SI20011A - Structure of large-volume tubular module - Google Patents

Structure of large-volume tubular module Download PDF

Info

Publication number
SI20011A
SI20011A SI9800201A SI9800201A SI20011A SI 20011 A SI20011 A SI 20011A SI 9800201 A SI9800201 A SI 9800201A SI 9800201 A SI9800201 A SI 9800201A SI 20011 A SI20011 A SI 20011A
Authority
SI
Slovenia
Prior art keywords
tube
polymer
porous polymer
tubular
monolithic porous
Prior art date
Application number
SI9800201A
Other languages
Slovenian (sl)
Inventor
Aleš Podgornik
Miloš Barut
Aleš Štrancar
Djuro Josić
Original Assignee
Bia D.O.O.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bia D.O.O. filed Critical Bia D.O.O.
Priority to SI9800201A priority Critical patent/SI20011A/en
Priority to SI9930844T priority patent/SI1058844T1/en
Priority to EP99914469A priority patent/EP1058844B1/en
Priority to AU33281/99A priority patent/AU3328199A/en
Priority to CZ20003135A priority patent/CZ302614B6/en
Priority to ES99914469T priority patent/ES2247791T3/en
Priority to PCT/EP1999/001391 priority patent/WO1999044053A2/en
Priority to JP2000533751A priority patent/JP4109418B2/en
Priority to US09/601,037 priority patent/US6736973B1/en
Priority to DK99914469T priority patent/DK1058844T3/en
Priority to CA002322009A priority patent/CA2322009C/en
Priority to RU2000124527/28A priority patent/RU2232385C2/en
Priority to DE69927792T priority patent/DE69927792T2/en
Priority to AT99914469T priority patent/ATE307333T1/en
Publication of SI20011A publication Critical patent/SI20011A/en

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A structure of large-volume tubular modules offers a way of how to construct a tubular module of an optional volume with a homogeneous polymer structure. This very solution enables the application of tubular modules in industries where larger volumes of active material for preparative purification of biomolecules is required. The structure of large-volume tubular modules has been solved in such a way that thermal conductivity of a polymer mixture LambdaT and specific released heat S are calculated for a concrete system of the polymer mixture on the basis of the polymerisation temperature profile of the same polymer mixture within a rod. By the polymerisation of the same mixture at different temperatures, a maximal allowed temperature change to preserve the unchanged polymer structure is determined. The data obtained in this way are used to solve numerically the equation 1 or to solve analytically the equation 2 or, in the case of higher exterior thermal resistivities, to solve the appropriately modified equations. Thus, the maximal thickness of the polymer tube can be determined on the basis of a chosen exterior radius. The tubular module structure is carried out by preparation of several tubular polymeric pieces (1, 2, 3) of the precisely defined thickness having the same or different active chemical groups, which may be inserted one into another so that the exterior diameter of the inner tube is matching the inner diameter of the exterior tube (4). The accordingly prepared tubular module is then inserted into a respective casing.

Description

KONSTRUKCIJA CEVNEGA MODULA VEČJIH VOLUMNOVCONSTRUCTION OF LARGE VOLUME PIPE MODULE

Predmet izuma je konstrukcija cevnega modula večjih volumnov uporabnega za preparativno ločevanje in biokonverzijo.The object of the invention is the construction of a bulk tube tube module useful for preparative separation and bioconversion.

Čiščenje in izolacija molekul, posebno biopolimerov, predstavlja še danes eno najdražjih stopenj v njihovem pridobivanju. Med biopolimere prištevamo oligopetide in polipeptide, proteine, encime, lektine, protitelesa, nukleinske kisline, polisaharide, oligonukleotide ter polinukleotide.The purification and isolation of molecules, especially biopolymers, is still one of the most expensive steps in their production. Biopolymers include oligopetides and polypeptides, proteins, enzymes, lectins, antibodies, nucleic acids, polysaccharides, oligonucleotides and polynucleotides.

Obstaja več metod čiščenja kot npr. izsoljevanje z nevtralnimi solmi, s spreminjanjem pH vrednosti, z elektroforezo in z uporabo kromatografskih metod.There are more methods of cleaning than e.g. salting with neutral salts, by changing the pH value, by electrophoresis and by using chromatographic methods.

Verjetno prva separacija proteinov je bila izvedena leta 1954 (A.J.P. Martin in R.L.M. Synge, Biochem. J., 35 (1941) 1358) na DEAE celulozi. Od tedaj je potekal intenziven razvoj tako kromatografskih nosilcev, kot tudi različnih kemijsko aktivnih skupin za ločevanje. Konec petdesetih let je predstavilo podjetje Pharmacia (Uppsala, Švedska) zamrežen dekstranski gel za t.i. gelsko filtracijo (angl. size-exclusion chromatography) za ločevanje proteinov in nukleinskih kislin (Nem. patent 1,292,883; GB patent 974,054). Njegovo uporabo v kromatografiji je omejevala predvsem nizka mehanska stabilnost. Leta 1976 je objavljena prva ločitev peptidov na osnovi t.i. kromatografije reverzne faze (K. Tsuji, J.H. Robinson, J. Chromatogr., 112 (1976) 663), čemur so sledili mnogi članki o ločevanju proteinov s pomočjo kromatografije, tako na osnovi gelske filtracije, ionsko-izmenjevalne kromatografije ter kromatografije na reverzni fazi. Uporabljeni nosilci so bili mehansko zelo stabilni in so omogočali visoke pretoke ter s tem krajšanje časa ločevanja. Imeli so zgradbo kroglastih delcev premera nekaj 10 do 100 pm z visoko poroznostjo, kar je imelo za posledico veliko specifično površino ter s tem povezano visoko kapaciteto vezave biopolimerov.Probably the first protein separation was performed in 1954 (A.J.P. Martin and R.L.M. Synge, Biochem. J., 35 (1941) 1358) on DEAE pulp. Since then, there has been intensive development of both chromatographic carriers as well as various chemically active separation groups. At the end of the 1950s, Pharmacia (Uppsala, Sweden) introduced crosslinked dextran gel for so-called. gel-filtration (size-exclusion chromatography) for protein and nucleic acid separation (German patent 1,292,883; GB patent 974,054). Its use in chromatography was limited mainly by its low mechanical stability. In 1976, the first separation of peptides based on i.i. reverse phase chromatography (K. Tsuji, J. H. Robinson, J. Chromatogr., 112 (1976) 663), followed by many articles on protein separation by chromatography, both gel filtration, ion exchange chromatography, and reversed phase chromatography. . The mounting brackets used were mechanically very stable, allowing for high flow rates and thus shorter separation times. They had a spherical particle structure of about 10 to 100 pm in diameter with high porosity, which resulted in a large specific surface area and associated high biopolymer binding capacity.

Biopolimeri so velike molekule (tipično nekaj 10 do nekaj 100 kDa), zato je njihov difuzijski koeficient nizek (reda velikosti 10’7 m2/s). Ker večina procesa ločevanja poteka v porah delčnih nosilcev, znotraj katerih tekočina miruje, potujejo molekule do aktivne površine na osnovi difuzije, ki hitrosti ločevanja omejuje. Zato so bili razviti nosilci različnih struktur, s katerimi naj bi odpravili težave povezane z difuzijo. Prvo tako rešitev predstavljajo neporozni delci (za pregled glej npr. W.-C. Lee, J. Chromatogr. B, 699 (1997) 29), kjer ves proces ločevanja poteka na površini neporoznega delca. To omogoča izredno hitre analize biopolimerov (nekaj sekund), vendar je njihova poglavitna slabost nizka specifična površina in zato nizka kapaciteta vezave. Drugo rešitev predstavljajo t.i. pretočni delci (N.B. Afeyan, N.F. Gordon, I. Mazsaroff, L. Varady, S.P. Fulton, Υ.Β. Yang, F.E. Regnier, J. Chromatogr., 519 (1990) 1). Njihova značilnost je, da imajo poleg zaprtih por tudi pretočne pore. Za razliko od neporoznih delcev imajo višjo specifično površino ter kapaciteto vezave in boljše hidrodinamske lastnosti od poroznih delcev. Ker pa imajo delčno strukture, se med delci še vedno nahaja prazen prostor. Le-ta predstavlja nižji upor tekočini zato jo večina (preko 90%) še vedno teče okoli delcev. Naslednji korak v razvoju nosilcev predstavljajo monoliti. Za razliko od prej omenjenih nosilcev, ki so v obliki delcev, so monoliti sestavljeni iz enega kosa poroznega polimernega materiala, ki vsebuje pretočne pore (US Patent, 4,889,632; US Patent 4,923,610). Ker znotraj nosilca ni praznega prostora, je celotna tekočina prisiljena teči skozi pretočne pore. Odlikujejo se po sposobnosti hitre separacije biopolimerov (primerljivi z neporoznimi delci), nizkim povratnim pritiskom tudi pri višjih pretokih ter visoki kapaciteti. Njihovo uporabo v industrijskih aplikacijah so dosedaj omejevale težave priprave monolita s homogeno strukturo večjih dimenzij, kot tudi slabša mehanska stabilnost. Rešitvi teh dveh problemov sta predmet tega patenta.Biopolymers are large molecules (typically some 10 to some 100 kDa), so their diffusion coefficient is low (order of magnitude 10 ' 7 m 2 / s). Because most of the separation process takes place in the pores of the particle carriers within which the fluid is stationary, the molecules travel to the active surface on a diffusion basis, limiting the separation rate. Carriers of various structures have therefore been developed to address diffusion problems. The first such solution is represented by non-porous particles (see, for example, W.-C. Lee, J. Chromatogr. B, 699 (1997) 29), where the entire separation process takes place on the surface of the non-porous particle. This allows for extremely rapid analysis of biopolymers (several seconds), but their main disadvantage is the low specific surface area and therefore the low binding capacity. Another solution is represented by these flow particles (NB Afeyan, NF Gordon, I. Mazsaroff, L. Varady, SP Fulton, Υ.Β. Yang, FE Regnier, J. Chromatogr., 519 (1990) 1). Their feature is that they have flow pores in addition to closed pores. Unlike non-porous particles, they have a higher specific surface area and a binding capacity and better hydrodynamic properties than porous particles. However, since they have partial structures, there is still an empty space between the particles. This represents a lower resistance to the liquid, so most (over 90%) still flow around the particles. The next step in carrier development is represented by monoliths. Unlike the aforementioned particulate carriers, the monoliths consist of a single piece of porous polymeric material containing flow pores (US Patent 4,889,632; US Patent 4,923,610). Because there is no empty space inside the carrier, the entire fluid is forced to flow through the flow pores. They are characterized by the ability to quickly separate biopolymers (comparable to non-porous particles), low back pressure even at higher flow rates and high capacity. Their use in industrial applications has so far been limited by the difficulty of preparing a monolith with a homogeneous structure of larger dimensions, as well as poorer mechanical stability. Solutions to these two problems are the subject of this patent.

Cevni moduli so zgrajeni iz ohišja, podrobno opisanega v patentni prijavi št. P9800058, ki zagotavlja mehansko stabilnost in dobro distribucijo ter poroznega polimera v obliki večplastne cevi. Vsako plast predstavlja monolitni porozni polimer, ki vsebuje majhne pore premera pod 200 nm kot tudi velike pore premera do 2500 nm.Pipe modules are constructed of a housing described in detail in patent application no. P9800058 providing mechanical stability and good distribution and a porous polymer in the form of a multilayer tube. Each layer is a monolithic porous polymer containing small pores with diameters below 200 nm as well as large pores up to 2500 nm in diameter.

Poroznost monolitnega poroznega polimera je med 30 in 90%. Monolitni porozni polimer vključuje polimer polivinilnega monomera izbranega izmed divimlbenzena, divinilnaftalena, divinilpiridina, alkilen dimetakrilata, alkilen diakrilata, hidroksialkilen dimetakrilata, hidroksialkilen diakrilata, oligoetilen glikol dimetakrilata, oligoetilen glikol diakrilata, vinilestra polikarboksilne kisline, diviniletra, pentaerytritol di-, tri- ali tetrametakrilata ali akrilata, trimetiloilpropan trimetakrilata ali akrilata, alkilen bis akrilamida ali metakrilamida oziroma njihovih mešanic.The porosity of the monolithic porous polymer is between 30 and 90%. Monolithic porous polymer includes a polymer of polyvinyl monomer selected from divimlbenzene, divinylnaphthalene, divinylpyridine, alkylene dimethacrylate, alkylene diacrylate, hydroxyalkylene dimethacrylate, hydroxyalkylene dietriethyletherylethyl erylethyl ether, ethyl acetate, oleocrystalline ethylene acetate, ethylene glycol diethyl acetate; acrylate, trimethyloylpropane trimethacrylate or acrylate, alkylene bis acrylamide or methacrylamide or mixtures thereof.

Monolitni porozni kopolimer vključuje poleg polivinil monomera tudi monovinil monomer. Slednji je izbran iz skupine, ki vključuje stiren, stiren s substitucijo na obroču, vinilnaftalen, akrilate, metakrilate, vinilacetat, vinilpirolidon oziroma njihovo mešanico.The monolithic porous copolymer includes, in addition to the polyvinyl monomer, the monovinyl monomer. The latter is selected from the group consisting of styrene, ring-substituted styrene, vinyl naphthalene, acrylates, methacrylates, vinyl acetate, vinylpyrrolidone or a mixture thereof.

Poleg monomerov vsebuje začetna monomema mešanica še radikalski iniciator, ki ga skupaj z monomeri raztopimo v inertnem organskem topilu iz skupine alkoholov, estrov karboksilnih kislin ali ketonov oziroma njihove kombinacije, s katerimi dosežemo različno poroznost končnega polimera.In addition to the monomers, the initial monomeme mixture contains a radical initiator, which, together with the monomers, is dissolved in an inert organic solvent from the group of alcohols, carboxylic acid esters or ketones, or combinations thereof, to achieve different porosity of the final polymer.

Radikalski iniciator izberemo iz skupine azo spojin, peroksidov, hidroperoksidov, redoks sitemov ali podobno.The radical initiator is selected from the group of azo compounds, peroxides, hydroperoxides, redox systems or the like.

Na monolitni porozni polimer lahko s kemijsko modifikacijo vnesemo reaktivne kemijske skupine kot npr. alilne, amino, sulfonatne, hidrogensulfonatne, hidroksilne, ali alkilne dolžine do 18 atomov. Prav tako lahko nanje imobiliziramo različne ligande kot npr. peptide, proteine, oligonukleotide, itd.Reactive chemical groups can be introduced into the monolithic porous polymer by chemical modification. allyl, amino, sulfonate, hydrogen sulfonate, hydroxyl, or alkyl lengths up to 18 atoms. We can also immobilize different ligands, such as e.g. peptides, proteins, oligonucleotides, etc.

Delovni volumen cevnega modula opisanega v patentni prijavi št. P-9800058 je premajhen za uporabo v večini industrijskih procesov. Volumen lahko v primeru cevnega modula povečujemo na dva načina: z daljšanjem cevnega modula ali z večanjem njegovega premera. Kljub temu, da je s stališča kvalitete ločevanja bolj primerna prva možnost, pa se moramo zavedati, da volumen z daljšanjem narašča linearno, medtem ko z večanjem premera narašča kvadratno. Dodaten problem pri daljšanju cevnega modula je neenakomerna porazdelitev vzorca, saj je pot, ki jo mora vzorec prepotovati, da bi prekril celotno površino od začetka do konca cevnega modula, zelo dolga. Iz tega neizogibno sledi, da mora nadaljnje povečevanje, vsaj do neke mere, temeljiti na večanju premera.The working volume of the tube module described in patent application no. The P-9800058 is too small to be used in most industrial processes. In the case of a tube module, the volume can be increased in two ways: by extending the tube module or by increasing its diameter. Although, from the standpoint of separation quality, the first option is more appropriate, we should be aware that the volume increases linearly with length, while increasing in diameter increases with the square. An additional problem with the extension of the pipe module is the uneven distribution of the sample, since the path that the sample has to travel in order to cover the entire surface from the beginning to the end of the pipe module is very long. It inevitably follows that further enlargement, at least to some extent, must be based on an increase in diameter.

Pri tem se pojavi problem zagotavljanja homogenosti strukture polimera. Polimerizacija je namreč eksotermen proces. Pri suspenzijski polimerizaciji ta pojav ni posebno problematičen, saj je prisotno mešanje, hkrati pa so kapljice, znotraj katerih polimerizacija poteka, majhne. Pri polimerizaciji večjih cevnih modulov pa pride do generiranja večje količine toplote, kar ima za posledico ustvarjanje temperaturnega profila znotraj polimerizacijske raztopine. Pri polimerizaciji monolitnega poroznega polimera, iz katerega so cevni moduli narejeni, lahko pride do gel-efekta, zato je generiranje toplote v kratkem času še toliko večje. Ker je struktura porazdelitve por od temperature močno odvisna, določa priprava polimera s homogeno strukturo zgornjo temperaturo znotraj polimerne zmesi, ki ne sme biti presežena med polimerizacijo.This raises the problem of ensuring the homogeneity of the polymer structure. Polymerization is an exothermic process. In the case of suspension polymerization, this phenomenon is not particularly problematic as mixing is present, while the droplets within which the polymerization takes place are small. The polymerization of larger tube modules, however, generates a greater amount of heat, which results in the creation of a temperature profile within the polymerization solution. The polymerization of the monolithic porous polymer from which the tube modules are made can result in a gel effect, which makes the heat generation even greater in the short term. Since the structure of the pore distribution is highly dependent on temperature, the preparation of a polymer with a homogeneous structure determines the upper temperature within the polymer mixture, which must not be exceeded during polymerization.

Prav tako je za vzpostavitev nadzorovane strukture potrebno mirovanje monomeme mešanice. Iz tega sledi, da bo temperaturni profil znotraj polimera tekom polimerizacije odvisen od količine specifične generirane toplote, toplotne prevodnosti polimerne zmesi ter debeline polimernega sloja. Ker sta prva dva faktorja karakeristiki posameznega polimernega sistema, nanju ne moremo vplivati. Zatorej moramo določiti debelino sloja, znotraj katerega je sprememba temperature dovolj nizka, da ne vpliva na homogenost strukture polimera. Maksimalno temperaturo znotraj monolitnega poroznega polimera, ki ima obliko cevi, termostatiranega na temperaturo polimerizacije na notranji in zunanji strani, pri danem notranjem in zunanjem polmeru, izračunamo na osnovi poznavanja toplotne prevodnosti polimerne mešanice in sproščene specifične toplote na osnovi enačbe:Also, resting of the monomial mixture is required to establish a controlled structure. It follows that the temperature profile within the polymer during the polymerization will depend on the amount of specific heat generated, the thermal conductivity of the polymer mixture, and the thickness of the polymer layer. Since the first two factors are the characteristics of a particular polymer system, they cannot be influenced. Therefore, it is necessary to determine the thickness of the layer within which the temperature change is low enough that it does not affect the homogeneity of the polymer structure. The maximum temperature inside a monolithic porous polymer, which has the form of a tube thermostated to the internal and external polymerization temperature at a given internal and external radius, is calculated on the basis of the thermal conductivity of the polymer mixture and the specific heat released on the basis of the equation:

τ = τ + 1max Α0 τ τ = τ + 1 max Α 0 τ

4/1,4/1,

f / f / \2) \ 2) - - ln ln k k (r λ( r λ -1 -1 2ln 2ln - v v kV ) kV) J J

(1) r„ - notranji premer (m) rz - zunanji premer (m)(1) r '- inside diameter (m) r z - outside diameter (m)

To - temperatura polimerizacije (K)T o - polymerization temperature (K)

Tmax - maksimalna dosežena temperatura znotraj polimera (K)T max - maximum temperature reached within the polymer (K)

S - specifična sproščena toplota (W/m ) λτ - toplotna prevodnost polimerne mešanice (W/mK)S - specific released heat (W / m) λτ - thermal conductivity of the polymer mixture (W / mK)

V primerih, ko je premer dovolj velik, daje napaka sprejemljiva, lahko namesto enačbe 1 uporabimo enačbo za ravno ploščo, ki se glasi:In cases where the diameter is large enough that the error is acceptable, the equation for a flat plate can be used instead of equation 1, which reads as follows:

= T in= T in

S ·

2-2T 2-2 T

(2)(2)

Gornji dve enačbi ne vključujeta zunanjega toplotnega upora modela, v katerem polimerizacija poteka, kot tudi ne toplotnega upora mejnega sloja medija, v katerega je model z mešanico monomerov vstavljen. V primeru, ko so ti upori znatni, moramo gornje enačbe ustrezno modificirati.The above two equations do not include the external thermal resistance of the model in which the polymerization takes place, nor the thermal resistance of the boundary layer of the medium into which the model with the monomer mixture is inserted. If these resistances are significant, the above equations must be modified accordingly.

Iz enačbe 1 oziroma 2 lahko za predpisano dovoljeno maksimalno temperaturo določimo maksimalno debelino sloja polimera.From Equations 1 and 2, for the prescribed maximum temperature, the maximum thickness of the polymer layer can be determined.

Po izumu je konstrukcija cevnega modula večjih volumnov rešena tako, da za konkreten sistem monomeme mešanice med polimerizacijo v trenutku, ko je dosežena maksimalna temperatura izračunamo toplotno prevodnost (λτ) in specifično sproščeno toploto (S). S polimerizacijo enake mešanice pri različnih temperaturah določimo maksimalno dovoljeno temperaturno spremembo, ki ohranja željeno strukturo monolitnega poroznega polimera. Tako dobljene podatke uporabimo pri reševanju enačb 1 ali 2, oziroma v primeru velikih zunanjih toplotnih uporov ustrezno modificiranih enačb. Na osnovi izbranega zunanjega polmera določimo debelino monolitne porozne polimerne cevi. Konstrukcija cevnega modula je prikazana na sliki 1 in poteka tako, da pripravimo več monolitnih poroznih polimernih kosov v obliki cevi (1,2,3), natančno definirane debeline, tako da jih lahko vstavimo enega v drugega, torej, da se zunanji premer notranje cevi prilega notranjemu premeru zunanje cevi (4). Čeprav so prikazane le tri plasti, lahko modul skonstruiramo iz poljubnega Števila plasti.According to the invention, the construction of a larger volume tube module is solved by calculating the thermal conductivity (λτ) and the specific heat released (S) for a particular system of monomer mixture during polymerization at the moment when the maximum temperature is reached. By polymerizing the same mixture at different temperatures, we determine the maximum allowable temperature change that maintains the desired structure of the monolithic porous polymer. The data thus obtained can be used to solve Equations 1 or 2, or in the case of large external thermal resistances of the modified equations. The thickness of the monolithic porous polymer tube is determined on the basis of the selected external radius. The construction of the tube module is shown in Figure 1 and is made by preparing several monolithic porous polymer pieces in the form of tubes (1,2,3), with a precisely defined thickness, so that they can be inserted into each other, so that the outer diameter is internally pipe fits inside diameter of outer tube (4). Although only three layers are shown, the module can be constructed from any Number of layers.

Tako pripravljen večplastni cevni modul vstavimo v ustrezno veliko ohišje podrobno opisano v patentni prijavi P-9800058. Ker s takim načinom priprave število plasti ni omejeno, lahko pripravimo CIM cevni modul poljubnega volumna.The multilayer tube module thus prepared is inserted into the corresponding large housing described in detail in patent application P-9800058. As the number of layers is not limited by this method of preparation, a CIM pipe module of any volume can be prepared.

Aleš ŠTRANCAR za BIA d.o.oAleš ŠTRANCAR for BIA d.o.o

Claims (8)

PATENTNI ZAHTEVEKPATENT APPLICATION 1. Konstrukcija cevnega modula večjih volumnov označena s tem, da večplastno porozno polimerno cev vstavimo v ustrezno ohišje.1. Large volume tube module construction characterized by the insertion of a multilayer porous polymer tube into a suitable housing. 2. Konstrukcija cevnega modula večjih volumnov označena s tem, da večplastno porozno polimerno cev sestavimo iz poljubnega števila monolitnih poroznih polimernih cevi natančno definirane debeline, tako da jih lahko vstavimo eno v drugo in se med seboj tesno prilegajo, da med njimi ni vmesnega prostora ter tvorijo večplastno porozno cev z notranjim premerom, ki je enak cevi z najmanjšim notranjim premerom in zunanjim premerom, ki je enak cevi z največjim zunanjim premerom.2. The construction of a larger volume tube module, characterized in that the multilayer porous polymer tube is made up of any number of monolithic porous polymer tubes of precisely defined thickness, so that they can be inserted into one another and fit snugly between them; they form a multilayer porous tube with an inner diameter equal to the pipe with the smallest inside diameter and an outer diameter equal to the pipe with the largest outer diameter. 3. Konstrukcija cevnega modula večjih volumnov označena s tem, da vsaka večplastna porozna polimerna cev vsebuje vsaj eno funkcionalno skupino, ki je lahko enaka pri vseh monolitnih poroznih ceveh, ali pa imajo različne monolitne porozne cevi različne funkcionalne skupine, ki so lahko razvrščene znotraj večplastne porozne polimerne cevi v poljubni kombinaciji.3. Bulk tube module construction characterized in that each multilayer porous polymer tube contains at least one functional group that may be the same for all monolithic porous tubes, or different monolithic porous tubes may have different functional groups that may be classified within a multilayer porous tube. porous polymer tubes in any combination. 4. Konstrukcija cevnega modula večjih volumnov označena s tem, da je debelina monolitne porozne polimerne cevi manjša ali kvečjemu enaka debelini, ki jo izračunamo za konkreten sistem polivinilnega monomera, monovinilnega monomera, iniciatorja ter porogenov s tem, da določimo tekom polimerizacije toplotno prevodnost polimerne mešanice (λτ), specifično sproščeno toploto (S) ter maksimalno dovoljeno temperaturno spremembo, ki ohranja zaželjeno strukturo polimera, na osnovi enačb 1 ali 2 oziroma ustrezno modificiranih enačb.4. Bulk tube module construction characterized in that the thickness of the monolithic porous polymer tube is less than or at most equal to the thickness calculated for a particular system of polyvinyl monomer, monovinyl monomer, initiator and porogens by determining the thermal conductivity of the polymer during polymerization (λ τ ), the specific heat released (S), and the maximum allowable temperature change that maintains the desired polymer structure, based on Equations 1 or 2, or modified equations accordingly. 5. Konstrukcija cevnega modula večjih volumnov označena s tem, da monolitna porozna polimerna cev vsebuje polimer polivinilnega monomera, ki je izbran izmed divinilbenzena, divinilnaftalena, divinilpiridina, alkilen dimetakrilata, alkilen diakrilata, hidroksialkilen dimetakrilata, hidroksialkilen diakrilata, oligoetilen glikol dimetakrilata, oligoetilen glikol diakrilata, vinilestra polikarboksilne kisline, diviniletra, pentaerytritol di-, tri- ali tetrametakrilata ali akrilata, trimetiloilpropan trimetakrilata ali akrilata, alkilen bis akrilamida ali metakrilamida oziroma njihovih mešanic.5. Bulk tube module construction characterized in that the monolithic porous polymer tube contains a polyvinyl monomer polymer selected from divinylbenzene, divinylnaphthalene, divinylpyridine, alkylene dimethacrylate, alkylene diacrylate, hydroxyalkylene dimethacrylate, hydroxyalkylene dimethacrylate, hydroxyalkylene dimethacrylate, hydroxyalkylene dimethacrylate, , polycarboxylic acid vinyl ester, divinyl ether, pentaerythritol di-, tri- or tetramethacrylate or acrylate, trimethyloylpropane trimethacrylate or acrylate, alkylene bis acrylamide or methacrylamide or mixtures thereof. 6. Konstrukcija cevnega modula večjih volumnov označena s tem, da monolitna porozna polimerna cev vsebuje polimer monovinilnega monomera, izbran iz skupine, ki vključuje stiren, stiren s substitucijo na obroču, vinilnaftalen, akrilate, metakrilate, vinilacetat, vinilpirolidon oziroma njihovo mešanico.6. Bulk tube module construction characterized in that the monolithic porous polymer tube comprises a monovinyl monomer polymer selected from the group consisting of styrene, ring-substituted styrene, vinylnaphthalene, acrylates, methacrylates, vinyl acetate, vinylpyrrolidone or a mixture thereof. 7. Konstrukcija cevnega modula večjih volumnov označena s tem, da monolitna porozna polimerna cev vsebuje majhne pore premera pod 200 nm kot tudi velike pore premera večjega od 600 nm in vse do 2500 nm.7. Large volume tube module construction characterized in that the monolithic porous polymer tube contains small pores with diameters below 200 nm as well as large pores with diameters greater than 600 nm and up to 2500 nm. 8. Konstrukcija cevnega modula večjih volumnov označena s tem, daje poroznost monolitne porozne polimerne cevi med 30 in 90%.8. Large volume tube module construction characterized in that the porosity of the monolithic porous polymer tube is between 30 and 90%.
SI9800201A 1998-02-27 1998-07-14 Structure of large-volume tubular module SI20011A (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
SI9800201A SI20011A (en) 1998-07-14 1998-07-14 Structure of large-volume tubular module
SI9930844T SI1058844T1 (en) 1998-02-27 1999-02-27 Chromatographic device
EP99914469A EP1058844B1 (en) 1998-02-27 1999-02-27 Chromatographic device
AU33281/99A AU3328199A (en) 1998-02-27 1999-02-27 Novel chromatographic device
CZ20003135A CZ302614B6 (en) 1998-02-27 1999-02-27 Porous self-supporting polymeric structure for chromatographic device
ES99914469T ES2247791T3 (en) 1998-02-27 1999-02-27 CHROMATOGRAPH
PCT/EP1999/001391 WO1999044053A2 (en) 1998-02-27 1999-02-27 Chromatographic device
JP2000533751A JP4109418B2 (en) 1998-02-27 1999-02-27 New chromatography equipment
US09/601,037 US6736973B1 (en) 1998-02-27 1999-02-27 Chromatographic device
DK99914469T DK1058844T3 (en) 1998-02-27 1999-02-27 Chromatographic device
CA002322009A CA2322009C (en) 1998-02-27 1999-02-27 Novel chromatographic device
RU2000124527/28A RU2232385C2 (en) 1998-02-27 1999-02-27 Chromatographic device, porous self-supporting structure and process of its fabrication
DE69927792T DE69927792T2 (en) 1998-02-27 1999-02-27 CHROMATOGRAPHIC DEVICE
AT99914469T ATE307333T1 (en) 1998-02-27 1999-02-27 CHROMATOGRAPHIC APPARATUS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SI9800201A SI20011A (en) 1998-07-14 1998-07-14 Structure of large-volume tubular module

Publications (1)

Publication Number Publication Date
SI20011A true SI20011A (en) 2000-02-29

Family

ID=20432305

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9800201A SI20011A (en) 1998-02-27 1998-07-14 Structure of large-volume tubular module

Country Status (1)

Country Link
SI (1) SI20011A (en)

Similar Documents

Publication Publication Date Title
Viklund et al. Fast ion‐exchange HPLC of proteins using porous poly (glycidyl methacrylate‐co‐ethylene dimethacrylate) monoliths grafted with poly (2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)
JP3168006B2 (en) Columns with macroporous polymer media
Ellingsen et al. Monosized stationary phases for chromatography
Tennikova et al. High-performance membrane chromatography of proteins, a novel method of protein separation
Gustavsson et al. Superporous agarose, a new material for chromatography
US5902834A (en) Method of manufacturing particles, and particles that can be produced in accordance with the method
Weaver Jr et al. Protein adsorption on cation exchangers: Comparison of macroporous and gel‐composite media
US7479222B2 (en) Porous adsorptive or chromatographic media
JP3925872B2 (en) Chromatographic method and apparatus using a continuous macroporous organic matrix
US4952349A (en) Macroporous polymeric membranes for the separation of polymers and a method of their application
JP3473852B2 (en) Super porous polysaccharide gel
JP5021540B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
US6472443B1 (en) Porous polymer media
Fujimoto Preparation of fritless packed silica columns for capillary electrochromatography
US6573307B1 (en) Process for making fluorinated polymer adsorbent particles
JP2896571B2 (en) Composite separating agent and method for producing the same
CN115837174A (en) Organogel or liquid chromatography
JP2002505428A (en) New chromatography equipment
Ceylan et al. Novel adsorbent for DNA adsorption: Fe3+-attached sporopollenin particles embedded composite cryogels
JP2005510593A (en) Post-modification of porous support
Wu et al. Development of rigid bidisperse porous microspheres for high‐speed protein chromatography
JPH06508792A (en) Products for separation and purification and methods for adjusting their porosity
SI20011A (en) Structure of large-volume tubular module
Gong et al. Preparation of weak cation exchange packings based on monodisperse poly (glycidyl methacrylate-co-ethylene dimethacrylate) beads and their chromatographic properties
Eeltink et al. Recent developments and applications of polymer monolithic stationary phases