SE537980C2 - Exhaust after-treatment arrangement and a motor vehicle comprising such an exhaust after-treatment arrangement - Google Patents
Exhaust after-treatment arrangement and a motor vehicle comprising such an exhaust after-treatment arrangement Download PDFInfo
- Publication number
- SE537980C2 SE537980C2 SE1450417A SE1450417A SE537980C2 SE 537980 C2 SE537980 C2 SE 537980C2 SE 1450417 A SE1450417 A SE 1450417A SE 1450417 A SE1450417 A SE 1450417A SE 537980 C2 SE537980 C2 SE 537980C2
- Authority
- SE
- Sweden
- Prior art keywords
- exhaust
- heat transfer
- exhaust gases
- treatment arrangement
- heat
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/0205—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/02—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2470/00—Structure or shape of gas passages, pipes or tubes
- F01N2470/24—Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/10—Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
- F01N2610/102—Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance after addition to exhaust gases, e.g. by a passively or actively heated surface in the exhaust conduit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
SAMMANDRAG Avgasefterbehandlingsarrangemang innefattande: - ett inlopp (11) fOr mottagning av avgaser frail en forbrannings- motor, - ett nedstroms inloppet anordnat partikelfilter (14), - en nedstroms partikelfiltret anordnad blandningskanal (15), vii- ken är avgransad i radiell riktning av en rorformig vagg (18), - en nedstroms blandningskanalen anordnad SCR-katalysator (16), - ett insprutningsorgan (17) far insprutning av reduktionsmedel i blandningskanalen, och - en mellan inloppet och partikelfiltret anordnad varmeoverforingskanal (13) som stracker sig langs med utsidan av namnda rorformiga vagg for att medge overforing av varme fr5n de genom varmeoverforingskanalen strommande avgaserna till den rorformiga vaggen. Varmeoverforingskanalen är separerad fran partikelfiltret sa att de avgaser som strommar in i avgasefterbehandlingsarrange- manget via inloppet är forhindrade att avge varme till partikelfilt- ret innan de passerat genom varmeoverforingskanalen. Uppfinningen avser aven ett motorfordon forsett med ett sadant avgasefterbehandlingsarrangemang. SUMMARY Exhaust gas treatment arrangement comprising: - an inlet (11) for receiving exhaust gases from an internal combustion engine, - a particulate filter (14) arranged downstream of the inlet, - a mixing channel (15) arranged downstream of the particulate filter, which is delimited in a radially delimited manner. tubular cradle (18), - an SCR catalyst (16) arranged downstream of the mixing channel, - an injector (17) for injecting reducing agent into the mixing channel, and - a heat transfer channel (13) arranged between the inlet and the particle filter extending along the outside of said tubular cradle to allow the transfer of heat from the exhaust gases flowing through the heat transfer channel to the tubular cradle. The heat transfer duct is separated from the particulate filter so that the exhaust gases flowing into the exhaust after-treatment arrangement via the inlet are prevented from emitting heat to the particulate filter before they have passed through the heat transfer duct. The invention also relates to a motor vehicle provided with such an exhaust after-treatment arrangement.
Description
Avgasefterbehandlinqsarranqemang och ett motorfordon innefattande ett sadant avciasefterbehandlingsarranqemanq UPPFINNINGENS OMRADE OCH TIDIGARE TEKNIK Fareliggande uppfinning avser ett avgasefterbehandlingsarrangemang enligt ingressen till patentkravet 1. Uppfinningen avser aven ett motorfordon forsett med ett sadant avgasefterbe- handlingsarrangemang. FIELD OF THE INVENTION AND PRIOR ART The present invention relates to an exhaust aftertreatment arrangement according to the preamble of claim 1. The invention also relates to a motor vehicle arrangement with a sadant handling device.
For att uppfylla radande krav pa avgasrening är dagens motorfordon vanligtvis forsedda med en eller flera katalysatorer i avgasledningen for att astadkomma katalytisk omvandling av miljo- farliga bestandsdelar i avgaserna till mindre miljofarliga amnen. In order to meet current requirements for exhaust gas purification, today's motor vehicles are usually equipped with one or more catalysts in the exhaust line to achieve catalytic conversion of environmentally hazardous constituents in the exhaust gases into less environmentally hazardous substances.
En metod som tagits i bruk for att astadkomma en effektiv katalytisk omvandling bygger pa insprutning av reduktionsmedel i avgaserna uppstroms en katalysator. Ett i reduktionsmedlet ingaende eller av reduktionsmedlet bildat reduktionsamne fors av av- gaserna in i katalysatorn dar det adsorberas pa aktiva saten i ka- talysatorn, vilket ger upphov till ackumulation av reduktionsamnet i katalysatorn. Det ackumulerade reduktionsamnet kan sedan reagera med ett avgasamne far omvandling av detta avgasamne till ett arnne med mindre miljopaverkan. En sadan reduktionskataly- sator kan exempelvis vara av SCR-typ (SCR = Selective Catalytic Reduction). Denna typ av katalysator benamns fortsattningsvis SCR-katalysator. En SCR-katalysator reducerar kvaveoxider (NO) i avgaserna. Hos en SCR-katalysator insprutas vanligtvis ett reduktionsmedel i form av urea i avgaserna uppstroms kataly- 1 satorn. Vid insprutningen av urea i avgaserna bildas ammoniak och det är denna ammoniak som utgor reduktionsamnet som bidrar till den katalytiska omvandlingen i SCR-katalysatorn. Ammoniaken ackumuleras i katalysatorn genom att adsorberas pa ak- tiva saten i katalysatorn och i avgaserna fOrekommande NO omvandlas till kvavgas och vatten da det i katalysatorn bringas i kontakt med ackumulerad ammoniak pa de aktiva satena i katalysatorn. One method used to achieve efficient catalytic conversion is based on the injection of reducing agents into the exhaust gases upstream of a catalyst. A reduction substance present in the reducing agent or formed by the reducing agent is forced by the exhaust gases into the catalyst where it is adsorbed on the active charge in the catalyst, which gives rise to the accumulation of the reducing agent in the catalyst. The accumulated reduction substance can then react with an exhaust substance to convert this exhaust substance into an area with less environmental impact. Such a reduction catalyst can, for example, be of the SCR type (SCR = Selective Catalytic Reduction). This type of catalyst is still referred to as the SCR catalyst. An SCR catalyst reduces nitrogen oxides (NO) in the exhaust gases. In an SCR catalyst, a urea reducing agent is usually injected into the exhaust gases upstream of the catalyst. During the injection of urea into the exhaust gases, ammonia is formed and it is this ammonia that constitutes the reducing substance that contributes to the catalytic conversion in the SCR catalyst. The ammonia accumulates in the catalyst by being adsorbed on the active batches in the catalyst and in the exhaust gases NO is converted to nitrogen gas and water as it is brought into contact with the accumulated ammonia on the active batches in the catalyst.
Nar urea anvands som reduktionsmedel insprutas detta i avga- serna i form av en vatskeformig urealosning med hjalp av ett insprutningsorgan. Insprutningen sker i en av avgaserna genomstrommad kanal som at- belagen uppstroms SCR-katalysatorn. I den nedan foljande beskrivningstexten och i de efterfoljande pa- tentkraven anvands uttrycket "blandningskanal" som benamning pa denna kanal dar reduktionsmedlet insprutas och blandas med avgaserna. Insprutningsorganet innefattar ett munstycke via vilket urealosningen under tryck insprutas i blandningskanalen i finfordelad form som en spray. Under stora delar av en dieselmo- tors drifttillstand har avgaserna en tillrackligt hog temperatur for att kunna foranga urealosningen sa att ammoniak bildas. Det är dock svart att undvika att en del av den tillforda urealosningen kommer i kontakt med och fastnar pa blandningskanalens invandiga vaggyta i ett oforangat tillstand. Om vaggytans temperatur är lagre an cirka 190°C kan det pa den av urealosning traffade vaggytan bildas en film av urealosning som sedan dras med av avgasflOdet. Efter att denna film har forflyttats en viss stracka i avgasledningen kommer vattnet i urealosningen att koka bort under verkan av de heta avgaserna. Kvar blir fast urea som lang- samt forangas av varmen i avgasledningen. Om tillforseln av fast 2 urea är stOrre an forangningen sker en ansamling av fast urea i avgasledningen. Om skiktet av urea blir tillrackligt tjockt kommer urean och dess sonderdelningsprodukter att reagera med varandra till bildande av primitiva polymerer pa ureabas, sä kal- lade ureaklumpar. Sadana ureaklumpar kan med tiden blockera en avgasledning. Av denna anledning är det vid kallstart °lampligt att starta insprutningen av urea innan blandningskanalens vaggytor hunnit uppvarmas av de passerande avgaserna till en temperatur av 190°C, vilket medfor att den NOx-reducerande ak- tiviteten hos SCR-katalysatorn fordrojs vid kallstart. Hos exam- pelvis en lastbil drojer det vid kallstart i normalfallet cirka 300500 sekunder innan blandningskanalens vaggytor uppvarmts till den erfordrade temperaturen av cirka 190°C i det fall da dessa vaggytor enbart varms av de genom blandningskanalen strom- mande avgaserna. For att astadkomma en forbattrad avgasrening är det onskvart att astadkomma en snabbare uppvarmning av blandningskanalens vaggytor vid kallstart far att pa sa s5tt reducera fordrojningen av SCR-katalysatorns NOx-reducerande aktivi- tet.GenomexempelvisWO 2012/050509 Aloch US 2010/0212301 Al är det tidigare kant att leda avgaserna pa utsidan av blandningskanalens vagg innan avgaserna leds in i blandningskanalen, varigenom uppvarmningen av blandningskanalens vaggytor paskyndas vid kallstart. When urea is used as a reducing agent, this is injected into the exhaust gases in the form of a liquid-shaped urea solution with the aid of an injection means. The injection takes place in a duct through which the exhaust gases flow, which is upstream of the SCR catalyst. In the following description text and in the appended claims, the term "mixing channel" is used as a designation for this channel where the reducing agent is injected and mixed with the exhaust gases. The injection means comprises a nozzle via which the urea solution under pressure is injected into the mixing channel in finely divided form as a spray. During large parts of a diesel engine's operating condition, the exhaust gases have a sufficiently high temperature to be able to evaporate the urea solution so that ammonia is formed. However, it is black to avoid that part of the supplied urea solution comes into contact with and sticks to the inner cradle surface of the mixing channel in an unoranged state. If the rock surface temperature is lower than about 190 ° C, a film of urea release can be formed on the rock surface hit by urea discharge, which is then drawn along by the exhaust gas flow. After this film has been moved a certain distance in the exhaust line, the water in the urea solution will boil away under the action of the hot exhaust gases. What remains is solid urea which is slowly evaporated by the heat in the exhaust line. If the supply of solid 2 urea is greater than the evaporation, a solid urea accumulates in the exhaust line. If the layer of urea becomes sufficiently thick, the urea and its probing products will react with each other to form primitive polymers on urea base, so-called urea lumps. Such urea lumps can eventually block an exhaust line. For this reason, during cold start ° it is appropriate to start the injection of urea before the cradle surfaces of the mixing channel have been heated by the passing exhaust gases to a temperature of 190 ° C, which means that the NOx-reducing activity of the SCR catalyst is delayed at cold start. In the case of a truck, for example, during a cold start it normally takes about 300500 seconds before the rocking surfaces of the mixing channel are heated to the required temperature of about 190 ° C in the case where these rocking surfaces are only heated by the exhaust gases flowing through the mixing channel. In order to achieve an improved exhaust gas purification, it is unreasonable to achieve a faster heating of the cradle surfaces of the mixing channel during cold start in order to reduce the delay of the SCR catalyst's NOx-reducing activity. For example, WO 2012/050509 Aloch US 2010/0212301 Al edge to guide the exhaust gases on the outside of the cradle of the mixing channel before the exhaust gases are led into the mixing channel, whereby the heating of the cradle surfaces of the mixing channel is accelerated at cold start.
Ett motorfordon som är forsett med en SCR-katalysator har i re- gel ett partikelfilter i avgasledningen uppstroms SCRkatalysatorn och ofta aven en oxidationskatalysator i avgasledningen uppstroms partikelfiltret. Oxidationskatalysatorn omvandlar kolvaten (HC) och kolmonooxid (CO) till koldioxid (CO2). Nar partikelfiltret behover regenereras, dvs befrias frail dari avsatta 3 partiklar, bringas ofOrbrant bransle att medfolja avgaserna in i oxidationskatalysatorn, dar branslet oxideras under generering av en sadan temperaturokning hos avgaserna att en forbranning av de i partikelfiltret avsatta partiklarna kommer till stand. A motor vehicle equipped with an SCR catalyst usually has a particulate filter in the exhaust line upstream of the SCR catalyst and often also an oxidation catalyst in the exhaust line upstream of the particulate filter. The oxidation catalyst converts the hydrocarbons (HC) and carbon monoxide (CO) to carbon dioxide (CO2). When the particulate filter needs to be regenerated, i.e. released from the deposited 3 particles, the combustion fuel is caused to accompany the exhaust gases into the oxidation catalyst, where the fuel is oxidized while generating such a temperature increase of the exhaust gases that a combustion of the particles deposited in the particulate filter occurs.
Namnda bransle kan exempelvis insprutas i avgasledningen upp- stroms oxidationskatalysatorn med hjalp av en bransleinsprutningsanordning. Som ett alternativ kan det oforbranda bransle som bringas att medfolja avgaserna insprutas i forbranningsmotorn som postinsprutningar i en eller flera av forbranningsmo- torns cylindrar, vilka postinsprutningar utfors sa sent under re- spektive arbetsslag att det ej kommer till stand nagon forbranning i cylindern/cylindrarna av det genom dessa postinsprutningar insprutade branslet. The said fuel can, for example, be injected into the exhaust line upstream of the oxidation catalyst with the aid of an fuel injection device. Alternatively, the unburned fuel which is brought to accompany the exhaust gases may be injected into the internal combustion engine as post-injections into one or more of the cylinders of the internal combustion engine, which post-injections are carried out so late in each operation that no combustion occurs in the cylinder (s) of the industry injected through these mail injections.
UPPFINNINGENS SYFTE Syftet med foreliggande uppfinning är att astadkomma en vidareutveckling av den teknik som är tidigare kand genom de ovan namnda dokumenten for att tillhandahalla en losning som mojlig- g6r en snabbare uppvarmning av blandningskanalens vaggytor vid kallstart och darigenom en tidigare start av reduktionsmedelsinsprutningen. OBJECT OF THE INVENTION The object of the present invention is to provide a further development of the technology previously known from the above-mentioned documents in order to provide a solution which enables a faster heating of the cradle surfaces of the mixing channel at cold start and thereby an earlier start of the reducing agent injection.
SAMMANFATTNING AV UPPFINNINGEN Enligt foreliggande uppfinning uppnas namnda syfte med hjalp av ett avgasefterbehandlingsarrangemang uppvisande de i patentkravet 1 definierade sardragen. 4 Det uppfinningsenliga avgasefterbehandlingsarrangemanget innefattar: - ett inlopp for mottagning av avgaser fran en forbranningsmotor, - ett nedstroms inloppet anordnat partikelfilter, - en nedstroms partikelfiltret anordnad blandningskanal, vilken är avgransad i radiell riktning av en rorformig vagg, - en nedstroms blandningskanalen anordnad SCR-katalysator, - ett insprutningsorgan for insprutning av reduktionsmedel i blandningskanalen, och - en mellan namnda inlopp och partikelfiltret anordnad varme- overforingskanal som stracker sig langs med utsidan av atminstone en del av namnda rorformiga vagg for att medge Over-faring av varme fran de genom varmeoverforingskanalen strommande avgaserna till den rorformiga vaggen och till de genom blandningskanalen strommande avgaserna. SUMMARY OF THE INVENTION According to the present invention, said object is achieved with the aid of an exhaust gas aftertreatment arrangement having the features defined in claim 1. The exhaust gas aftertreatment arrangement according to the invention comprises: - an inlet for receiving exhaust gases from an internal combustion engine, - a particulate filter arranged downstream of the inlet, - a mixing channel arranged downstream of the particulate filter, which is delimited in the radial direction of a tubular catalyst , - an injection means for injecting reducing agent into the mixing channel, and - a heat transfer channel arranged between said inlet and the particle filter extending along the outside of at least a part of said tubular cradle to allow transfer of heat from those flowing through the heat transfer channel the exhaust gases to the rudder-shaped cradle and to the exhaust gases flowing through the mixing channel.
Varmeoverforingskanalen ar separerad fran partikelfiltret sa att de avgaser som strommar in i avgasefterbehandlingsarrangemanget via namnda inlopp är forhindrade att avge varme till partikelfiltret innan de passerat genom varmeoverforingskanalen. De avgaser som strommar genom varmeoverforingskanalen kommer att avge varme till blandningskanalens rorformiga vagg, vars insida utgor en invandig vaggyta hos blandningskanalen. Flarigenom astadkoms en uppvarmning av denna invandiga vaggyta hos blandningskanalen och aven en uppvarmning av de genom blandningskanalen strommande avgaserna. Vid kallstart är det uppstroms SCR-katalysatorn anordnade partikelfiltret kallt, vilket medfor att partikelfiltret gradvis kommer att varmas genom att ta upp varme fran de passerande avgaserna. Vid kallstart kommer saledes avgaserna att kylas vid sin passage genom partikelfiltret. The heat transfer duct is separated from the particulate filter so that the exhaust gases flowing into the exhaust after-treatment arrangement via said inlet are prevented from emitting heat to the particulate filter before they have passed through the heat transfer duct. The exhaust gases flowing through the heat transfer duct will emit heat to the tubular cradle of the mixing duct, the inside of which forms an internal cradle surface of the mixing duct. In this way, a heating of this inner rock surface of the mixing channel is effected and also a heating of the exhaust gases flowing through the mixing channel. At cold start, the particulate filter arranged upstream of the SCR catalyst is cold, which means that the particulate filter will gradually heat up by absorbing heat from the passing exhaust gases. Thus, during a cold start, the exhaust gases will be cooled as they pass through the particulate filter.
Den typ av partikelfilter som vanligtvis anvands i ett avgassystem hos en forbranningsmotor uppvisar ytor av aluminiumoxidkeram med stor area och har en forhallandevis stor termisk troghet, vilket medfor att partikelfiltret vid kallstart varms relativt langsamt och darfOr kommer att utova en kylande verkan pa avgaserna under en fOrhallandevis lang tidperiod. Genom att varma bland- ningskanalens rorformiga vagg med hjalp av avgaser som annu inte kommit i varmeoverforande kontakt med partikelfiltret astadkoms saledes vid kallstart en snabbare uppvarmning av denna rorformiga vagg och aven en snabbare uppvarmning av den ned- stroms blandningskanalen anordnade SCR-katalysatorn, jamfort med ett fall da blandningskanalens rorformiga vagg varms med hjalp av avgaser som redan kommit i varmeoverforande kontakt med och forlorat en del av sin varmeenergi till partikelfiltret. The type of particulate filter commonly used in an exhaust system of an internal combustion engine has surfaces of alumina ceramic with a large area and has a relatively large thermal inertia, which means that the particulate filter heats up relatively slowly during a cold start and will therefore have a cooling effect on the exhaust gases. long period of time. By heating the tubular cradle of the mixing channel with the aid of exhaust gases which have not yet come into heat-transferring contact with the particle filter, a faster heating of this tubular cradle and also a faster heating of the downstream mixing channel arranged with the SCR catalyst, a case where the tubular rock of the mixing channel is heated with the aid of exhaust gases which have already come into heat-transferring contact with and lost some of their heat energy to the particle filter.
Enligt en utforingsform av uppfinningen innefattar avgasefterbe- handlingsarrangemanget en mellan varmeoverforingskanalen och partikelfiltret anordnad oxidationskatalysator, varvid varmeoverforingskanalen är separerad fran oxidationskatalysatorn sa att de avgaser som strommar in i avgasefterbehandlingsarrangemanget via namnda inlopp är forhindrade att avge varme till oxidations- katalysatorn innan de passerat genom varmeoverforingskanalen. Vid kallstart är den uppstroms SCR-katalysatorn anordnade oxidationskatalysatorn kall, vilket medfor att oxidationskatalysatorn gradvis kommer varmas genom att ta upp varme fran de passe- rande avgaserna. Vid kallstart kommer saledes avgaserna att ky- las vid sin passage genom oxidationskatalysatorn. En oxidationskatalysator uppvisar ytor av keram med stor area och har en forhallandevis stor termisk troghet, vilket medfor att oxidationskatalysatorn vid kallstart varms relativt langsamt och darfor kommer att utova en kylande verkan pa avgaserna under en for- 6 hallandevis rang tidperiod. Genom att varma blandningskanalens rorformiga vagg med hjalp av avgaser som annu inte kommit i varmeoverforande kontakt med oxidationskatalysatorn astadkoms saledes vid kallstart en snabbare uppvarmning av denna rorfor- miga vagg och aven en snabbare uppvarmning av den nedstroms blandningskanalen anordnade SCR-katalysatorn, jamfort med ett fall da blandningskanalens rorformiga vagg varms med hjalp av avgaser som redan kommit i varmeoverforande kontakt med och forlorat en del av sin varmeenergi till oxidationskatalysatorn. According to an embodiment of the invention, the exhaust gas aftertreatment arrangement comprises an oxidation catalyst arranged between the heat transfer duct and the particulate filter, the heat transfer duct being separated from the oxidation catalyst so that the exhaust gases flowing into the exhaust aftertreatment arrangement are heated through the pre-oxidation inlet. At cold start, the oxidation catalyst arranged upstream of the SCR catalyst is cold, which means that the oxidation catalyst will gradually be heated by absorbing heat from the passing exhaust gases. Thus, during a cold start, the exhaust gases will be cooled as they pass through the oxidation catalyst. An oxidation catalyst has large ceramic surfaces and has a relatively large thermal inertia, which means that the oxidation catalyst heats up relatively slowly during a cold start and will therefore exert a cooling effect on the exhaust gases for a relatively long period of time. By heating the tubular cradle of the mixing channel with the aid of exhaust gases which have not yet come into heat-transferring contact with the oxidation catalyst, a faster heating of this tubular cradle is thus achieved at cold start and also a faster heating of the downstream mixing channel arranged with the SCR catalyst. when the tubular rock of the mixing channel is heated by means of exhaust gases which have already come into heat-transferring contact with and lost some of their heat energy to the oxidation catalyst.
Med den uppfinningsenliga losningen kan dessutom den temperaturokning som erhalls hos avgaserna vid deras passage genom oxidationskatalysatorn i samband med en regenerering av partikelfiltret utnyttjas f6r att forvarma de avgaser som leds in i oxid- ationskatalysatorn, eftersom avgaserna som passerar genom blandningskanalen i detta fall, pa grund av varmeutvecklingen i oxidationskatalysatorn, kommer att ha en hogre temperatur an de avgaser som passerar genom varmeoverforingskanalen. Harigenom mojliggors en reducering av den branslemangd som behover inforas i oxidationskatalysatorn i samband med en regenerering av partikelfiltret och en reducering av den mangd adelmetall som erfordras i oxidationskatalysatorn for att erhalla 6nskad regenereringsprestanda. Genom att de avgaser som passerar genom blandningskanalen i samband med en regenerering av partikelfilt- ret avger varme till de avgaser som passerar genom varmeoverforingskanalen reduceras dessutom varmeokningen hos SCRkatalysatorn under regenereringen, varigenom det blir mojligt att anvanda en hogre regenereringstemperatur utan att menligt paverka funktionen hos SCR-katalysatorn. En okning av regenere- ringstemperaturen mojliggor i sin tur en snabbare regenerering 7 och en reducering av den branslemangd som behover inforas i oxidationskatalysatorn i samband med regenereringen. In addition, with the solution according to the invention, the temperature increase obtained by the exhaust gases during their passage through the oxidation catalyst in connection with a regeneration of the particulate filter can be used to preheat the exhaust gases introduced into the oxidation catalyst, since the exhaust gases passing through the mixing duct in this case of the heat evolution in the oxidation catalyst, will have a higher temperature than the exhaust gases passing through the heat transfer duct. This enables a reduction of the amount of fuel that needs to be introduced into the oxidation catalyst in connection with a regeneration of the particulate filter and a reduction of the amount of noble metal required in the oxidation catalyst in order to obtain the desired regeneration performance. Because the exhaust gases passing through the mixing duct in connection with a regeneration of the particulate filter emit heat to the exhaust gases passing through the heat transfer duct, the heat increase of the SCR catalyst during regeneration is also reduced, making it possible to use a higher regeneration temperature without affecting the function of SCR. catalyst. An increase in the regeneration temperature in turn enables a faster regeneration 7 and a reduction in the amount of fuel that needs to be introduced into the oxidation catalyst in connection with the regeneration.
Andra fordelaktiga sardrag hos avgasefterbehandlingsarrange- manget enligt uppfinningen framgar av de osjalvstandiga patent- kraven och den nedan foljande beskrivningen. Other advantageous features of the exhaust after-treatment arrangement according to the invention appear from the dependent claims and the description below.
Uppfinningen avser aven ett motorfordon uppvisande de i patentkravet 7 definierade sardragen. The invention also relates to a motor vehicle having the features defined in claim 7.
KORT BESKRIVNING AV RITNINGARNA Uppfinningen komnner i det foljande att narmare beskrivas med hjalp av utforingsexempel, med hanvisning till bifogade ritning. BRIEF DESCRIPTION OF THE DRAWINGS The invention will now be described in more detail with the aid of exemplary embodiments, with reference to the accompanying drawing.
Det visas i: Fig 1en principskiss over en forbranningsmotor med tillho- rande avgassystem, dar avgassystemet innefattar ett avgasefterbehandlingsarrangemang enligt en forsta ut- foringsform av foreliggande uppfinning, Fig 2ett snitt genom de i Fig 1 illustrerade blandnings- och varmeoverforingskanalerna, enligt linjen II-II i Fig 1, och Fig 3en principskiss Over en forbranningsmotor med tillho- rande avgassystem, dar avgassystemet innefattar ett avgasefterbehandlingsarrangemang enligt en andra utforingsform av uppfinningen. 8 537 980 DETALJERAD BESKRIVNING AV UTFORINGSFORMER AV UPPFINNINGEN Uppfinningen kommer i det foljande att beskrivas vid tillampning hos ett motorfordon. Uppfinningen är dock inte begransad till denna tillampning utan kan komma till anvandning i alla sammanhang dar en SCR-katalysator med tillhorande reduktionsmedelinsprutningsanordning och ett partikelfilter ingar i ett avgassystem hos en forbranningsmotor. It is shown in: Fig. 1 a principle sketch of an internal combustion engine with associated exhaust system, where the exhaust system comprises an exhaust aftertreatment arrangement according to a first embodiment of the present invention, Fig. 2 a section through the mixing and heat transfer ducts illustrated in Fig. 1, along the line II-II in Fig. 1, and Fig. 3 a schematic diagram of an internal combustion engine with associated exhaust system, where the exhaust system comprises an exhaust after-treatment arrangement according to a second embodiment of the invention. 8 537 980 DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION The invention will be described in the following when applying a motor vehicle. However, the invention is not limited to this application but can be used in all contexts where an SCR catalyst with associated reducing agent injector device and a particulate filter are contained in an exhaust system of an internal combustion engine.
I Fig 1 och 3 visas schematiskt en forbranningsmotor 1 hos ett motorfordon 2. Avgaserna som lamnar forbranningsmotorn tas emot av ett avgassystem 3, vilket innefattar en till forbranningsmotorn 1 ansluten avgasledning 4 och ett i avgasledningen an- ordnat avgasefterbehandlingsarrangemang 10. Avgaserna fran forbranningsmotorn 1 strommar genom avgasledningen 4 och passerar genom avgasefterbehandlingsarrangemanget 10 innan de trader ut i omgivningen via ett avgasutlopp 5. Figs. 1 and 3 schematically show an internal combustion engine 1 of a motor vehicle 2. The exhaust gases leaving the internal combustion engine are received by an exhaust system 3, which comprises an exhaust line 4 connected to the internal combustion engine 1 and an exhaust after-treatment arrangement 10 arranged in the exhaust line. through the exhaust line 4 and pass through the exhaust aftertreatment arrangement 10 before exiting the environment via an exhaust outlet 5.
Avgasefterbehandlingsarrangemanget 10 innefattar: - ett till avgasledningen 4 anslutet inlopp 11 for mottagning av avgaser fran forbranningsmotorn 1, - ett utlopp 12 for avgivning av avgaserna efter deras passage genom avgasefterbehandlingsarrangemanget 10, - en nedstroms inloppet 11 anordnad varmeoverforingskanal 13, - ett nedstroms varmeoverforingskanalen 13 anordnat partikelfil- ter 14, - en nedstroms partikelfiltret 14 anordnad blandningskanal 15, - en nedstroms blandningskanalen 15 anordnad SCR-katalysator 16, och 9 - ett insprutningsorgan 17 i form av ett insprutningsmunstycke eller liknande far insprutning av reduktionsmedel i blandningskanalen 15. The exhaust after-treatment arrangement 10 comprises: - an inlet 11 connected to the exhaust line 4 for receiving exhaust gases from the internal combustion engine 1, - an outlet 12 for discharging the exhaust gases after their passage through the exhaust after-treatment arrangement 10, - a heat transfer duct 13 arranged downstream of the inlet 11, particulate filter 14, - a mixing channel 15 arranged downstream of the particulate filter 14, - a SCR catalyst 16 arranged downstream of the mixing channel 15, and 9 - an injection means 17 in the form of an injection nozzle or the like injecting reducing agent into the mixing channel 15.
Varmeoverforingskanalen 13, partikelfiltret 14, blandningskanalen 15 och SCR-katalysatorn 16 är anordnade i serie med varandra for att i tur och ordning genomstrommas av avgaserna frail forbranningsmotorn 1. The heat transfer duct 13, the particulate filter 14, the mixing duct 15 and the SCR catalyst 16 are arranged in series with each other in order to be flowed in turn by the exhaust gases from the internal combustion engine 1.
Partikelfiltret 14 kan exempelvis vara av den typ som uppvisar invandiga ytor av aluminiumoxidkeram. The particulate filter 14 may, for example, be of the type having interior surfaces of alumina ceramic.
Blandningskanalen 15 är avgransad i radiell riktning av en rorformig vagg 18, foretradesvis av metal!, vilken stracker sig mel- Ian blandningskammarens uppstromsande och nedstromsande. Varmeoverforingskanalen 13 stracker sig langs med utsidan av blandningskanalens rorformiga vagg 18 for att medge overforing av varme fran de genom varmeoverforingskanalen 13 strommande avgaserna till den rorformiga vaggen 18 och till de genom blandningskanalen 15 strommande avgaserna. Varmeoverforingskanalen 13 kan vara anordnad att stracka sig langs med utsidan av hela vaggen 18 has blandningskanalen eller langs med utsidan av en viss del av denna vagg. The mixing channel 15 is delimited in the radial direction by a tubular rock 18, preferably of metal, which extends between the upstream and downstream of the mixing chamber. The heat transfer channel 13 extends along the outside of the tubular cradle 18 of the mixing channel to allow heat transfer from the exhaust gases flowing through the heat transfer channel 13 to the tubular cradle 18 and to the exhaust gases flowing through the mixing channel 15. The heat transfer channel 13 may be arranged to extend along the outside of the entire cradle 18 having the mixing channel or along the outside of a certain part of this cradle.
Hos de illustrerade utforingsformerna är varmeoverforingskanalen 13 anordnad att omge blandningskanalens rorformiga vagg 18. Varmeoverforingskanalen 13 uppvisar i detta fall ett ringformigt tvarsnitt, sasom illustreras i Fig 2. Blandningskanalen 15 och varmeoverforingskanalen 13 är med fordel koncentriska, sasom illustreras i Fig 2. In the illustrated embodiments, the heat transfer channel 13 is arranged to surround the tubular cradle 18 of the mixing channel 18. The heat transfer channel 13 in this case has an annular cross-section, as illustrated in Fig. 2. The mixing channel 15 and the heat transfer channel 13 are advantageously concentric, as illustrated in Fig. 2.
Hos de illustrerade utforingsformerna är insprutningsorganet 17 anordnat att under tryck spruta in ett vatskeformigt reduktionsmedel i form av urea som en spray 21 i blandningskanalen 15, varvid insprutningsorganet 17 är sa anordnat i forhallande till varmeoverforingskanalen 13 att varmeoverforingskanalen stracker sig pa utsidan av den del av blandningskanalens rorformiga vagg 18 som traffas av sprayen 21 av urea. En forvaringsbehallare 22 for reduktionsmedel är ansluten till insprutningsorganet 17. Tillforseln av reduktionsmedel till insprutningsorganet 17 re- gleras med hjalp av en mellan forvaringsbehallaren 22 och insprutningsorganet 17 anordnad reglerventil 23. Reglerventilen 23 styrs av en elektronisk styranordning (ej visad), vilken faststaller hur stor mangd reduktionsmedel som far tillfallet skall sprutas in i avgaserna. Styranordningen reglerar med hjalp av reglerventilen 23 hur stor mangd reduktionsmedel som insprutas i avgaserna. I matningsledningen 24 mellan forvaringsbehallaren 22 och reglerventilen 23 är en pump 25 anordnad for matning av reduktionsmedel fran forvaringsbehallaren till reglerventilen under uppratt- hallande av ett givet tryck hos det reduktionsmedel som matas fram till reglerventilen. In the illustrated embodiments, the injection means 17 is arranged to inject under pressure a liquid reducing agent in the form of urea as a spray 21 into the mixing channel 15, the injection means 17 being arranged in relation to the heat transfer channel 13 that the heat transfer channel extends from the outside of the channel. tubular rock 18 struck by the spray 21 of urea. A storage container 22 for reducing agent is connected to the injector 17. The supply of reducing agent to the injector 17 is controlled by means of a control valve 23 arranged between the storage container 22 and the injector 17. The control valve 23 is controlled by an electronic control device (not shown). the amount of reducing agent that is accidentally to be injected into the exhaust gases. With the aid of the control valve 23, the control device regulates the amount of reducing agent injected into the exhaust gases. In the supply line 24 between the storage container 22 and the control valve 23, a pump 25 is arranged for supplying reducing agent from the storage container to the control valve while maintaining a given pressure of the reducing agent which is supplied to the control valve.
Varmeoverforingskanalen 13 är separerad fran partikelfiltret 14 sa att de avgaser som strommar in i avgasefterbehandlingsar- rangemanget 10 via inloppet 11 är forhindrade att avge varme till partikelfiltret 14 innan de passerat genom varmeoverforingskanalen 13. Varmeoverforingskanalen 13 är saledes anordnad pa ett sadant satt i forhallande till partikelfiltret 14 att varmeoverforingskanalens vaggar ej är i varmeoverforande kontakt med par- tikelfiltret 14 eller det holje 26 som omger partikelfiltret. Ett var- 11 meisolerande medium, exempelvis luft, eller ett varmeisolerande material är anordnat i utrymmet 27 mellan varmeoverforingskanalens utvandiga vagg 28 och partikelfiltrets holje 26 for att halla varmeoverforingskanalen 13 termiskt isolerad fran partikelfiltret 14. Vid kallstart, dvs nar forbranningsmotorn 1 startas i kallt till- stand, är de olika komponenterna hos avgasefterbehandlingsarrangemanget 10 inledningsvis kalla och nar de varma avgaserna frail forbranningsmotorn efter kallstart strommar genom varmeoverforingskanalen 13 kommer de att avge varme till blandnings- kanalens vagg 18 och till de genom blandningskanalen 15 strommande avgaserna, vilket ger en forhallandevis snabb uppvarmning av namnda vagg 18. Nar vaggen 18 natt en temperatur av cirka 190°C kan insprutningen av reduktionsmedel i blandningskanalen 15 paborjas, varigenom SCR-katalysatorn 16 kan borja verka med full effekt. Under en inledande tidsperiod efter kallstart, innan partikelfiltret 14 hunnit bli ordentligt uppvarmt av de genom partikelfiltret passerande avgaserna, kommer avgaserna vid sin passage genom partikelfiltret 14 att tappa en betydande del av sin varmeenergi till partikelfiltret. Under denna inle- dande tidsperiod kommer saledes de avgaser som strommar in i blandningskanalen 15 att ha en patagligt lagre temperatur an de avgaser som strommar in i varmeoverforingskanalen 13. The heat transfer duct 13 is separated from the particulate filter 14 so that the exhaust gases flowing into the exhaust after-treatment arrangement 10 via the inlet 11 are prevented from emitting heat to the particulate filter 14 before passing through the heat transfer duct 13. The heat transfer duct 13 is thus partially arranged on a so-called 14 that the cradles of the heat transfer channel are not in heat transfer contact with the particle filter 14 or the cavity 26 surrounding the particle filter. A heat insulating medium, for example air, or a heat insulating material is arranged in the space 27 between the outer cradle 28 of the heat transfer duct and the particle filter housing 26 to keep the heat transfer duct 13 thermally insulated from the particle filter 14. At cold start, i.e. when the internal combustion engine 1 is started in cold to stand, the various components of the exhaust aftertreatment arrangement 10 are initially cold and when the hot exhaust gases from the combustion engine after cold start flow through the heat transfer duct 13 they will emit heat to the cradle 18 of the mixing duct and to the exhaust gases flowing through the mixing duct 15, giving a relatively fast heating the said cradle 18. When the cradle 18 at night has a temperature of about 190 ° C, the injection of reducing agent into the mixing channel 15 can be started, whereby the SCR catalyst 16 can start to operate at full power. During an initial period of time after a cold start, before the particle filter 14 has had time to be properly heated by the exhaust gases passing through the particle filter, the exhaust gases will, when passing through the particle filter 14, lose a significant part of their heat energy to the particle filter. During this initial time period, the exhaust gases flowing into the mixing duct 15 will thus have a significantly lower temperature than the exhaust gases flowing into the heat transfer duct 13.
Hos den i Fig 3 illustrerade utforingsformen innefattar avgas- efterbehandlingsarrangemanget 10 utover de ovan angivna komponenterna aven en oxidationskatalysator 29, vilken ar anordnad i serie med och mellan varmeoverforingskanalen 13 och partikelfiltret 14. Varmeoverforingskanalen 13 är separerad bade fran partikelfiltret 14 och fran oxidationskatalysatorn 29 sa att de av- gaser som strommar in i avgasefterbehandlingsarrangemanget 12 via inloppet 11 aven är forhindrade att avge varme till oxidationskatalysatorn 29 innan de passerat genom varmeoverforingskanalen 13. Varmeoverforingskanalen 13 är saledes anordnad pa ett sadant satt i forhallande till oxidationskatalysatorn 29 att var- meoverforingskanalens vaggar ej är i varmeoverforande kontakt med oxidationskatalysatorn 29 eller det holje 30 som omger oxidationskatalysatorn. Ett varmeisolerande medium, exempelvis luft, eller ett varmeisolerande material är anordnat i utrymmet 31 mellan varmeoverforingskanalens utvandiga vagg 28 och oxidat- ionskatalysatorns holje 30 for att halla varmeoverforingskanalen 13 termiskt isolerad fran oxidationskatalysatorn 29. Vid kallstart är oxidationskatalysatorn 29 och partikelfiltret 14 inledningsvis kalla. Under en inledande tidsperiod efter kallstart, innan oxidationskatalysatorn 29 och partikelfiltret 14 hunnit bli ordentligt upp- varmda av de genom oxidationskatalysatorn och partikelfiltret passerande avgaserna, kommer avgaserna vid sin passage genom oxidationskatalysatorn 29 och partikelfiltret 14 att tappa en betydande del av sin varmeenergi till dessa. Under denna inledande tidsperiod kommer saledes de avgaser som strommar in i blandningskanalen 15 att ha en patagligt lagre temperatur an de avgaser som strommar in i varmeoverforingskanalen 13. In the embodiment illustrated in Fig. 3, the exhaust aftertreatment arrangement 10 comprises, in addition to the above components, an oxidation catalyst 29, which is arranged in series with and between the heat transfer duct 13 and the particle filter 14. The heat transfer duct 13 is separated from the particle filter 14 and from oxidation. the exhaust gases flowing into the exhaust aftertreatment arrangement 12 via the inlet 11 are also prevented from dissipating heat to the oxidation catalyst 29 before passing through the heat transfer duct 13. The heat transfer duct 13 is thus arranged in such a manner as to heat the oxidation catalyst 29 to not heat in heat transfer contact with the oxidation catalyst 29 or the casing 30 surrounding the oxidation catalyst. A heat insulating medium, for example air, or a heat insulating material is provided in the space 31 between the outer cradle 28 of the heat transfer channel and the oxidation catalyst housing 30 to keep the heat transfer channel 13 thermally insulated from the oxidation catalyst 29. At cold start, the oxidation catalyst 29 and the particulate filter are cold. During an initial period of time after cold start, before the oxidation catalyst 29 and the particle filter 14 have been properly heated by the exhaust gases passing through the oxidation catalyst and the particle filter, the exhaust gases will pass a significant part of their heat energy through the oxidation catalyst 29 and the particle filter 14. During this initial period of time, the exhaust gases flowing into the mixing duct 15 will thus have a significantly lower temperature than the exhaust gases flowing into the heat transfer duct 13.
Nar partikelfiltret 14 hos avgasefterbehandlingsarrangemanget 10 enligt Fig 3 ska regenereras bringas oforbrant bransle att medfolja avgaserna in i oxidationskatalysatorn 29, dar branslet oxideras under generering av en sadan temperaturokning hos avgaserna att en forbranning av de i partikelfiltret 14 avsatta partiklarna kommer till stand. Hos den i Fig 3 illustrerade utforingsformen bringas namnda oforbranda bransle att medfolja avgaser- na genom att insprutas i forbranningsmotorn 1 som postinsprut- 1 3 ningar i en eller flera av forbranningsmotorns cylindrar, vilka postinsprutningar utfors sa sent under respektive arbetsslag att det ej kommer till stand nagon forbranning i cylindern/cylindrarna av det genom dessa postinsprutningar insprutade branslet. Som ett alternativ skulle avgasefterbehandlingsarrangemanget 10 kunna vara forsett med en separat bransleinsprutningsanordning for insprutning av bransle i avgaserna vid ett insprutningsstalle mellan forbranningsmotorn 1 och oxidationskatalysatorn 29 i samband med en regenerering av partikelfiltret 14. Under rege- nereringen av partikelfiltret 14 kommer de avgaser som strommar in i blandningskanalen 15, pa grund av varmeutvecklingen i oxidationskatalysatorn 29, att ha en patagligt hogre temperatur an de avgaser som strommar in i varmeoverforingskanalen 13 och i detta fall kommer saledes avgaserna som strommar i riktning mot oxidationskatalysatorn 29 och partikelfiltret 14 att forvarmas vid sin passage genom varmeoverforingskanalen 13 under verkan av de avgaser som strommar genom blandningskanalen 15, vilket leder till en reduktion av den temperaturokning som under regenereringsperioden behover astadkommas hos avgaserna vid de- ras passage genom oxidationskatalysatorn 29. Detta leder i sin tur till en reduktion av den branslemangd som behover inforas i avgaserna for att astadkomma onskad regenereringseffekt. When the particulate filter 14 of the exhaust aftertreatment arrangement 10 of Fig. 3 is to be regenerated, unburned fuel is brought to accompany the exhaust gases into the oxidation catalyst 29, where the fuel is oxidized while generating such a temperature increase of the exhaust gases that combustion of the particles deposited in the particulate filter 14 occurs. In the embodiment illustrated in Fig. 3, said unburned fuel is caused to accompany the exhaust gases by being injected into the internal combustion engine 1 as mail injections into one or more of the cylinders of the internal combustion engine, which post injections are carried out so late during each work stroke that it does not occur. any combustion in the cylinder (s) of the industry injected through these post-injections. Alternatively, the exhaust aftertreatment arrangement 10 could be provided with a separate fuel injection device for injecting fuel into the exhaust gases at an injection stall between the internal combustion engine 1 and the oxidation catalyst 29 in connection with a regeneration of the particulate filter 14. During the regeneration of the particulate filter 14 in the mixing duct 15, due to the heat evolution in the oxidation catalyst 29, to have a substantially higher temperature than the exhaust gases flowing into the heat transfer duct 13 and in this case the exhaust gases flowing towards the oxidation catalyst 29 and the particulate filter 14 will be preheated during their passage through the heat transfer duct 13 under the action of the exhaust gases flowing through the mixing duct 15, which leads to a reduction of the temperature increase which during the regeneration period needs to be effected in the exhaust gases during their passage through the oxidation catalyst 29. This leads in in turn to a reduction in the amount of fuel that needs to be introduced into the exhaust gases in order to achieve the desired regeneration effect.
Avgasefterbehandlingsarrangemanget 10 kan vidare innefatta en 25 nedstroms SCR-katalysatorn 16 anordnad slipkatalysator 32 med formaga att oxidera ammoniak, sasom illustreras i Fig 3. The exhaust aftertreatment arrangement 10 may further comprise an abrasive catalyst 32 arranged downstream of the SCR catalyst 16 capable of oxidizing ammonia, as illustrated in Fig. 3.
Hos de illustrerade utforingsformerna är de olika komponenterna 13, 14, 15, 16, 29, 32 hos avgasefterbehandlingsarrangemanget anordnade i tre separata enheter 33, 34, 35, vilka är for- 1 4 bundna med varandra via rorledningar 36, 37. De olika komponenterna 13, 14, 15, 16, 29, 32 hos det uppfinningsenliga avgasefterbehandlingsarrangemanget 10 skulle dock alternativt kunna vara integrerade i en gemensam modul och forbundna med varandra via invandiga kanaler hos denna modul. In the illustrated embodiments, the various components 13, 14, 15, 16, 29, 32 of the exhaust aftertreatment arrangement are arranged in three separate units 33, 34, 35, which are connected to each other via pipelines 36, 37. The various components 13, 14, 15, 16, 29, 32 of the exhaust after-treatment arrangement 10 according to the invention could, however, alternatively be integrated in a common module and connected to each other via internal channels of this module.
Det uppfinningsenliga avgasefterbehandlingsarrangemanget är sarskilt avsett att anvandas i ett tungt motorfordon, sasom exempelvis en buss, ett dragfordon eller en lastbil. The exhaust after-treatment arrangement according to the invention is particularly intended for use in a heavy motor vehicle, such as, for example, a bus, a towing vehicle or a truck.
Uppfinningen är givetvis inte pa nagot satt begransad till de ovan beskrivna utforingsformerna, utan en mangd mojligheter till modifikationer darav torde vara uppenbara for en fackman pa omradet, utan att denne for den skull avviker fran uppfinningens grundtanke sadan denna definieras i bifogade patentkrav. The invention is of course not limited in any way to the embodiments described above, but a number of possibilities for modifications thereof should be obvious to a person skilled in the art, without this deviating from the basic idea of the invention as defined in the appended claims.
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1450417A SE537980C2 (en) | 2014-04-04 | 2014-04-04 | Exhaust after-treatment arrangement and a motor vehicle comprising such an exhaust after-treatment arrangement |
DE102015004425.7A DE102015004425B4 (en) | 2014-04-04 | 2015-04-02 | Exhaust aftertreatment device and a motor vehicle with such an exhaust aftertreatment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1450417A SE537980C2 (en) | 2014-04-04 | 2014-04-04 | Exhaust after-treatment arrangement and a motor vehicle comprising such an exhaust after-treatment arrangement |
Publications (2)
Publication Number | Publication Date |
---|---|
SE1450417A1 SE1450417A1 (en) | 2015-10-05 |
SE537980C2 true SE537980C2 (en) | 2016-01-05 |
Family
ID=54146519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE1450417A SE537980C2 (en) | 2014-04-04 | 2014-04-04 | Exhaust after-treatment arrangement and a motor vehicle comprising such an exhaust after-treatment arrangement |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102015004425B4 (en) |
SE (1) | SE537980C2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023117457A1 (en) | 2021-12-23 | 2023-06-29 | Tenneco Gmbh | Device for treating exhaust gas |
DE102021134471A1 (en) | 2021-12-23 | 2023-06-29 | Tenneco Gmbh | Apparatus for treating exhaust gas I |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0724575Y2 (en) | 1989-12-12 | 1995-06-05 | ニチアス株式会社 | Exhaust gas purification device for internal combustion engine |
DE10221174B4 (en) | 2002-05-13 | 2007-02-22 | J. Eberspächer GmbH & Co. KG | Exhaust system for diesel engines, which has a particle filter |
WO2008137028A1 (en) | 2007-05-03 | 2008-11-13 | Mack Trucks, Inc. | Exhaust aftertreatment system |
WO2010078052A1 (en) | 2008-12-17 | 2010-07-08 | Donaldson Company, Inc. | Flow device for an exhaust system |
SE535220C2 (en) | 2010-10-14 | 2012-05-29 | Scania Cv Abp | Arrangement for introducing a liquid medium into exhaust gases from an internal combustion engine |
-
2014
- 2014-04-04 SE SE1450417A patent/SE537980C2/en unknown
-
2015
- 2015-04-02 DE DE102015004425.7A patent/DE102015004425B4/en active Active
Also Published As
Publication number | Publication date |
---|---|
SE1450417A1 (en) | 2015-10-05 |
DE102015004425B4 (en) | 2022-03-31 |
DE102015004425A1 (en) | 2015-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5635702B2 (en) | Device for introducing a liquid medium into flue gas from a combustion engine | |
US9567888B2 (en) | Systems and methods to reduce reductant consumption in exhaust aftertreament systems | |
SE536062C2 (en) | Arrangements equipped with heat transfer flanges for introducing a liquid medium into exhaust gases from an internal combustion engine | |
US11408321B2 (en) | Reductant injection in exhaust manifold | |
JP2014527592A (en) | Exhaust treatment system with hydrocarbon lean NOx catalyst | |
CN104279029A (en) | Ammonia storage management for scr catalyst | |
SE536832C2 (en) | Arrangement for introducing a liquid medium into exhaust gases from an internal combustion engine | |
TWI655361B (en) | Exhaust control device for internal combustion engine and control method for exhaust control device | |
JP2011080397A (en) | Exhaust emission control device for internal combustion engine | |
US9267410B2 (en) | Injector cooling apparatus | |
US9435241B2 (en) | Exhaust gas purification apparatus for internal combustion engine | |
KR102413070B1 (en) | Cooling device for reducing agent dosing module and engine cooling system having the same | |
US20090140068A1 (en) | Injection Nozzle Having Heating Element And Heat Accumulator And Method For Introducing An Oxidizable Fluid Into An Exhaust System Upstream Of A Catalytic Converter Or Filter | |
CN107002539A (en) | Exhaust gas purification part for purifying internal combustion engine exhaust gas | |
CN103382898A (en) | Internal combustion engine and method for controlling internal combustion engine speed | |
EP2703612A1 (en) | Exhaust gas purifier for internal combustion engine | |
SE537980C2 (en) | Exhaust after-treatment arrangement and a motor vehicle comprising such an exhaust after-treatment arrangement | |
SE536833C2 (en) | Arrangement for introducing a liquid medium into exhaust gases from an internal combustion engine | |
US20130180231A1 (en) | Exhaust aftertreatment system | |
GB2533099A (en) | Method for providing heating to a diesel exhaust fluid (DEF) tank and diesel exhaust fluid (DEF) tank | |
CN107013287A (en) | Explosive motor with exhaust after treatment system and for the method for the explosive motor for operating the type | |
US9528410B2 (en) | Reducing agent supplying device | |
US10746071B2 (en) | Engine aftertreatment system | |
JP2016511368A (en) | Dual fuel engine exhaust system | |
US20160281563A1 (en) | Exhaust system for an internal combustion engine of a motor vehicle and method for operating an exhaust system |