SG10201402457QA - Method for the manufacture of a thermal barrier coating structure - Google Patents

Method for the manufacture of a thermal barrier coating structure

Info

Publication number
SG10201402457QA
SG10201402457QA SG10201402457QA SG10201402457QA SG10201402457QA SG 10201402457Q A SG10201402457Q A SG 10201402457QA SG 10201402457Q A SG10201402457Q A SG 10201402457QA SG 10201402457Q A SG10201402457Q A SG 10201402457QA SG 10201402457Q A SG10201402457Q A SG 10201402457QA
Authority
SG
Singapore
Prior art keywords
manufacture
barrier coating
thermal barrier
coating structure
thermal
Prior art date
Application number
SG10201402457QA
Original Assignee
Sulzer Metco Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Metco Ag filed Critical Sulzer Metco Ag
Publication of SG10201402457QA publication Critical patent/SG10201402457QA/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/137Spraying in vacuum or in an inert atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24174Structurally defined web or sheet [e.g., overall dimension, etc.] including sheet or component perpendicular to plane of web or sheet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Chemical Vapour Deposition (AREA)
SG10201402457QA 2010-12-21 2011-12-07 Method for the manufacture of a thermal barrier coating structure SG10201402457QA (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10196146 2010-12-21

Publications (1)

Publication Number Publication Date
SG10201402457QA true SG10201402457QA (en) 2014-07-30

Family

ID=43569201

Family Applications (2)

Application Number Title Priority Date Filing Date
SG10201402457QA SG10201402457QA (en) 2010-12-21 2011-12-07 Method for the manufacture of a thermal barrier coating structure
SG2011090818A SG182078A1 (en) 2010-12-21 2011-12-07 Method for the manufacture of a thermal barrier coating structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
SG2011090818A SG182078A1 (en) 2010-12-21 2011-12-07 Method for the manufacture of a thermal barrier coating structure

Country Status (6)

Country Link
US (1) US20120231211A1 (en)
EP (1) EP2468925A3 (en)
JP (1) JP2012140703A (en)
CN (1) CN102534460A (en)
CA (1) CA2760005A1 (en)
SG (2) SG10201402457QA (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290351B (en) * 2013-05-28 2015-03-11 黄三甦 Method for preparing ZrO2 thermal barrier coating in plasma sprayed coating way
CN103343312B (en) * 2013-05-28 2015-04-01 黄捷 Zro2 thermal barrier coating prepared by plasma spraying method
US20150147524A1 (en) * 2013-11-26 2015-05-28 Christopher A. Petorak Modified thermal barrier composite coatings
DE102014222686A1 (en) * 2014-11-06 2016-05-12 Siemens Aktiengesellschaft Double-layered thermal barrier coating by different coating methods
EP3199507A1 (en) 2016-01-29 2017-08-02 Rolls-Royce Corporation Plasma spray physical vapor deposition deposited multilayer, multi-microstructure environmental barrier coating
JP6908973B2 (en) * 2016-06-08 2021-07-28 三菱重工業株式会社 Manufacturing methods for thermal barrier coatings, turbine components, gas turbines, and thermal barrier coatings
US10995624B2 (en) * 2016-08-01 2021-05-04 General Electric Company Article for high temperature service
US20200095666A1 (en) * 2017-02-07 2020-03-26 Oerlikon Metco Ag, Wohlen Abradable coating
US11352890B2 (en) 2017-06-12 2022-06-07 Raytheon Technologies Corporation Hybrid thermal barrier coating
DE102017223879A1 (en) * 2017-12-29 2019-07-04 Siemens Aktiengesellschaft Ceramic material, method of manufacture, layer and layer system
CN108411242B (en) * 2018-01-31 2020-12-18 广东省新材料研究所 Thermal barrier coating with particle erosion resistant surface layer and preparation method thereof
EP3636793A1 (en) * 2018-10-10 2020-04-15 Siemens Aktiengesellschaft Eb-pvd-like plasma-sprayed coatings
US11028486B2 (en) 2018-12-04 2021-06-08 General Electric Company Coating systems including infiltration coatings and reactive phase spray formulation coatings
CN110158008A (en) * 2019-03-28 2019-08-23 福建工程学院 A kind of high entropy alloy coating and preparation method thereof
CN110129716A (en) * 2019-05-23 2019-08-16 天津大学 A kind of preparation method of high entropy alloy coating
RU2763953C1 (en) * 2021-03-11 2022-01-11 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Combined protective coating
CN115094395B (en) * 2022-08-23 2022-12-02 北京辰融科技有限责任公司 Deposition method of leaf disc high-temperature-resistant coating
CN117026154A (en) * 2023-07-19 2023-11-10 北京金轮坤天特种机械有限公司 Preparation method of zirconium diboride compact coating

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238752A (en) 1990-05-07 1993-08-24 General Electric Company Thermal barrier coating system with intermetallic overlay bond coat
US6716539B2 (en) * 2001-09-24 2004-04-06 Siemens Westinghouse Power Corporation Dual microstructure thermal barrier coating
US20030152814A1 (en) * 2002-02-11 2003-08-14 Dinesh Gupta Hybrid thermal barrier coating and method of making the same
DE50310830D1 (en) * 2002-04-12 2009-01-08 Sulzer Metco Ag PLASMA INJECTION PROCEDURE
US6875529B1 (en) * 2003-12-30 2005-04-05 General Electric Company Thermal barrier coatings with protective outer layer for improved impact and erosion resistance
CA2658210A1 (en) * 2008-04-04 2009-10-04 Sulzer Metco Ag Method and apparatus for the coating and for the surface treatment of substrates by means of a plasma beam
US20090252985A1 (en) * 2008-04-08 2009-10-08 Bangalore Nagaraj Thermal barrier coating system and coating methods for gas turbine engine shroud

Also Published As

Publication number Publication date
EP2468925A2 (en) 2012-06-27
CN102534460A (en) 2012-07-04
EP2468925A3 (en) 2013-01-16
US20120231211A1 (en) 2012-09-13
JP2012140703A (en) 2012-07-26
CA2760005A1 (en) 2012-06-21
SG182078A1 (en) 2012-07-30

Similar Documents

Publication Publication Date Title
SG10201402457QA (en) Method for the manufacture of a thermal barrier coating structure
PL2552801T3 (en) Packaging, method of manufacturing the packaging
EP2537596A4 (en) Method for forming antifouling coating film
PL2526235T3 (en) Facade insulation
PL2418072T3 (en) A method of manufacturing an elongated composite structure
EP2535183A4 (en) Hard coating forming method
EP2562789A4 (en) Method for producing composite substrate
GB201205020D0 (en) A method of manufacturing a thermal barrier coated article
IL223583A (en) Method for manufacturing quinoline-3-carboxamides
PL2564129T3 (en) Method for providing a thermal absorber
PL2643112T3 (en) Method for the layered manufacturing of a structural component
EP2596874A4 (en) Method for producing gas barrier film
EP2551381A4 (en) Method for forming oxidation resistant coating layer
GB2485831B (en) A method of manufacturing a component
EP2659394A4 (en) Method of building a geo-tree
AP2013006897A0 (en) Method for the manufacturing of naltrexone
SG10201510234UA (en) Method for forming stair-step structures
EP2654112A4 (en) Method for manufacturing membrane-catalyst layer assembly
SG11201501113UA (en) Thermal barrier coating having outer layer
PL2598459T3 (en) Method for manufacturing an aerogel-containing composite
EP2605863A4 (en) Method for forming a multilayer coating
GB201006348D0 (en) Method of manufacturing a component
TWM389412U (en) Insulation via hole structure for coating process
EP2549527A4 (en) Deposition method
EP2557253A4 (en) Building design method