SG10201805461WA - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
SG10201805461WA
SG10201805461WA SG10201805461WA SG10201805461WA SG10201805461WA SG 10201805461W A SG10201805461W A SG 10201805461WA SG 10201805461W A SG10201805461W A SG 10201805461WA SG 10201805461W A SG10201805461W A SG 10201805461WA SG 10201805461W A SG10201805461W A SG 10201805461WA
Authority
SG
Singapore
Prior art keywords
contact structure
interposed
bit line
air
gap portion
Prior art date
Application number
SG10201805461WA
Inventor
Lee Jun-Won
Koh Jae-Kang
Mun Geum-bi
Choi Byoung-Deog
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of SG10201805461WA publication Critical patent/SG10201805461WA/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • H01L21/02049Dry cleaning only with gaseous HF
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76289Lateral isolation by air gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76816Aspects relating to the layout of the pattern or to the size of vias or trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/482Bit lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/488Word lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geometry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

A first bit line structure is disposed between a first contact structure and a second contact structure. A first air spacer is interposed between the first contact structure and the first bit line structure. A first separation space is connected to an air entrance of the first air spacer and interposed between the first contact structure and the first bit line structure. A cover insulating pattern with a gap portion is interposed between the first contact structure and the second contact structure. The gap portion has a downwardly-decreasing width. An air capping pattern covers the cover insulating pattern to seal the first separation space. [FIG. C] 49
SG10201805461WA 2017-08-31 2018-06-26 Semiconductor device SG10201805461WA (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170111046A KR102359266B1 (en) 2017-08-31 2017-08-31 Semiconductor device
US15/871,957 US10644008B2 (en) 2017-08-31 2018-01-15 Semiconductor device

Publications (1)

Publication Number Publication Date
SG10201805461WA true SG10201805461WA (en) 2019-03-28

Family

ID=65436131

Family Applications (1)

Application Number Title Priority Date Filing Date
SG10201805461WA SG10201805461WA (en) 2017-08-31 2018-06-26 Semiconductor device

Country Status (4)

Country Link
US (1) US10644008B2 (en)
KR (1) KR102359266B1 (en)
CN (1) CN109427788B (en)
SG (1) SG10201805461WA (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346660B (en) 2017-01-24 2021-12-28 联华电子股份有限公司 Semiconductor device and method for forming the same
US10374033B1 (en) * 2018-03-08 2019-08-06 Micron Technology, Inc. Semiconductor assemblies having semiconductor material regions with contoured upper surfaces
TWI683418B (en) * 2018-06-26 2020-01-21 華邦電子股份有限公司 Dynamic random access memory and methods of manufacturing, reading and writing the same
CN110707083B (en) 2018-08-23 2022-02-01 联华电子股份有限公司 Semiconductor memory device and method of forming the same
US11362007B2 (en) * 2020-01-21 2022-06-14 Winbond Electronics Corp. Fin height monitoring structure and fin height monitoring method
CN114914243A (en) * 2020-05-08 2022-08-16 福建省晋华集成电路有限公司 Memory device
KR20210155697A (en) * 2020-06-16 2021-12-23 삼성전자주식회사 Integrated circuit device
US12009223B2 (en) * 2020-07-16 2024-06-11 Changxin Memory Technologies, Inc. Semiconductor structure and manufacturing method thereof
KR20220036109A (en) * 2020-09-15 2022-03-22 삼성전자주식회사 Semiconductor devices
KR20220060086A (en) * 2020-11-03 2022-05-11 삼성전자주식회사 Semiconductor device
KR20220062959A (en) * 2020-11-09 2022-05-17 삼성전자주식회사 Semiconductor devices
KR20220073231A (en) 2020-11-26 2022-06-03 삼성전자주식회사 Semiconductor devices
US11387142B1 (en) * 2021-03-22 2022-07-12 Sandisk Technologies Llc Semiconductor device containing bit lines separated by air gaps and methods for forming the same
CN113097210B (en) * 2021-03-31 2022-05-03 长鑫存储技术有限公司 Semiconductor structure and preparation method thereof
US11963346B2 (en) 2021-03-31 2024-04-16 Changxin Memory Technologies, Inc. Semiconductor structure and preparation method thereof
KR20220148366A (en) * 2021-04-28 2022-11-07 삼성전자주식회사 Semiconductor Device
US20220415781A1 (en) * 2021-06-25 2022-12-29 Winbond Electronics Corp. Semiconductor memory structure and method for forming the same

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140025799A (en) * 2012-08-22 2014-03-05 삼성전자주식회사 Semiconductor device and method of forming the same
KR102036345B1 (en) * 2012-12-10 2019-10-24 삼성전자 주식회사 Semiconductor device
JP6213867B2 (en) * 2013-02-21 2017-10-18 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
KR102001493B1 (en) 2013-04-16 2019-07-18 에스케이하이닉스 주식회사 Semiconductor device with air gap and method for fabricating the same
KR101978969B1 (en) 2013-06-17 2019-05-17 삼성전자주식회사 Semiconductor device
KR102033496B1 (en) 2013-07-12 2019-10-17 에스케이하이닉스 주식회사 Semiconductor device with air gap and method for fabricating the same
KR102044275B1 (en) 2013-07-31 2019-11-14 에스케이하이닉스 주식회사 Semiconductor device with air gap and method for fabricating the same
KR102059863B1 (en) 2013-08-30 2019-12-30 삼성전자주식회사 Semiconductor devices and methods of manufacturing the same
KR20150045782A (en) * 2013-10-21 2015-04-29 삼성전자주식회사 Semiconductor device and method of forming the same
US9425200B2 (en) 2013-11-07 2016-08-23 SK Hynix Inc. Semiconductor device including air gaps and method for fabricating the same
KR102242963B1 (en) * 2014-05-28 2021-04-23 에스케이하이닉스 주식회사 Semiconductor device with air gap and method for fabricating the same
KR102171267B1 (en) 2014-01-28 2020-10-28 삼성전자 주식회사 Semiconductor device having landing pad
KR102152798B1 (en) 2014-03-05 2020-09-07 에스케이하이닉스 주식회사 Semiconductor device with line type air gap and method for fabricating the same
KR102200342B1 (en) 2014-03-17 2021-01-08 삼성전자주식회사 Semiconductor device having air-gaps disposed on side surfaces of a bit line structure
KR102238951B1 (en) * 2014-07-25 2021-04-12 에스케이하이닉스 주식회사 Semiconductor device with air gap and method for fabricating the same
US9704871B2 (en) 2014-09-18 2017-07-11 Micron Technology, Inc. Semiconductor device having a memory cell and method of forming the same
KR102321390B1 (en) 2014-12-18 2021-11-04 에스케이하이닉스 주식회사 Semiconductor device with air gap and method for fabricating the same
KR102289376B1 (en) 2015-01-19 2021-08-17 에스케이하이닉스 주식회사 Semiconductor device with air gap and method for fabricating the same
KR102188063B1 (en) 2015-01-21 2020-12-07 삼성전자 주식회사 Semiconductor Device
KR20160139190A (en) 2015-05-27 2016-12-07 에스케이하이닉스 주식회사 Semiconductor device having extended air-gap and manufacturing method of the same
KR102444838B1 (en) 2015-06-30 2022-09-22 에스케이하이닉스 주식회사 Semiconductor device with air gap and method for fabricating the same
KR102235120B1 (en) 2015-06-30 2021-04-02 삼성전자주식회사 Semiconductor device and method for method for fabricating the same
KR102403604B1 (en) 2015-08-31 2022-05-30 삼성전자주식회사 Semiconductor device having air spacer and method of fabricating the same
KR102395192B1 (en) 2015-11-27 2022-05-06 삼성전자주식회사 Semiconductor device having air spacers and method for manufacturing the same

Also Published As

Publication number Publication date
US10644008B2 (en) 2020-05-05
CN109427788B (en) 2023-07-04
KR102359266B1 (en) 2022-02-07
KR20190024251A (en) 2019-03-08
US20190067294A1 (en) 2019-02-28
CN109427788A (en) 2019-03-05

Similar Documents

Publication Publication Date Title
SG10201805461WA (en) Semiconductor device
GB201316098D0 (en) A Capacitor Component
MX2019014177A (en) Insulating device.
JP2017005277A5 (en)
JP2015084411A5 (en) Semiconductor device
JP2015079949A5 (en) Semiconductor device
JP2015195327A5 (en)
TW201614812A (en) One time programmable non-volatile memory
JP2014241404A5 (en)
JP2013179295A5 (en)
JP2013168644A5 (en) Semiconductor device
JP2015053477A5 (en) Semiconductor device
JP2015179810A5 (en) Semiconductor device
TW201613094A (en) Structure of fin feature and method of making same
TW201613077A (en) Display panel and display device
TW201613063A (en) Semiconductor device
JP2015111667A5 (en) Semiconductor device
IN2014DE02364A (en)
SG10201805041XA (en) Image Sensor
MX2020005486A (en) Seal arrangement.
TW201614831A (en) Semiconductor device
JP2015005730A5 (en)
TW201614794A (en) Semiconductor device
JP2015079951A5 (en) Semiconductor device
SG11201807956QA (en) Field effect transistor, display element, image display device, and system