočih se reber (3), gledano v smeri radialno navznoter, zasnovan z zaokroženim stopničastim zaključkom (30'), znaša razmerje med širino oz. debelino (b) vsakokratnega kolutnega območja (1, 2) in razmikom (c) med vsakokratnima kolutnima območjema (1, 2) med 0,8 in 1,2, prednostno pa vsaj približno 0,9, pri čemer je disk izdelan po postopku litja iz lahkega kompozitnega gradiva Al-MMC ter pred vsaj delom vsakokrat potrebnih korakov vsakokrat ustrezne mehanske obdelave ali po njej podvržen dodatni termični in/ali površinski obdelavi.Brake disc according to claim 1, characterized in that in the case of a brake disc whose at least one disc region (1, 2) is provided with a stepped rounding (11) directly adjacent to the ribs (3) and at least part of which is between discs the areas (1, 2) of the located ribs (3), viewed radially inwards, designed with a rounded stepped end (30 '), is the ratio of width to width. a thickness (b) of each disc area (1, 2) and a spacing (c) between each disc area (1, 2) between 0.8 and 1.2, preferably at least about 0.9, wherein the disc is manufactured by the method castings made of lightweight Al-MMC composite material and subjected, at least in part, to the necessary mechanical processing steps, or subjected to additional thermal and / or surface treatment, at any time. 4. Postopek izdelave zavornega diska, obsegajoč korak priprave kalupa oz. forme, korak litja in korak mehanske obdelave na vnaprej določene dimenzije, označen s tem, da se za izdelavo diska kot izhodiščno gradivo uporabi Al-MMC oz. Duralcan® tip F3S.20S z vsebnostjo 20 prostominskih deležev SiC, pri čemer se v koraku priprave forme oz kalupa izdela model in jedrovnik kot tudi jedra bodisi iz mešanice peska in vsakokrat ustreznih fenolnih smol ali iz mešanice kremenčevega peska in vodnega stekla, ki se jih utrjuje s CO2 in zatem suši, nakar se izdela gornji in spodnji del peščene forme ter slednjo sestavi in vmes vstavi predhodno izdelano jedro ter v formi po oblikovanju vlivnega sistema uporabi keramični filter 20PPI kot tudi oddušno-izravnalne odprtine, nadalje so v koraku litja po predgrevanju pri 200-250°C ingote iz Al-MMC vstavi v že ogreto talilno peč in se jih tam stali, po približno 1 uri pa se prične mešanje taline z namenom enakomerne porazdelitve delcev SiC po gladini taline, nakar se po posnetju nastale žlindre pri temperaturi taline med 725 in 735°C prične z litjem v predhodno izdelane forme, nakar se po ohlajanju odlitkov ter razformanju, čiščenju in po potrebi peskanju le-teh izvede vsakokrat potrebne korake mehanske obdelave odlitkov s pomočjo rezalnih orodij na osnovi diamanta in/ali borovega karbida.4. A method of manufacturing a brake disc, comprising the step of preparing a mold or a mold. molds, casting steps and mechanical machining steps to predetermined dimensions, characterized in that Al-MMC or Al-MMC is used as the starting material for the production of the disc. Duralcan® type F3S.20S containing 20 parts by volume of SiC, in which the model and the core as well as the cores are made in the form or mold preparation step, either from a mixture of sand and each corresponding phenolic resin or from a mixture of silica sand and water glass then hardens with CO 2 and then dries, after which the upper and lower part of the sand form is formed and the latter is assembled and a pre-fabricated core is inserted and a 20PPI ceramic filter as well as air outlet openings are used in the mold after the molding system is formed. preheating at 200-250 ° C, the ingots from Al-MMC are inserted into an already heated melting furnace and melted there, and after about 1 hour, the melt is stirred to distribute the SiC particles evenly over the melt surface, and then, after the slag is formed, the melt temperature between 725 and 735 ° C begins casting into pre-made molds, after which the castings are cooled and the molds are blown apart, cleaned and, if necessary, blasted perform the necessary mechanical machining steps of castings using diamond and / or pine carbide based cutting tools. 5. Postopek izdelave zavornega diska, obsegajoč korak priprave kalupa oz. forme, korak litja in korak mehanske obdelave na vnaprej določene dimenzije, označen s tem, da za izdelavo diska kot izhodiščno gradivo uporabi aluminijev kompozitni material Duralcan® tip F3K.20S, vsebujoč aluminijevo zlitino z dodatkom Cu, pri pri čemer se v koraku priprave forme oz kalupa izdela model in jedrovnik kot tudi jedra bodisi iz mešanice peska in vsakokrat ustreznih fenolnih smol ali iz mešanice kremenčevega peska in vodnega stekla, ki se jih utrjuje s CO2 in zatem suši, nakar se izdela gornji in spodnji del peščene forme ter slednjo sestavi in vmes vstavi predhodno izdelano jedro ter v formi po oblikovanju vlivnega sistema uporabi keramični filter 20PPI kot tudi oddušno-izravnalne odprtine, nadalje so v koraku litja po predgrevanju pri 200-250°C ingote iz Al-MMC vstavi v že ogreto talilno peč in tam stali, po približno 1 uri pa se prične mešanje taline z namenom enakomerne porazdelitve delcev SiC po gladini taline, nakar se po posnetju nastale žlindre pri temperaturi taline med 725 in 735°C prične z litjem v predhodno izdelane forme, nakar se po ohlajanju odlitkov ter razformanju, čiščenju in po potrebi peskanju le-teh izvede vsakokrat potrebne korake mehanske obdelave odlitkov s pomočjo rezalnih orodij na osnovi diamanta in/ali borovega karbida.5. A method of manufacturing a brake disc, comprising the step of preparing a mold or a mold. molds, casting steps and machining steps to predetermined dimensions, characterized in that the aluminum composite material Duralcan® type F3K.20S, containing aluminum alloy with Cu addition, is used as the starting material for the production of the disc, using the Cu alloy in the form preparation step or molds are made by the model and core as well as cores, either from a mixture of sand and corresponding phenolic resins, or from a mixture of silica sand and water glass, which is cured with CO 2 and then dried, and then the top and bottom of the sand form and the latter are formed. insert a pre-fabricated core and use a 20PPI ceramic filter in the form after casting, as well as air outlet openings, then in the casting step after preheating at 200-250 ° C, ingots from Al-MMC are inserted into an already heated melting furnace and there melt, and after about 1 hour stirring of the melt begins to distribute the SiC particles evenly over the melt surface, after which the slag is formed after recording re at a melt temperature of between 725 and 735 ° C begins casting into preformed molds, after which the necessary mechanical machining steps of the castings are performed after the casting has cooled and the molding, sanding and, where necessary, sanding using diamond-based cutting tools and / or pine carbide. 6. Postopek po zahtevku 4 ali 5, označen s tem, da se v koraku litja po predgrevanju pri 200-250°C ingote iz Al-MMC vstavi v že ogreto talilno peč in se jih tam stali, po približno 1 uri pa se prične mešanje taline z namenom enakomerne porazdelitve delcev SiC po gladini taline, nakar se po posnetju nastale žlindre pri temperaturi taline med 725 in 735°C prične z litjem v predhodno izdelane kokile, nakar se po ohlajanju odlitkov ter čiščenju le-teh izvede vsakokrat potrebne korake mehanske obdelave odlitkov s pomočjo rezalnih orodij na osnovi diamanta in/ali borovega karbida.Method according to claim 4 or 5, characterized in that in the casting step, after heating at 200-250 ° C, the ingots from Al-MMC are inserted into an already heated melting furnace and melted there, and after about 1 hour they start mixing of the melt in order to distribute the SiC particles evenly over the melt surface, after which the slag at the melt temperature between 725 and 735 ° C begins to be cast into pre-fabricated molds and after each step the mechanical steps are taken after cooling the castings and cleaning them. casting processing using diamond and / or pine carbide based cutting tools. 7. Postopek po zahtevku 6, označen s tem, da se v koraku litja po predgrevanju pri 200-250°C ingote iz Al-MMC vstavi v že ogreto talilno raztali, po približno 1 uri pa se prične mešanje taline z namenom enakomerne porazdelitve delcev SiC po gladini taline, nakar se po posnetju nastale žlindre pri temperaturi taline med 725 in 735°C prične z litjem v predhodno izdelane kokile, nakar se po ohlajanju odlitkov ter čiščenju le-teh izvede vsakokrat potrebne korake mehanske obdelave odlitkov s pomočjo rezalnih orodij na osnovi diamanta in/ali borovega karbida, nakar se končno obdelan disk še trdo anodno oksidira pri temperaturi kopeli 0°C ob naraščanju napetosti od 20 do 100 V in ob zagotovitvi trde prevleke A12O3 debeline med 20 in 30 pm.Method according to claim 6, characterized in that in the casting step after preheating at 200-250 ° C, the ingots from Al-MMC are inserted into the already heated melting melt and after about 1 hour mixing of the melt is started in order to distribute the particles evenly. SiC at the melt level, after which the slag at the melt temperature between 725 and 735 ° C is shot after casting into pre-fabricated molds, and after each step of machining the castings with the help of cutting tools, based on diamond and / or boron carbide, after which the finished workpiece is further oxidized hard anodically at a bath temperature of 0 ° C while increasing the voltage from 20 to 100 V and providing a hard coating of A1 2 O 3 with a thickness between 20 and 30 pm. 8. Postopek po zahtevkih 4-6, označen s tem, da se končno obdelan zavorni disk iz Al-MMC ionsko nitrira pri 390°C v trajanju 12-14 ur v atmosferi Ar in NH3.The method according to claims 4-6, characterized in that the finally treated brake disc of Al-MMC is ionically nitrated at 390 ° C for 12-14 hours in an atmosphere of Ar and NH 3 . 9. Postopek po zahtevku 7, označen s tem, da se predobdelan zavorni disk iz AlMMC ionsko nitrira pri 390°C v trajanju 12-14 ur v atmosferi Ar in NH3.A method according to claim 7, characterized in that the pretreated brake disc of AlMMC is ionically nitrated at 390 ° C for 12-14 hours in an atmosphere of Ar and NH 3 . 10. Postopek po zahtevkih 4 - 7, označen s tem, da se zgolj deloma mehansko obdelan zavorni disk iz Al-MMC naknadno še vsaj približno 2 uri toplotno obdeluje pri temperaturi 400°C in nato popušča pri 160°C v trajanju 6 ur.The method according to claims 4 - 7, characterized in that only the partially machined Al-MMC brake disc is subsequently heat treated at a temperature of 400 ° C for at least about 2 hours and then released at 160 ° C for 6 hours. 11. Zavorni disk, označen s tem, daje vsaj eno kolutno območje (1,2) neposredno ob rebrih (3) opremljeno s stopničasto zaokrožitvijo (11) ter da znaša razmerje med širino oz. debelino (b) vsakokratnega kolutnega območja (1, 2) in razmikom (c) med vsakokratnima kolutnima območjema (1,2) med 0,8 in 1,2, prednostno pa vsaj približno 0,9, pri čemer disk sestoji iz lahkega kompozitnega gradiva AlMMC oz. Duralcan® in je izveden z litjem po predgrevanju pri 200-250°C v peščeno formo ali kokilo pri temperaturi taline med 725 in 735°C ter zatem s podvrženjem odlitkov mehanski obdelavi s pomočjo rezalnih orodij na osnovi diamanta in/ali borovega karbida ter je zatem po potrebi še trdo anodno oksidiran pri temperaturi kopeli 0°C ob naraščanju napetosti od 20 do 100 V ter ob zagotovitvi trde prevleke A12O3 debeline med 20 in 30 pm.11. A brake disc, characterized in that at least one disc region (1,2) is provided directly with the ribs (3) provided with a stepped rounding (11) and that it has a width / width ratio. a thickness (b) of each disc region (1, 2) and a spacing (c) between each disc area (1,2) of between 0.8 and 1.2, preferably at least about 0.9, wherein the disc consists of a lightweight composite materials AlMMC or. Duralcan® and is made by casting after preheating at 200-250 ° C in sand form or mold at a melt temperature of between 725 and 735 ° C and then machining castings using diamond and / or pine carbide based cutting tools and is thereafter, if necessary, hard anodically oxidized at a bath temperature of 0 ° C with increasing voltages from 20 to 100 V and providing a hard coating of A1 2 O 3 with a thickness between 20 and 30 pm. 12. Zavorni disk, označen s tem, da pri disku, katerega vsaj eno kolutno območje (1, 2) je neposredno ob rebrih (3) opremljeno s stopničasto zaokrožitvijo (11), znaša razmerje med širino oz. debelino (b) vsakokratnega kolutnega območja (1,2) in razmikom (c) med vsakokratnima kolutnima območjema (1,2) med 0,8 in 1,2, prednostno pa vsaj približno 0,9, pri čemer je tak disk izveden iz lahkega kompozitnega gradiva Al-MMC oz. Duralcan® z litjem po predgrevanju pri 200250°C v peščeno formo ali kokilo pri temperaturi taline med 725 in 735°C ter zatem podvržen mehanski obdelavi odlitkov s pomočjo rezalnih orodij na osnovi diamanta in/ali borovega karbida in nato po potrebi še ionsko nitriran pri 390°C v trajanju 12-14 ur v atmosferi Ar in NH3.12. Brake disc, characterized in that for a disc whose at least one disc region (1, 2) is provided with a stepped rounding (11) directly adjacent to the ribs (3), the ratio of width to width is 12. a thickness (b) of each disc area (1,2) and a spacing (c) between each disc area (1,2) of between 0.8 and 1.2, preferably at least about 0.9, wherein such disc is derived from lightweight Al-MMC composite material Duralcan® by casting after preheating at 200250 ° C in sand or mold at a melt temperature between 725 and 735 ° C and then subjected to mechanical casting using diamond and / or pine carbide-based cutting tools and then ion-nitrided if necessary 390 ° C for 12-14 hours under Ar and NH 3 atmosphere. 13. Zavorni disk, označen s tem, da pri zavornem disku, katerega vsaj eno kolutno območje (1, 2) je neposredno ob rebrih (3) opremljeno s stopničasto zaokrožitvijo (11), znaša razmerje med širino oz. debelino (b) vsakokratnega kolutnega območja (1, 2) in razmikom (c) med vsakokratnima kolutnima območjema (1,2) med 0,8 in 1,2, pri čemer je tak disk izveden iz lahkega kompozitnega gradiva Al-MMC oz. Duralcan® z litjem po predgrevanju pri 200-250°C v peščeno formo ali kokilo pri temperaturi taline med 725 in 735°C ter zatem podvržen mehanski obdelavi odlitkov s pomočjo rezalnih orodij na osnovi diamanta in/ali borovega karbida in nato v zgolj delno obdelanem stanju po potrebi Še vsaj približno 2 uri podvržen toplotno obdeluje pri temperaturi 400°C ter zatem popuščanje pri 160°C v trajanju vsaj približno 6 ur. Za:13. Brake disc, characterized in that in the case of a brake disc whose at least one disc area (1, 2) is provided with a stepped rounding (11) directly adjacent to the ribs (3), it has a width / width ratio. the thickness (b) of each disc area (1, 2) and the spacing (c) of each disc area (1,2) between 0.8 and 1.2, wherein such disc is made of lightweight Al-MMC composite material. Duralcan® by casting after preheating at 200-250 ° C in sand or mold at a melt temperature between 725 and 735 ° C and then subjected to mechanical machining of castings using diamond and / or pine carbide-based cutting tools and then only partially treated condition, if necessary, heat treated at a temperature of 400 ° C for at least about 2 hours and then at 160 ° C for at least about 6 hours. For:
SI9900009A 1999-01-25 1999-01-25 Breaking disk and the procedure for its manufacturing SI20167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9900009A SI20167A (en) 1999-01-25 1999-01-25 Breaking disk and the procedure for its manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI9900009A SI20167A (en) 1999-01-25 1999-01-25 Breaking disk and the procedure for its manufacturing

Publications (1)

Publication Number Publication Date
SI20167A true SI20167A (en) 2000-08-31

Family

ID=20432386

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9900009A SI20167A (en) 1999-01-25 1999-01-25 Breaking disk and the procedure for its manufacturing

Country Status (1)

Country Link
SI (1) SI20167A (en)

Similar Documents

Publication Publication Date Title
US8147980B2 (en) Wear-resistant metal matrix ceramic composite parts and methods of manufacturing thereof
RU2216604C2 (en) Iron alloy (variants) and method for making it
US6352141B1 (en) Bainitically hardened brake disk
US4807728A (en) Brake member and method of manufacturing same
US20120067537A1 (en) Method of making a brake component
KR20120031065A (en) Fatigue resistant cast titanium alloy articles
JPS5939496B2 (en) Alloy steel used for pulp refiner lining elements
JP4801077B2 (en) Rim sprocket for chainsaw
JP5462291B2 (en) Alloy cast iron for manufacturing seal, seal, and method for manufacturing seal
JPH05192597A (en) Polishing plate having wear resisting surface and method for its production
SI20167A (en) Breaking disk and the procedure for its manufacturing
Riposan et al. Surface graphite degeneration in ductile iron castings for resin molds
AU2003265514A1 (en) Inoculation alloy against micro-shrinkage cracking for treating cast iron castings
JP2007270195A (en) Method for producing spheroidal graphite cast-iron article, and spheroidal graphite cast-iron article
EP2341154B1 (en) Process for making nodular cast iron
MXPA04002424A (en) Method for producing castings, molding sand and its use for carrying out said method.
CN110042326B (en) Centrifugal casting stirring impeller and method
WO2019045068A1 (en) Composite roll for rolling and method for producing same
CN111893374B (en) Graphite-containing bainite semisteel precision roll ring
WO2000027593A1 (en) Base disk type grinding wheel
JPH07216495A (en) Brake parts excellent in heat check resistance and its production
JP4205940B2 (en) Method for producing gray cast iron with excellent vibration damping capacity and strength
JPS59147769A (en) Production of composite casting
JP6825928B2 (en) Disc rotor with excellent rust resistance
US3157926A (en) Making fine grained castings

Legal Events

Date Code Title Description
IF Valid on the prs date
KO00 Lapse of patent

Effective date: 20051104