WO2023117457A1 - Device for treating exhaust gas - Google Patents

Device for treating exhaust gas Download PDF

Info

Publication number
WO2023117457A1
WO2023117457A1 PCT/EP2022/084955 EP2022084955W WO2023117457A1 WO 2023117457 A1 WO2023117457 A1 WO 2023117457A1 EP 2022084955 W EP2022084955 W EP 2022084955W WO 2023117457 A1 WO2023117457 A1 WO 2023117457A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
flow
tube
exhaust gas
catalytic converter
Prior art date
Application number
PCT/EP2022/084955
Other languages
German (de)
French (fr)
Inventor
Rafal Wróbel
Peter Räsch
Volker GRÜNIG
Markus Schuster
Original Assignee
Tenneco Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tenneco Gmbh filed Critical Tenneco Gmbh
Publication of WO2023117457A1 publication Critical patent/WO2023117457A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1872Construction facilitating manufacture, assembly, or disassembly the assembly using stamp-formed parts or otherwise deformed sheet-metal
    • F01N13/1877Construction facilitating manufacture, assembly, or disassembly the assembly using stamp-formed parts or otherwise deformed sheet-metal the channels or tubes thereof being made integrally with the housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/14Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/08Exhaust treating devices having provisions not otherwise provided for for preventing heat loss or temperature drop, using other means than layers of heat-insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/08Gas passages being formed between the walls of an outer shell and an inner chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/18Structure or shape of gas passages, pipes or tubes the axis of inlet or outlet tubes being other than the longitudinal axis of apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/02Two or more expansion chambers in series connected by means of tubes
    • F01N2490/06Two or more expansion chambers in series connected by means of tubes the gases flowing longitudinally from inlet to outlet in opposite directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device

Definitions

  • the invention relates to a device for conducting and treating an exhaust gas flow with an outer housing, an inlet pipe connected to the outer housing and an outlet pipe connected to the outer housing and a flow channel arranged in the outer housing and conducting the exhaust gas flow, having a channel wall and having a plurality of channel sections, the connecting the inlet pipe to the outlet pipe.
  • the flow channel comprises two channel sections with a common front channel wall, the two channel sections being arranged next to one another in a direction at right angles to a direction of flow in the flow channel and one after the other in the direction of flow.
  • the two channel sections form a front pair.
  • Such a geometry or arrangement is referred to as "duct-in-duct" and serves as a heat transfer zone for heat from a hot exhaust stream to a relatively cooler exhaust stream.
  • This type of heat supply in the relatively colder exhaust gas flow is described as passive heat supply.
  • an active supply of heat within the meaning of this invention is described with the aid of an additional device for generating thermal energy, such as a burner.
  • a flow duct within the meaning of the invention is a device that directs the flow of exhaust gas and is formed by the duct walls that carry the exhaust gas and possibly also including the wall of the outer housing.
  • the outer housing, in which the flow channel is arranged, is designed as a box.
  • the exhaust gas flows through the flow channel in a flow direction.
  • All components, such as the SCR catalytic converter units, are arranged in the flow channel.
  • These duct walls are formed by walls of pipes or walls of housings and the outer housing or by other components such as substrates, etc., which guide the exhaust gas flow with inner and/or outer surfaces and which mainly limit the flow duct in a direction perpendicular to the direction of flow, but also fundamentally .
  • the respective wall delimits the flow channel inwardly or outwardly in relation to the respective central flow axis.
  • the same wall delimits one Channel section of the flow channel to the inside and another channel section of the flow channel to the outside. Or at least the same wall delimits a channel section of a heat transfer zone in a different direction than another channel section of the heat transfer zone.
  • a section of the flow channel in the direction of flow is to be understood as a channel section.
  • the direction of flow is to be understood as meaning the basic main direction of flow within the flow channel.
  • the direction of flow changes relative to the central axis of the outer casing.
  • Other flow directions deviating from the main flow direction are only relevant for the relevant definition of the features in question if explicit reference is made to them.
  • Individual points arranged one after the other in the direction of flow are referred to as arranged downstream.
  • points located against the flow direction are referred to as located upstream.
  • Individual components are thin or single-walled sheet metal parts, especially the heat transfer zones.
  • the tubes and catalytic converters can have not only a round cross section but also an oval cross section or a cross section with a plurality of straight side surfaces in the form of a polygon.
  • Each component forming the flow channel is in direct contact with the flow of exhaust gas.
  • the exhaust gas flow has a different temperature on one side of a component around which flow occurs on both sides than on the other side.
  • the sheet metal construction enables heat to be transferred through the respective component from the hotter exhaust gas stream to the relatively colder exhaust gas stream.
  • This heat input is not only influenced by the temperature difference from the inside to the outside and by the length of the respective section in the flow direction or the residence time of the exhaust gas flow, but also by the flow direction. If the air flows through the inside and outside in the same direction, the temperature difference in the direction of flow decreases. If the flow is in the opposite direction, the temperature difference remains more constant. Downstream, upstream refers to the flow channel and the flow direction given in the flow channel.
  • downstream and upstream also applies in relation to an exhaust gas particle that is in the flow channel in a changing direction of flow moves.
  • the particle is, for example, at a time t1 at a position in the axial direction of a tube on the inside of the tube and at a time t2 greater than t1 at a position in the axial direction on the outside of the tube.
  • such a “duct-in-duct” construction or arrangement defines two duct sections arranged one after the other and next to one another downstream, which have a common duct wall through which the heat is conducted from the warmer exhaust gas stream to the colder exhaust gas stream.
  • Side-by-side means substantially side-by-side in a direction perpendicular to the direction of flow. Heat is transferred directly from a hotter exhaust gas in one of the two duct sections to a cooler exhaust gas in the other duct section via the common duct wall.
  • Means for enlarging the surface of the wall of the respective channel section are optionally also included.
  • Monoliths such as catalytic converters or filters in the adjacent duct sections are not covered by a "duct-in-duct” arrangement, because the monolith does not enable direct heat transfer from the exhaust gas flow to the duct wall.
  • the "duct-in-duct” arrangement serves to transfer the heat of the exhaust gas flow to the duct wall and to achieve a better reaction in the SCR catalytic converter downstream of the respective "duct-in-duct” arrangement.
  • a monolith in the respective duct section would not allow the heat transfer of the entire exhaust gas flow because the exhaust gas flow does not come into direct contact with the duct wall, but only with the monolith.
  • the exhaust gas flow is also routed through the duct wall and not through the monolith in the “duct-in-duct” arrangement.
  • the common channel wall is preferably single-walled, but it can also be double-walled or multi-walled.
  • the feature "duct-in-duct” also covers an arrangement in which the exhaust gas flow is divided from one channel to several channels, as long as the feature of a common channel wall for all channels and for the entire exhaust gas flow at the same time t is fulfilled.
  • the task is to maximize the hydrolysis reactions with the thermal energy introduced into the outer housing by the exhaust gas flow and at the same time save additional energy.
  • the object is achieved according to the invention in that the flow duct has two rear duct sections with a common rear duct wall, the two rear duct sections being arranged next to one another in a direction at right angles to a flow direction and one after the other in the flow direction and forming a rear pair. Each pair is used to heat the downstream catalytic converter unit.
  • a first SCR catalytic converter unit is arranged in the flow duct downstream of the two front duct sections and a second SCR catalytic converter unit is arranged in the flow duct downstream of the two rear duct sections. As a result, the heat transferred in both pairs can be used for hydrolysis upstream of the respective SCR catalytic converter unit.
  • the exhaust gas housing in the form of a box has two “duct-in-duct” zones that function independently of one another and are connected in series as a system, in each of which a “duct-in-duct” arrangement is provided.
  • the twofold heat exchange in series within the exhaust gas flow makes it possible to improve the passive supply of heat in the flow channel and at the same time to achieve a relatively balanced temperature over the entire length of the flow channel, which is also sufficiently high for the hydrolysis reaction. It was determined that a sufficiently high temperature can be guaranteed in the second "duct-in-duct” zone if the temperature in the first "duct-in-duct” zone is not the maximum possible but only the temperature necessary for a reaction heat exchange is realized.
  • the geometry of the box Due to the geometry of the box, sufficient heat remains for the second “duct-in-duct” zone.
  • the geometry of the outer housing as a box is essential because the box forms a thermally closed unit, in which the heat is basically retained and distributed over the flow channel. Sufficiently high temperatures are reached in the box in important operating states of the internal combustion engine in order to supply all of the reactants introduced to a hydrolysis reaction and to ensure the downstream reaction with individual components of the exhaust gas.
  • the separation of the two channel sections of the respective "duct-in-duct" zone by only one and preferably simple or single-walled channel wall enables optimal heat exchange in the heat transfer zone, in which the thermal energy can be conducted through the channel wall quickly and with little loss.
  • the possibility can be advantageous if the directions of flow in the two front channel sections are opposite and in the same direction in the two rear channel sections, or vice versa.
  • the different selection of the relative flow directions can influence the temperature differences that occur along the respective channel section between the hot exhaust gas flow and the cold exhaust gas flow.
  • the amount of heat to be exchanged can thus be distributed evenly over both "duct-in-duct" zones or both pairs of duct sections.
  • a device for actively supplying heat into the flow channel.
  • the device for generating thermal energy is arranged on the exhaust gas housing in the form of a box and is designed in such a way that the thermal energy is introduced in front of the first SCR unit and in front of the second SCR unit at the same time.
  • the flow channel has two further upper channel sections with a common upper channel wall, the two upper channel sections being arranged next to one another in a direction at right angles to a direction of flow and one after the other in the direction of flow are and form an upper pair.
  • This makes it possible to use the separate active heat supply twice, namely once in the channel in which it is introduced and a second time on the indirectly heated outside of this channel wall.
  • the exhaust gas flow inside the two upper channels can be heated a first time directly by the hot gas from a burner or by an electrical heat source and fed to a first hydrolysis reaction.
  • the channel wall of the corresponding upper section of the flow channel into which the active heat is introduced is also heated as a result.
  • the heat of these heated channel walls is carried away via the channel walls to the outside from the inner flow channel to the other outer side of the channel wall to the outer flow channel. There, according to the invention, the heat is tapped off a second time further downstream by the exhaust gas flow, which is then fed to a second hydrolysis reaction.
  • first channel section of the rear pair is arranged upstream of the first SCR catalytic converter unit and the second channel section of the rear pair is arranged downstream of the first SCR catalytic converter unit. This ensures that there is still sufficient passive heat downstream of the first SCR catalytic converter unit to support the hydrolysis before the second SCR catalytic converter unit and not before the first SCR catalytic converter unit. This measure serves to better distribute the passive supply of heat in the flow channel.
  • first channel section of the upper pair is arranged upstream of the first channel section of the front pair and the second channel section of the upper pair is arranged downstream of the first SCR catalytic converter unit. This also ensures that there is still sufficient passive heat downstream of the first SCR catalytic converter unit in order to start the hydrolysis in front of the second SCR catalytic converter unit and not in front of the first SCR catalytic converter unit support. This measure also serves to better distribute the passive supply of heat in the flow channel.
  • the second channel section of the upper pair is arranged upstream of the second channel section of the rear pair.
  • a third measure ensures that there is still sufficient passive heat downstream of the first SCR catalytic converter unit to support the hydrolysis before the second SCR catalytic converter unit and not before the first SCR catalytic converter unit. This also means that the passive supply of heat in the flow channel is better distributed.
  • upstream of the first SCR catalytic converter unit there is a first opening in the flow channel for injecting additive into the flow channel and/or downstream of the first SCR catalytic converter unit and upstream of the second SCR catalytic converter unit second opening is provided in the flow channel for injecting additive into the flow channel.
  • Access to the respective SCR catalytic converter unit through the outer housing into the flow channel is to be provided regardless of whether the outer housing forms part of the flow channel or is limited in the area of the opening of the flow channel, for example by the mixing tube.
  • the flow channel upstream is constructed in such a way that the flow channel deflects or folds the exhaust gas flow four to eight times, preferably six times by 180°.
  • the folding or the deflection takes place in the area or in the direction of the end faces of the outer housing, so that the main direction of flow runs essentially along the central axis in both directions and the change of direction is given by the folding or deflection.
  • the additive is injected through the first opening in a direction opposite to the direction in which the additive is injected through the second opening;
  • the two openings are arranged opposite one another on the outer housing with respect to the central axis and/or offset in the radial direction on the outer housing;
  • the two openings are provided in the outer housing and the outer housing forms part of the flow channel in the region of the respective opening;
  • One or more injectors or a receptacle for one or more injectors or more openings in the area of the respective injection point are provided at the respective opening;
  • a mixer is provided as a static mixing element downstream of the opening and upstream of the SCR catalytic converter unit;
  • the flow channel connects the central tube to the first jacket tube and the first jacket tube to the first SCR catalytic converter unit;
  • the flow channel connects the first SCR catalytic converter unit with the second jacket tube;
  • the first jacket tube is arranged upstream and the second jacket tube downstream of the first SCR catalytic converter unit;
  • the second SCR catalytic converter unit is arranged downstream of the second jacket tube;
  • the intermediate housing is coupled to a device for an active heat supply
  • a filter unit with a filter body and a filter housing is provided in the flow channel between the central tube and the first opening, the filter housing forming part of the flow channel;
  • channel sections are provided, which are arranged straight and parallel to one another and one after the other in the direction of flow and which are each separated by a curve section which deflects the exhaust gas flow by at least 90°.
  • FIG. 1 shows a stylized sectional view of a device with an outer housing in the form of a box
  • FIG. 2 shows an enlarged view of a central tube with two casing tubes and collars at the ends;
  • FIG. 3-5 sectional views A-C according to Figure 1;
  • FIG. 6-8 Schematic sketches of the exhaust gas treatment
  • FIG. 9-10 representations of two inner housings.
  • a device 1 for guiding and treating an exhaust gas flow has an outer housing 2 in the form of a box.
  • the exhaust gas flow is introduced into the outer housing 2 via an inlet pipe 10 and discharged via an outlet pipe 11 .
  • the inlet pipe 10 and the outlet pipe 11 each connect to the outer housing 2 .
  • a flow channel K is arranged directs the flow of exhaust gases and which connects the inlet pipe 10 to the outlet pipe 11 .
  • the flow channel K or the channel wall of the flow channel K is formed by different components, such as pipes, housing in the outer housing 2 and the outer housing 2 itself Components formed: connecting tube 29, channel segment 27 consisting of intermediate housing 28 and connecting tube 29, central tube 20, baffle 23, filter unit 6, outer housing 2, first mixing tube 25, inner housing 50, first casing tube 21, collar 203, first SCR catalytic converter unit 31, Outer housing 2, second mixing tube 26, inner housing 51, second jacket tube 22, collar 204, second SCR catalytic converter unit 32, outer housing 2 and tube 30.
  • the outer housing 2 forms different sections of the flow channel K with various parts of the housing wall that are not numbered in detail.
  • the device 1 is constructed partially symmetrically to a central Z axis.
  • the central tube 20, the two casing tubes 21, 22, the filter unit 6 and the intermediate housing 28 are also arranged coaxially to the central axis Z, as is a separate device 7 for supplying fuel, which is attached to the outer housing 2 from the outside.
  • Each of the two SCR catalytic converter units 31, 32 comprises four catalytic converters 31 a-d, 32 a-d, which are positioned circumferentially around the central axis Z, symmetrically offset by 90° in each case according to the sectional view A-A according to FIG.
  • Several shelves are provided in the outer housing 2 for storing the components. Shelves 241, 242 are shown as examples.
  • the “duct-in-duct” arrangement includes two channel sections K1a, K1b with a common front channel wall KW1.
  • the channel section K1a is formed by a front part of the central tube 20 .
  • the channel section K1b is bounded on the inside by the outer front part of the central tube 20 and bounded on the outside by the inside of the first jacket tube 21 .
  • the two channel sections K1 a, K1 b are separated from one another by the central tube 20 and thus by a common channel wall KW1.
  • the two channel sections K1a, K1b are arranged next to one another in a direction perpendicular to a direction of flow S, in this case in a radial direction to the central axis Z.
  • the two duct sections K1a, K1b are arranged one after the other in the flow direction S such that the exhaust gas flow after the first duct section K1a first flows through other components of the flow duct K before it flows through the second duct section K1b.
  • These two front channel sections K1a, K1b form a front pair P1 of channel sections.
  • a second and rear pair P2 of channel sections K2a, K2b which form a rear heat transfer zone according to the "duct-in-duct" principle, includes the rear part of the central tube 20 and the second jacket tube 22.
  • the central tube 20 delimits the channel section K2a to the outside and the channel section K2b to the inside.
  • the second jacket tube 22 delimits the channel section K2b to the outside.
  • the third heat transfer zone with a common channel wall KW3 is formed by the upper pair P3 of channel sections K3a, K3b.
  • the duct section K3a is formed by the duct segment 27, which includes the connecting pipe 29 and the intermediate housing 28 and which outwardly delimits the duct section K3a and forms the common duct wall KW3.
  • the channel section K3b is delimited on the inside by the connecting pipe 29 and the intermediate housing 28. On the outside, essentially the inside of the outer housing 2 forms the boundary for the channel section K3b.
  • two SCR catalytic converter units 31, 32 are provided and upstream of each SCR catalytic converter unit 31, 32 there is an injector 41a, 42a for injecting additive.
  • the type of heat transfer in the heat transfer zones to the relatively colder exhaust gas stream is described as passive heat input.
  • the additional device 7 arranged on the outer housing 2 for generating thermal energy an active supply of heat into the exhaust gas flow is achieved.
  • a flame tube 70 is provided in the intermediate housing 28, through which the exhaust gas stream flows. The hot exhaust gas stream flows through the upper duct section K3a, the front duct section K1a and the rear duct section K2a in immediate succession.
  • the first passive heat exchange occurs in the front pair P1 in the front, outer channel section K1b in the first casing tube 21 after the exhaust gas flow has been supplied with reducing agent via an injector 41a and before it flows into the first SCR catalytic converter unit 31 .
  • the rear, outer channel section K2b is then provided in order to again passively heat the exhaust gas flow after the supply of reducing agent with an injector 42a before it flows into the second SCR catalytic converter unit 32 .
  • the upper, outer channel section K3b makes it possible to additionally supply the exhaust gas flow with passive heat at the point at which heat is actively supplied to the exhaust gas flow with the aid of the device 7 .
  • the active heat is supplied in the upper channel section K3a and passively transferred to the exhaust gas flow in the upper channel section K3b via the common channel wall KW3.
  • the third pair also ensures that the exhaust gas flow is supplied with passive heat a second time before the second treatment with reducing agent and after a correspondingly long flow path.
  • the first time before the second injector 42a before the mixing tube 26 and the second time after the second mixing tube 26 immediately before the second SCR catalytic converter unit 32.
  • the collar 203, 204 deflects the exhaust gas stream flowing out of the jacket pipe 21, 22 by 180° with its outer side 203a, 204a.
  • the collar 203 forms on the inlet side 201 with its inside 203i a funnel for the exhaust gas flowing into the central tube 20 and the collar 204 forms on the outlet side 202 with its inside 204i a diffuser for the exhaust gas flowing out of the central tube 20 .
  • FIGS. 3-5 show a section in a plane as can be seen in FIG.
  • the openings shown are, insofar as they do not have reference numbers, openings in one of the intermediate floors that are not described in detail.
  • FIG. 3 a section AA through the rear heat transfer zone, shows the four catalytic converters 32a-d, which are arranged around the central tube 20 and the second casing tube 22.
  • the first mixing tube 25 is shown in section in the upper area.
  • the pipe 30 can be seen in alignment, which collects the flow of exhaust gas in the outer housing 2 and leads it into the outlet pipe 11 .
  • Section BB is in an intermediate floor 241 immediately in front of the four catalytic converters 32a-d.
  • the exhaust gas stream flows out of the first mixing tube 25 into the inner housing 50.
  • the exhaust gas flows out of the inner housing 51 into the second jacket tube 22.
  • Another part of the exhaust gas stream also flows out of the catalytic converters 32a-d and finds its way through several openings in the intermediate floor downwards to pipe 30.
  • the exhaust gas flow moves out of connecting pipe 29 into intermediate housing 28 according to FIG is.
  • a baffle plate 23 is provided downstream of the central tube 20, through which the exhaust gas flow is distributed to in turn downstream provided filter body 60 of the filter unit 6 takes place, which is mounted in a filter housing 61.
  • FIGS. 6 to 8 Various simplified models for the passive and active supply of heat are shown in FIGS. 6 to 8, which can be realized with the concrete geometry of a box described above.
  • the outer housing, inlet pipe, outlet pipe, channel segment and intermediate housing as well as other components are not shown on these models.
  • the still relatively hot exhaust gas flows into the central pipe 20 and, after injection with the first injector 41a with reducing agent in the front "duct-in-duct” arrangement, is passively heated for the first time in the first jacket pipe 21 through the common front duct wall KW1 , before it flows into the first SCR catalytic converter unit 31 .
  • the second injection then takes place with the injector 42a in the second mixing tube 26 and the second passive heating in the rear “duct-in-duct” arrangement through the second common duct wall KW2 before it flows through the second SCR catalytic converter unit 32.
  • the passive heating is shown in FIG.
  • the core of the box geometry is formed by the two inner housings 50, 51, which are shown in FIGS. 9 and 10.
  • the respective inner housing 50, 51 connects the mixing tube 25, 26 to the casing tube 21, 22, on which the catalytic converters 32a-32d are arranged downstream.
  • the design of the two inner housings 50, 51 that encompasses the jacket pipe 21, 22 makes it possible to arrange the two housings next to one another around the jacket pipe 21, 22 and at the same time to guide two exhaust gas flows independently of one another and in opposite directions in the direction of the central axis Z through the outer housing 2.
  • the respective inner housing 50, 51 is arranged around the central axis Z and encloses a volume that connects the mixing tube 25, 26 in its function as an inlet connector and the jacket tube 21, 22 in its function as an outlet connector.
  • the inner housing delimits a separate or dedicated volume, completely independent of the outer housing.
  • the inlet port 25, 26 is parallel and acentric to of the central axis Z and the outlet port 21, 22 relative to the inner housing 50, 51 and in the axial direction of the central axis Z opposite to the inlet port 25, 26 and coaxial with the central axis Z arranged.
  • the inner housing 50, 51 is combined with the central tube 20 in such a way that the central tube 20 completely penetrates the inner housing 50, 51, with the inner housing 50, 51 being sealed off from the central tube 20.
  • the inner housings 51 , 52 each have the same outer contour on the edge side, which when combined to form the overall housing G results in an outer collar 52 which runs around the central axis Z in a circular, elliptical or continuous manner.
  • the outer housing 2 has an intermediate base 242 into which the inner housings 50, 51 are inserted.
  • the inner housing 50, 51 has a volume-limiting semi-circular contour which runs around the outlet socket 21, 22 and is concentric with the central axis Z.
  • the geometry of an individual intermediate housing 50 is shown in more detail in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

The invention relates to a device (1) for conducting and treating an exhaust gas flow, comprising an outer housing (2), an inlet tube (10) which adjoins the outer housing (2), an outlet tube (11) which adjoins the outer housing (2), and a flow channel (K) which is arranged in the outer housing (2), conducts the exhaust gas flow, and comprises a channel wall and multiple channel sections which connect the inlet tube (10) to the outlet tube (11). The hydrolysis reactions are to be maximized while simultaneously saving additional energy by using the thermal energy introduced into the outer housing (2) by the exhaust gas flow. Multiple heat transfer zones and multiple SCR catalyst units (31, 32) are provided in the outer housing (2).

Description

Vorrichtung zum Behandeln von Abgas I Apparatus for treating exhaust gas I
Die Erfindung bezieht sich auf eine Vorrichtung zum Leiten und zum Behandeln eines Abgasstroms mit einem Außengehäuse, einem an das Außengehäuse anschließenden Einlassrohr und einem an das Außengehäuse anschließenden Auslassrohr und einem im Außengehäuse angeordneten und den Abgasstrom leitenden Strömungskanal mit einer Kanalwand und mit mehreren Kanalabschnitten, der das Einlassrohr mit dem Auslassrohr verbindet. Der Strömungskanal umfasst zwei Kanalabschnitte mit einer gemeinsamen vorderen Kanalwand, wobei die beiden Kanalabschnitte in einer Richtung rechtwinklig zu einer Strömungsrichtung im Strömungskanal nebeneinander und in Strömungsrichtung nacheinander angeordnet sind. Die beiden Kanalabschnitte bilden ein vorderes Paar. Eine solche Geometrie oder Anordnung wird als „duct-in-duct“ bezeichnet und dient als Wärmetransferzone für Wärme von einem heißen Abgasstrom zu einem relativ kälteren Abgasstrom. Diese Art der Wärmezufuhr in den relativ kälteren Abgasstrom wird mit passiver Wärmezufuhr umschrieben. Im Gegenteil dazu wird mit Hilfe einer zusätzlichen Einrichtung zum Erzeugen von thermischer Energie wie beispielsweise einem Brenner eine aktive Wärmezufuhr im Sinne dieser Erfindung umschrieben. The invention relates to a device for conducting and treating an exhaust gas flow with an outer housing, an inlet pipe connected to the outer housing and an outlet pipe connected to the outer housing and a flow channel arranged in the outer housing and conducting the exhaust gas flow, having a channel wall and having a plurality of channel sections, the connecting the inlet pipe to the outlet pipe. The flow channel comprises two channel sections with a common front channel wall, the two channel sections being arranged next to one another in a direction at right angles to a direction of flow in the flow channel and one after the other in the direction of flow. The two channel sections form a front pair. Such a geometry or arrangement is referred to as "duct-in-duct" and serves as a heat transfer zone for heat from a hot exhaust stream to a relatively cooler exhaust stream. This type of heat supply in the relatively colder exhaust gas flow is described as passive heat supply. On the contrary, an active supply of heat within the meaning of this invention is described with the aid of an additional device for generating thermal energy, such as a burner.
Ein Strömungskanal im Sinne der Erfindung ist eine Vorrichtung, die den Abgasstrom leitet und die durch die das Abgas führenden Kanalwände und gegebenenfalls auch inklusive der Wand des Außengehäuses gebildet wird. Das Außengehäuse, in dem der Strömungskanal angeordnet ist, ist als Box ausgebildet. Das Abgas durchströmt den Strömungskanal in einer Strömungsrichtung. Alle Komponenten wie beispielsweise auch SCR-Katalysator-Einheiten sind im Strömungskanal angeordnet. Diese Kanalwände werden gebildet durch Wände von Rohren oder Wände von Gehäusen und dem Außengehäuse oder durch sonstige Bauteile wie Substrate etc., die mit Innen- und/oder Außenflächen den Abgasstrom führen und die den Strömungskanal hauptsächlich in rechtwinkliger Richtung zur Strömungsrichtung, aber auch grundsätzlich begrenzen. Dabei begrenzt die jeweilige Wand den Strömungskanal in Bezug auf die jeweilige mittige Strömungsachse nach innen oder nach außen. In dem besonderen Fall einer Wärmetransferzone begrenzt dieselbe Wand einen Kanalabschnitt des Strömungskanals nach innen und einen anderen Kanalabschnitt des Strömungskanals nach außen. Oder zumindest begrenzt dieselbe Wand einen Kanalabschnitt einer Wärmetransferzone in eine andere Richtung als einen anderen Kanalabschnitt der Wärmetransferzone. Als Kanalabschnitt ist ein Teilstück des Strömungskanals in Strömungsrichtung zu verstehen. Unter der Strömungsrichtung ist die grundsätzliche Hauptströmungsrichtung innerhalb des Strömungskanals zu verstehen. Die Strömungsrichtung ändert sich relativ zur zentralen Achse des Außengehäuses. Sonstige von der Hauptströmungsrichtung abweichenden Strömungsrichtungen sind für die hier maßgebliche Definition der gegenständlichen Merkmale nur dann relevant, wenn explizit darauf Bezug genommen wird. Einzelne in Strömungsrichtung nacheinander angeordnete Punkte werden als stromab angeordnet bezeichnet. Entsprechend werden entgegen der Strömungsrichtung angeordnete Punkte als stromauf angeordnet bezeichnet. Einzelne Bauteile sind dünn- oder einwandige Blechteile, insbesondere die Wärmetransferzonen. A flow duct within the meaning of the invention is a device that directs the flow of exhaust gas and is formed by the duct walls that carry the exhaust gas and possibly also including the wall of the outer housing. The outer housing, in which the flow channel is arranged, is designed as a box. The exhaust gas flows through the flow channel in a flow direction. All components, such as the SCR catalytic converter units, are arranged in the flow channel. These duct walls are formed by walls of pipes or walls of housings and the outer housing or by other components such as substrates, etc., which guide the exhaust gas flow with inner and/or outer surfaces and which mainly limit the flow duct in a direction perpendicular to the direction of flow, but also fundamentally . The respective wall delimits the flow channel inwardly or outwardly in relation to the respective central flow axis. In the particular case of a heat transfer zone, the same wall delimits one Channel section of the flow channel to the inside and another channel section of the flow channel to the outside. Or at least the same wall delimits a channel section of a heat transfer zone in a different direction than another channel section of the heat transfer zone. A section of the flow channel in the direction of flow is to be understood as a channel section. The direction of flow is to be understood as meaning the basic main direction of flow within the flow channel. The direction of flow changes relative to the central axis of the outer casing. Other flow directions deviating from the main flow direction are only relevant for the relevant definition of the features in question if explicit reference is made to them. Individual points arranged one after the other in the direction of flow are referred to as arranged downstream. Correspondingly, points located against the flow direction are referred to as located upstream. Individual components are thin or single-walled sheet metal parts, especially the heat transfer zones.
Grundsätzlich können die Rohre und Katalysatoren neben einem runden Querschnitt auch einen ovalen Querschnitt oder auch einen Querschnitt mit mehreren geraden Seitenflächen in Form eines Polygons aufweisen. Jedes den Strömungskanal bildende Bauteil steht unmittelbar in Kontakt mit dem Abgasstrom. In principle, the tubes and catalytic converters can have not only a round cross section but also an oval cross section or a cross section with a plurality of straight side surfaces in the form of a polygon. Each component forming the flow channel is in direct contact with the flow of exhaust gas.
Je nach Prozess innerhalb dieser Vorrichtung hat der Abgasstrom auf der einen Seite eines beidseitig umströmten Bauteils eine andere Temperatur als auf der anderen Seite. Die Bauweise aus Blech ermöglicht einen Wärmeübertrag durch das jeweilige Bauteil von dem heißeren Abgasstrom in den relativ kälteren Abgasstrom. Dieser Wärmeeintrag wird nicht nur beeinflusst durch die Temperaturdifferenz von der Innenseite zu der Außenseite und durch die Länge des jeweiligen Abschnitts in Strömungsrichtung oder der Verweildauer des Abgasstroms, sondern auch durch die Strömungsrichtung. Werden die Innen- und die Außenseite in gleicher Richtung durchströmt, dann nimmt die Temperaturdifferenz in Strömungsrichtung ab. Bei einer entgegengesetzten Durchströmung bleibt die Temperaturdifferenz konstanter. Stromab, stromauf bezieht sich auf den Strömungskanal und die im Strömungskanal gegebene Strömungsrichtung. Dabei gilt per Definition stromab und stromauf auch in Bezug auf ein Abgasteilchen, das sich im Strömungskanal in einer sich ändernden Strömungsrichtung bewegt. Das Teilchen ist beispielsweise zu einem Zeitpunkt t1 an einer Position in axialer Richtung eines Rohrs auf der Innenseite des Rohrs und zu einem Zeitpunkt t2 größer t1 an einer Position in axialer Richtung auf der Außenseite des Rohrs. Depending on the process within this device, the exhaust gas flow has a different temperature on one side of a component around which flow occurs on both sides than on the other side. The sheet metal construction enables heat to be transferred through the respective component from the hotter exhaust gas stream to the relatively colder exhaust gas stream. This heat input is not only influenced by the temperature difference from the inside to the outside and by the length of the respective section in the flow direction or the residence time of the exhaust gas flow, but also by the flow direction. If the air flows through the inside and outside in the same direction, the temperature difference in the direction of flow decreases. If the flow is in the opposite direction, the temperature difference remains more constant. Downstream, upstream refers to the flow channel and the flow direction given in the flow channel. By definition, downstream and upstream also applies in relation to an exhaust gas particle that is in the flow channel in a changing direction of flow moves. The particle is, for example, at a time t1 at a position in the axial direction of a tube on the inside of the tube and at a time t2 greater than t1 at a position in the axial direction on the outside of the tube.
Im Sinne dieser Erfindung definiert eine solche „duct-in-duct“-Konstruktion oder -Anordnung zwei stromab nacheinander und nebeneinander angeordnete Kanalabschnitte, die eine gemeinsame Kanalwand aufweisen, durch die die Wärme vom wärmeren Abgasstrom zum kälteren Abgasstrom geleitet wird. Nebeneinander bedeutet im Wesentlichen in einer Richtung rechtwinklig zur Strömungsrichtung nebeneinander. Über die gemeinsame Kanalwand wird unmittelbar Wärme von einem heißeren Abgas in einem der beiden Kanalabschnitte auf ein kühleres Abgas in dem anderen Kanalabschnitt übertragen. Mittel zur Vergrößerung der Oberfläche der Wand des jeweiligen Kanalabschnitts sind dabei wahlweise miterfasst. Nicht erfasst von einer „duct-in-duct“ Anordnung sind Monolithen wie Katalysatoren oder Filter in den benachbarten Kanalabschnitten, weil der Monolith nicht den unmittelbaren Wärmeübertrag vom Abgasstrom auf die Kanalwand ermöglicht. Die „duct-in-duct“ Anordnung dient dazu, die Wärme des Abgasstroms auf die Kanalwand zu übertragen und stromab der jeweiligen „duct-in-duct“ Anordnung eine bessere Reaktion im SCR- Katalysator zu erreichen. Durch einen Monolithen in dem jeweiligen Kanalabschnitt wäre der Wärmeübertrag des gesamten Abgasstroms nicht möglich, weil der Abgasstrom nicht direkt mit Kanalwand in Berührung kommt, sondern nur mit dem Monolithen. Der Abgasstrom wird erfindungsgemäß auch in der „duct-in-duct“-Anord- nung durch die Kanalwand geleitet und nicht durch den Monolithen. Die gemeinsame Kanalwand ist bevorzugt einwandig, sie kann aber auch doppel- oder mehrwandig sein. Im Sinne dieser Erfindung ist mit dem Merkmal „duct-in-duct“ auch eine Anordnung erfasst, bei der der Abgasstrom von einem Kanal auf mehrere Kanäle aufgeteilt wird, solange das Merkmal einer gemeinsamen Kanalwand für alle Kanäle und für den gesamten Abgasstrom zu demselben Zeitpunkt t erfüllt ist. For the purposes of this invention, such a “duct-in-duct” construction or arrangement defines two duct sections arranged one after the other and next to one another downstream, which have a common duct wall through which the heat is conducted from the warmer exhaust gas stream to the colder exhaust gas stream. Side-by-side means substantially side-by-side in a direction perpendicular to the direction of flow. Heat is transferred directly from a hotter exhaust gas in one of the two duct sections to a cooler exhaust gas in the other duct section via the common duct wall. Means for enlarging the surface of the wall of the respective channel section are optionally also included. Monoliths such as catalytic converters or filters in the adjacent duct sections are not covered by a "duct-in-duct" arrangement, because the monolith does not enable direct heat transfer from the exhaust gas flow to the duct wall. The "duct-in-duct" arrangement serves to transfer the heat of the exhaust gas flow to the duct wall and to achieve a better reaction in the SCR catalytic converter downstream of the respective "duct-in-duct" arrangement. A monolith in the respective duct section would not allow the heat transfer of the entire exhaust gas flow because the exhaust gas flow does not come into direct contact with the duct wall, but only with the monolith. According to the invention, the exhaust gas flow is also routed through the duct wall and not through the monolith in the “duct-in-duct” arrangement. The common channel wall is preferably single-walled, but it can also be double-walled or multi-walled. For the purposes of this invention, the feature "duct-in-duct" also covers an arrangement in which the exhaust gas flow is divided from one channel to several channels, as long as the feature of a common channel wall for all channels and for the entire exhaust gas flow at the same time t is fulfilled.
Vorrichtungen zum Behandeln von Abgas mit diesen Gattungsmerkmalen einer „duct-in-duct“-Geometrie sind aus der DE 10 2010 021 438 A1 oder der DE 10 2015 004 425 A1 bekannt, bei denen ein Zentralrohr mit einem koaxial umlaufenden Mantelrohr vorgesehen ist. Nach der DE 697 04 351 T2 ist eine Gehäuseanordnung mit zwei Paaren von ineinander liegenden Kanalabschnitten beschrieben, in denen SCR-Katalysatoren oder andere Katalysatoren angeordnet sind. Der Abgasstrom wird jedoch durch die Katalysatoren geleitet und nicht durch die Kanalabschnitte als Teil des Strömungskanals. Devices for treating exhaust gas with these generic features of a "duct-in-duct" geometry are known from DE 10 2010 021 438 A1 or DE 10 2015 004 425 A1, in which a central tube with a coaxial circumferential Casing pipe is provided. DE 697 04 351 T2 describes a housing arrangement with two pairs of channel sections lying one inside the other, in which SCR catalytic converters or other catalytic converters are arranged. However, the exhaust gas flow is directed through the catalytic converters and not through the channel sections as part of the flow channel.
Aufgabe ist es, mit der vom Abgasstrom in das Außengehäuse eingebrachten Wärmeenergie die Hydrolysereaktionen zu maximieren und gleichzeitig zusätzliche Energie zu sparen. Gelöst wird die Aufgabe erfindungsgemäß dadurch, dass der Strömungskanal zwei hintere Kanalabschnitte mit einer gemeinsamen hinteren Kanalwand aufweist, wobei die beiden hinteren Kanalabschnitte in einer Richtung rechtwinklig zu einer Strömungsrichtung nebeneinander und in Strömungsrichtung nacheinander angeordnet sind und ein hinteres Paar bilden. Das jeweilige Paar dient zur Erwärmung der jeweils stromab angeordneten Katalysatoreinheit. Dazu ist es vorteilhaft, wenn eine erste SCR-Katalysator-Einheit im Strömungskanal stromab der beiden vorderen Kanalabschnitte und eine zweite SCR-Katalysator-Einheit im Strömungskanal stromab der beiden hinteren Kanalabschnitte angeordnet ist. Dadurch lässt sich die in beiden Paaren die jeweils übertragene Wärme für die Hydrolyse vor der jeweiligen SCR-Katalysator-Einheit nutzen. The task is to maximize the hydrolysis reactions with the thermal energy introduced into the outer housing by the exhaust gas flow and at the same time save additional energy. The object is achieved according to the invention in that the flow duct has two rear duct sections with a common rear duct wall, the two rear duct sections being arranged next to one another in a direction at right angles to a flow direction and one after the other in the flow direction and forming a rear pair. Each pair is used to heat the downstream catalytic converter unit. To this end, it is advantageous if a first SCR catalytic converter unit is arranged in the flow duct downstream of the two front duct sections and a second SCR catalytic converter unit is arranged in the flow duct downstream of the two rear duct sections. As a result, the heat transferred in both pairs can be used for hydrolysis upstream of the respective SCR catalytic converter unit.
Das Abgasgehäuse in Form einer Box weist erfindungsgemäß zwei unabhängig voneinander funktionierende und als System hintereinander geschaltete „duct-in-duct“- Zonen auf, in denen jeweils eine „duct-in-duct“-Anordnung vorgesehen ist. Durch den hintereinander geschalteten zweifachen Wärmeaustausch innerhalb des Abgasstroms wird es möglich, die passive Wärmezufuhr im Strömungskanal zu verbessern und gleichzeitig über die gesamte Länge des Strömungskanals eine relativ ausgeglichene, aber auch für die Hydro lysereaktion ausreichend hohe Temperatur zu erreichen. Es wurde ermittelt, dass eine ausreichend hohe Temperatur in der zweiten „duct-in-duct“-Zone gewährleistet werden kann, wenn in der ersten „duct-in-duct“- Zone nicht der maximal mögliche, sondern nur der für eine Reaktion notwendige Wärmeaustausch realisiert wird. Für die zweite „duct-in-duct“-Zone bleibt auch aufgrund der Geometrie der Box ausreichend Wärme übrig. Die Geometrie des Außengehäuses als Box ist wesentlich, weil die Box eine thermisch geschlossene Einheit bildet, in der sich grundsätzlich die Wärme hält und über den Strömungskanal verteilt. In der Box werden ausreichend hohe Temperaturen in wichtigen Betriebszuständen der Verbrennungskraftmaschine erreicht, um das gesamte eingebrachte Reaktionsmittel einer Hydrolysereaktion zuzuführen und die nachgeordnete Reaktion mit einzelnen Komponenten des Abgases zu gewährleisten. Die Trennung der beiden Kanalabschnitte der jeweiligen „duct-in-duct“-Zone durch nur eine und bevorzugt einfache oder einwandige Kanalwand ermöglicht einen optimalen Wärmeaustausch in der Wärmetransferzone, in der die Wärmeenergie mit wenig Verlusten und schnell durch die Kanalwand geleitet werden kann. According to the invention, the exhaust gas housing in the form of a box has two “duct-in-duct” zones that function independently of one another and are connected in series as a system, in each of which a “duct-in-duct” arrangement is provided. The twofold heat exchange in series within the exhaust gas flow makes it possible to improve the passive supply of heat in the flow channel and at the same time to achieve a relatively balanced temperature over the entire length of the flow channel, which is also sufficiently high for the hydrolysis reaction. It was determined that a sufficiently high temperature can be guaranteed in the second "duct-in-duct" zone if the temperature in the first "duct-in-duct" zone is not the maximum possible but only the temperature necessary for a reaction heat exchange is realized. Due to the geometry of the box, sufficient heat remains for the second “duct-in-duct” zone. The geometry of the outer housing as a box is essential because the box forms a thermally closed unit, in which the heat is basically retained and distributed over the flow channel. Sufficiently high temperatures are reached in the box in important operating states of the internal combustion engine in order to supply all of the reactants introduced to a hydrolysis reaction and to ensure the downstream reaction with individual components of the exhaust gas. The separation of the two channel sections of the respective "duct-in-duct" zone by only one and preferably simple or single-walled channel wall enables optimal heat exchange in the heat transfer zone, in which the thermal energy can be conducted through the channel wall quickly and with little loss.
Vorteilhaft kann hierzu die Möglichkeit sein, wenn die Strömungsrichtungen in den beiden vorderen Kanalabschnitten entgegengesetzt und in den beiden hinteren Kanalabschnitten gleichgerichtet sind oder umgekehrt. Durch die unterschiedliche Wahl der relativen Strömungsrichtungen kann auf die Temperaturdifferenzen Einfluss genommen werden, die sich entlang des jeweiligen Kanalabschnitts zwischen dem heißen Abgasstrom und dem kalten Abgasstrom einstellen. Damit kann die auszutauschende Wärmemenge gleichmäßig auf beide „duct-in-duct“-Zonen bzw. beide Paare von Kanalabschnitten verteilt werden. To this end, the possibility can be advantageous if the directions of flow in the two front channel sections are opposite and in the same direction in the two rear channel sections, or vice versa. The different selection of the relative flow directions can influence the temperature differences that occur along the respective channel section between the hot exhaust gas flow and the cold exhaust gas flow. The amount of heat to be exchanged can thus be distributed evenly over both "duct-in-duct" zones or both pairs of duct sections.
In Bezug auf nicht ausreichende Wärme aufgrund von kritischen Betriebsparametern im System kann es vorteilhaft sein, dass eine Einrichtung für eine aktive Wärmezufuhr in den Strömungskanal vorgesehen ist. An dem Abgasgehäuse in Form einer Box ist die Einrichtung zum Erzeugen thermischer Energie angeordnet und derart gestaltet, dass die thermische Energie gleichzeitig vor der ersten SCR-Einheit und vor der zweiten SCR-Einheit eingebracht wird. With regard to insufficient heat due to critical operating parameters in the system, it can be advantageous that a device is provided for actively supplying heat into the flow channel. The device for generating thermal energy is arranged on the exhaust gas housing in the form of a box and is designed in such a way that the thermal energy is introduced in front of the first SCR unit and in front of the second SCR unit at the same time.
In Bezug auf separat eingebrachte aktive Wärmeenergie kann es von besonderer Bedeutung für die vorliegende Erfindung sein, wenn der Strömungskanal zwei weitere obere Kanalabschnitte mit einer gemeinsamen oberen Kanalwand aufweist, wobei die beiden oberen Kanalabschnitte in einer Richtung rechtwinklig zu einer Strömungsrichtung nebeneinander und in Strömungsrichtung nacheinander angeordnet sind und ein oberes Paar bilden. Dadurch wird es möglich, die separate aktive Wärmezufuhr zweifach zu nutzen, nämlich einmal in dem Kanal, in dem sie eingebracht wird, und ein zweites Mal an der indirekt erhitzten Außenseite dieser Kanalwand. Der Abgasstrom im Inneren der beiden oberen Kanäle kann ein erstes Mal direkt durch das heiße Gas von einem Brenner oder durch eine elektrische Wärmequelle erhitzt und einer ersten Hydrolysereaktion zugeführt werden. Die Kanalwand des entsprechenden oberen Abschnitts des Strömungskanals, in den die aktive Wärme eingebracht wird, wird dadurch ebenfalls erhitzt. Die Wärme dieser erhitzten Kanalwände wird über die Kanalwände nach außen vom inneren Strömungskanal auf die andere äußere Seite der Kanalwand zum äußeren Strömungskanal weggeführt. Dort wird die Wärme erfindungsgemäß durch den Abgasstrom weiter stromab ein zweites Mal abgegriffen, der dann einer zweiten Hydrolysereaktion zugeführt wird. With regard to separately introduced active thermal energy, it can be of particular importance for the present invention if the flow channel has two further upper channel sections with a common upper channel wall, the two upper channel sections being arranged next to one another in a direction at right angles to a direction of flow and one after the other in the direction of flow are and form an upper pair. This makes it possible to use the separate active heat supply twice, namely once in the channel in which it is introduced and a second time on the indirectly heated outside of this channel wall. The exhaust gas flow inside the two upper channels can be heated a first time directly by the hot gas from a burner or by an electrical heat source and fed to a first hydrolysis reaction. The channel wall of the corresponding upper section of the flow channel into which the active heat is introduced is also heated as a result. The heat of these heated channel walls is carried away via the channel walls to the outside from the inner flow channel to the other outer side of the channel wall to the outer flow channel. There, according to the invention, the heat is tapped off a second time further downstream by the exhaust gas flow, which is then fed to a second hydrolysis reaction.
Im Zusammenhang mit der erfindungsgemäßen Ausbildung und Anordnung kann es von Vorteil sein, wenn alle Kanalabschnitte in Strömungsrichtung nacheinander angeordnet sind. Die Kanalabschnitte sind derart angeordnet, dass jedes theoretische Strömungsteilchen des Abgasstroms in dem Strömungskanal K alle Kanalabschnitte durchströmt. Dabei ist es nicht vorgesehen, dass der Abgasstrom in mehrere Kanalabschnitte aufgeteilt wird. In connection with the design and arrangement according to the invention, it can be advantageous if all channel sections are arranged one after the other in the direction of flow. The channel sections are arranged in such a way that each theoretical flow particle of the exhaust gas flow in the flow channel K flows through all channel sections. It is not intended that the exhaust gas flow is divided into several channel sections.
Vorteilhaft kann es ferner sein, wenn der erste Kanalabschnitt des hinteren Paares stromauf der ersten SCR-Katalysator-Einheit und der zweite Kanalabschnitt des hinteren Paares stromab der ersten SCR-Katalysator-Einheit angeordnet ist. Dadurch wird erreicht, dass noch ausreichend passive Wärme stromab der ersten SCR- Katalysator-Einheit vorhanden ist, um die Hydrolyse vor der zweiten SCR- Katalysator-Einheit und nicht die vor der ersten SCR-Katalysator-Einheit zu unterstützen. Diese Maßnahme dient dazu, die passive Wärmezufuhr im Strömungskanal besser zu verteilen. It can also be advantageous if the first channel section of the rear pair is arranged upstream of the first SCR catalytic converter unit and the second channel section of the rear pair is arranged downstream of the first SCR catalytic converter unit. This ensures that there is still sufficient passive heat downstream of the first SCR catalytic converter unit to support the hydrolysis before the second SCR catalytic converter unit and not before the first SCR catalytic converter unit. This measure serves to better distribute the passive supply of heat in the flow channel.
Außerdem kann es vorteilhaft sein, wenn der erste Kanalabschnitt des oberen Paares stromauf des ersten Kanalabschnitts des vorderen Paares und der zweite Kanalabschnitt des oberen Paares stromab der ersten SCR-Katalysator-Einheit angeordnet ist. Hierdurch wird auch erreicht, dass noch ausreichend passive Wärme stromab der ersten SCR-Katalysator-Einheit vorhanden ist, um die Hydrolyse vor der zweiten SCR-Katalysator-Einheit und nicht die vor der ersten SCR-Katalysator-Einheit zu unterstützen. Diese Maßnahme dient ebenfalls dazu, die passive Wärmezufuhr im Strömungskanal besser zu verteilen. In addition, it can be advantageous if the first channel section of the upper pair is arranged upstream of the first channel section of the front pair and the second channel section of the upper pair is arranged downstream of the first SCR catalytic converter unit. This also ensures that there is still sufficient passive heat downstream of the first SCR catalytic converter unit in order to start the hydrolysis in front of the second SCR catalytic converter unit and not in front of the first SCR catalytic converter unit support. This measure also serves to better distribute the passive supply of heat in the flow channel.
Dabei kann es von Vorteil sein, wenn der zweite Kanalabschnitt des oberen Paares stromauf des zweiten Kanalabschnitts des hinteren Paares angeordnet ist. Hierdurch wird mit einer dritten Maßnahme erreicht, dass noch ausreichend passive Wärme stromab der ersten SCR-Katalysator-Einheit vorhanden ist, um die Hydrolyse vor der zweiten SCR-Katalysator-Einheit und nicht die vor der ersten SCR-Katalysator- Einheit zu unterstützen. Auch dadurch wird die passive Wärmezufuhr im Strömungskanal besser verteilt. It can be advantageous here if the second channel section of the upper pair is arranged upstream of the second channel section of the rear pair. As a result, a third measure ensures that there is still sufficient passive heat downstream of the first SCR catalytic converter unit to support the hydrolysis before the second SCR catalytic converter unit and not before the first SCR catalytic converter unit. This also means that the passive supply of heat in the flow channel is better distributed.
Schließlich kann es von Vorteil sein, wenn stromauf der ersten SCR-Katalysator- Einheit eine erste Öffnung im Strömungskanal für das Einspritzen von Zusatzstoff in den Strömungskanal und/oder stromab der ersten SCR-Katalysator-Einheit und stromauf der zweiten SCR-Katalysator-Einheit eine zweite Öffnung im Strömungskanal für das Einspritzen von Zusatzstoff in den Strömungskanal vorgesehen ist. Der Zugang zu der jeweiligen SCR-Katalysator-Einheit durch das Außengehäuse in den Strömungskanal ist unabhängig davon vorzusehen, ob das Außengehäuse einen Teil des Strömungskanals bildet oder im Bereich der Öffnung der Strömungskanal beispielsweise durch das Mischrohr begrenzt wird. Finally, it can be advantageous if upstream of the first SCR catalytic converter unit there is a first opening in the flow channel for injecting additive into the flow channel and/or downstream of the first SCR catalytic converter unit and upstream of the second SCR catalytic converter unit second opening is provided in the flow channel for injecting additive into the flow channel. Access to the respective SCR catalytic converter unit through the outer housing into the flow channel is to be provided regardless of whether the outer housing forms part of the flow channel or is limited in the area of the opening of the flow channel, for example by the mixing tube.
In Bezug auf einen möglichst langen Strömungskanal ist es von Vorteil, wenn stromauf der Strömungskanal derart aufgebaut ist, dass der Strömungskanal den Abgasstrom vier- bis achtmal, bevorzugt sechsmal um 180° umlenkt oder faltet. Das Falten oder die Umlenkung erfolgt im Bereich oder in Richtung der Stirnseiten des Außengehäuses, sodass die hauptsächliche Strömungsrichtung im Wesentlichen entlang der zentralen Achse in beide Richtungen verläuft und der Richtungswechsel durch das Falten oder Umlenken gegeben ist. With regard to the longest possible flow channel, it is advantageous if the flow channel upstream is constructed in such a way that the flow channel deflects or folds the exhaust gas flow four to eight times, preferably six times by 180°. The folding or the deflection takes place in the area or in the direction of the end faces of the outer housing, so that the main direction of flow runs essentially along the central axis in both directions and the change of direction is given by the folding or deflection.
Die Ortsbezeichnungen „vorne“, „hinten“ und oben“ dienen allein einer klaren Differenzierung der Bauteile. Hinsichtlich der Funktion und der erfindungsgemäßen Wechselwirkung kommt es nicht auf die geometrische Lage der Bauteile an. Weitere vorteilhafte Merkmale sind nachstehend aufgelistet, die in einer speziellen Ausgestaltung auch in den Figuren dargestellt, aber nicht auf diese Ausgestaltungen beschränkt sind: The location designations "front", "back" and "top" only serve to clearly differentiate the components. With regard to the function and the interaction according to the invention, the geometric position of the components is not important. Further advantageous features are listed below, which are also shown in the figures in a special embodiment, but are not limited to these embodiments:
- eine stromauf der ersten SCR-Katalysator-Einheit vorgesehene erste Öffnung im Strömungskanal für das Einspritzen von Zusatzstoff in den Strömungskanal, wobei stromab der ersten SCR-Katalysator-Einheit und stromauf der zweiten SCR- Katalysator-Einheit eine zweite Öffnung im Strömungskanal für das Einspritzen von Zusatzstoff in den Strömungskanal vorgesehen ist. - A first opening in the flow channel provided upstream of the first SCR catalyst unit for injecting additive into the flow channel, with a second opening in the flow channel for the injection downstream of the first SCR catalyst unit and upstream of the second SCR catalyst unit of additive is provided in the flow channel.
- der Zusatzstoff wird durch die erste Öffnung in einer Richtung eingespritzt, die der Richtung entgegengesetzt ist, in die der Zusatzstoff durch die zweite Öffnung eingespritzt wird; - the additive is injected through the first opening in a direction opposite to the direction in which the additive is injected through the second opening;
- die beiden Öffnungen sind in Bezug zu der zentralen Achse gegenüberliegend am Außengehäuse und/oder in radialer Richtung versetzt am Außengehäuse angeordnet; the two openings are arranged opposite one another on the outer housing with respect to the central axis and/or offset in the radial direction on the outer housing;
- die beiden Öffnungen sind im Außengehäuse vorgesehen und das Außengehäuse bildet im Bereich der jeweiligen Öffnung einen Teil des Strömungskanals; - The two openings are provided in the outer housing and the outer housing forms part of the flow channel in the region of the respective opening;
- an der jeweiligen Öffnung sind ein oder mehrere Injektoren oder eine Aufnahme für einen oder mehrere Injektoren oder mehrere Öffnungen im Bereich der jeweiligen Einspritzstelle vorgesehen; - One or more injectors or a receptacle for one or more injectors or more openings in the area of the respective injection point are provided at the respective opening;
- stromab der Öffnung und stromauf der SCR-Katalysator-Einheit ist ein Mischer als statisches Mischelement vorgesehen; - A mixer is provided as a static mixing element downstream of the opening and upstream of the SCR catalytic converter unit;
- der Strömungskanal verbindet das Zentralrohr mit dem ersten Mantelrohr und das erste Mantelrohr mit der ersten SCR-Katalysator-Einheit; - The flow channel connects the central tube to the first jacket tube and the first jacket tube to the first SCR catalytic converter unit;
- der Strömungskanal verbindet die erste SCR-Katalysator-Einheit mit dem zweiten Mantelrohr; - The flow channel connects the first SCR catalytic converter unit with the second jacket tube;
- das erste Mantelrohr ist stromauf und das zweite Mantelrohr stromab der ersten SCR-Katalysator-Einheit angeordnet; - die zweite SCR-Katalysator-Einheit ist stromab des zweiten Mantelrohrs angeordnet; - The first jacket tube is arranged upstream and the second jacket tube downstream of the first SCR catalytic converter unit; - The second SCR catalytic converter unit is arranged downstream of the second jacket tube;
- das Zwischengehäuse ist mit einer Einrichtung für eine aktive Wärmezufuhr gekoppelt; - The intermediate housing is coupled to a device for an active heat supply;
- zwischen dem Zentralrohr und der ersten Öffnung ist eine Filtereinheit mit einem Filterkörper und einem Filtergehäuse im Strömungskanal vorgesehen, wobei das Filtergehäuse einen Teil des Strömungskanals bildet; - A filter unit with a filter body and a filter housing is provided in the flow channel between the central tube and the first opening, the filter housing forming part of the flow channel;
- zwischen 8 und 12, bevorzugt 9 Kanalabschnitte sind vorgesehen, die gerade und parallel zueinander sowie in Strömungsrichtung nacheinander angeordnet sind und die durch jeweils einen den Abgasstrom mindestens um 90° umlenkenden Kurvenabschnitt getrennt sind. - Between 8 and 12, preferably 9 channel sections are provided, which are arranged straight and parallel to one another and one after the other in the direction of flow and which are each separated by a curve section which deflects the exhaust gas flow by at least 90°.
Weitere Vorteile und Einzelheiten der Erfindung sind in den Patentansprüchen und in der Beschreibung erläutert und in den Figuren einer speziellen Ausgestaltung dargestellt. Es zeigen: Further advantages and details of the invention are explained in the patent claims and in the description and shown in the figures of a special embodiment. Show it:
Figur 1 eine stilisierte Schnittansicht einer Vorrichtung mit einem Außengehäuse in Form einer Box; FIG. 1 shows a stylized sectional view of a device with an outer housing in the form of a box;
Figur 2 eine vergrößerte Darstellung eines Zentralrohrs mit zwei Mantelrohren und endseitigen Kragen; FIG. 2 shows an enlarged view of a central tube with two casing tubes and collars at the ends;
Figur 3-5 Schnittdarstellungen A-C gemäß Figur 1 ; Figure 3-5 sectional views A-C according to Figure 1;
Figur 6-8 Prinzipskizzen der Abgasbehandlung; Figure 6-8 Schematic sketches of the exhaust gas treatment;
Figur 9-10 Darstellungen von jeweils zwei Innengehäusen. Figure 9-10 representations of two inner housings.
Eine Vorrichtung 1 zum Leiten und zum Behandeln eines Abgasstroms weist wie in Figur 1 dargestellt ein Außengehäuse 2 in Form einer Box auf. In das Außengehäuse 2 wird der Abgasstrom über ein Einlassrohr 10 eingeleitet und über ein Auslassrohr 11 ausgeleitet. Das Einlassrohr 10 und das Auslassrohr 11 schließen jeweils am Außengehäuse 2 an. Im Außengehäuse 2 ist ein Strömungskanal K angeordnet, der den Abgasstrom leitet und der das Einlassrohr 10 mit dem Auslassrohr 11 verbindet. Der Strömungskanal K beziehungsweise die Kanalwand des Strömungskanals K wird durch unterschiedliche Bauteile gebildet, wie Rohre, Gehäuse im Außengehäuse 2 und das Außengehäuse 2 selbst. Gemäß Figur 1 wird der Strömungskanal K ausgehend vom Ende des Einlassrohrs 10 im Wesentlichen durch folgende in Strömungsrichtung S nacheinander angeordnete Bauteile gebildet: Verbindungsrohr 29, Kanalsegment 27 bestehend aus Zwischengehäuse 28 und Verbindungsrohr 29, Zentralrohr 20, Leitblech 23, Filtereinheit 6, Außengehäuse 2, erstes Mischrohr 25, Innengehäuse 50, erstes Mantelrohr 21 , Kragen 203, erste SCR-Katalysator-Einheit 31 , Außengehäuse 2, zweites Mischrohr 26, Innengehäuse 51 , zweites Mantelrohr 22, Kragen 204, zweite SCR-Katalysator-Einheit 32, Außengehäuse 2 und Rohr 30. Das Außengehäuse 2 bildet mit verschiedenen nicht näher bezifferten Teilen der Gehäusewand unterschiedliche Abschnitte des Strömungskanals K. As shown in FIG. 1, a device 1 for guiding and treating an exhaust gas flow has an outer housing 2 in the form of a box. The exhaust gas flow is introduced into the outer housing 2 via an inlet pipe 10 and discharged via an outlet pipe 11 . The inlet pipe 10 and the outlet pipe 11 each connect to the outer housing 2 . In the outer housing 2, a flow channel K is arranged directs the flow of exhaust gases and which connects the inlet pipe 10 to the outlet pipe 11 . The flow channel K or the channel wall of the flow channel K is formed by different components, such as pipes, housing in the outer housing 2 and the outer housing 2 itself Components formed: connecting tube 29, channel segment 27 consisting of intermediate housing 28 and connecting tube 29, central tube 20, baffle 23, filter unit 6, outer housing 2, first mixing tube 25, inner housing 50, first casing tube 21, collar 203, first SCR catalytic converter unit 31, Outer housing 2, second mixing tube 26, inner housing 51, second jacket tube 22, collar 204, second SCR catalytic converter unit 32, outer housing 2 and tube 30. The outer housing 2 forms different sections of the flow channel K with various parts of the housing wall that are not numbered in detail.
Die Vorrichtung 1 ist teilweise symmetrisch zu einer zentralen Achse Z aufgebaut. Das Zentralrohr 20, die beiden Mantelrohre 21 , 22, die Filtereinheit 6 sowie das Zwischengehäuse 28 sind ebenso koaxial zu der zentralen Achse Z angeordnet wie eine separate Einrichtung 7 zum Zuführen von Brennstoff, die von außen an das Außengehäuse 2 angesetzt ist. Jede der beiden SCR-Katalysator-Einheiten 31 , 32 umfasst jeweils vier Katalysatoren 31 a-d, 32a-d, die gemäß der Schnittansicht A-A nach Figur 3 symmetrisch um jeweils 90° versetzt um die zentrale Achse Z umlaufend positioniert sind. Im Außengehäuse 2 sind mehrere Zwischenböden zur Lagerung der Komponenten vorgesehen. Zwischenböden 241 , 242 sind beispielhaft dargestellt. The device 1 is constructed partially symmetrically to a central Z axis. The central tube 20, the two casing tubes 21, 22, the filter unit 6 and the intermediate housing 28 are also arranged coaxially to the central axis Z, as is a separate device 7 for supplying fuel, which is attached to the outer housing 2 from the outside. Each of the two SCR catalytic converter units 31, 32 comprises four catalytic converters 31 a-d, 32 a-d, which are positioned circumferentially around the central axis Z, symmetrically offset by 90° in each case according to the sectional view A-A according to FIG. Several shelves are provided in the outer housing 2 for storing the components. Shelves 241, 242 are shown as examples.
In dem Strömungskanal K sind insgesamt drei Wärmetransferzonen zum Übertragen von Wärme von einem heißen Abgasstrom zu einem relativ zum heißen Abgasstrom kälteren Abgasstrom vorgesehen. Speziell sind die Wärmetransferzonen als „duct-in- duct“ ausgebildet. Am Beispiel der vorderen Wärmetransferzone umfasst die „duct- in-duct“-Anordnungen zwei Kanalabschnitte K1 a, K1 b mit einer gemeinsamen vorderen Kanalwand KW1. Der Kanalabschnitt K1a wird durch einen vorderen Teil des Zentralrohrs 20 gebildet. Der Kanalabschnitt K1 b wird durch den äußeren vorderen Teil des Zentralrohrs 20 nach innen begrenzt und durch die Innenseite des ersten Mantelrohrs 21 nach außen begrenzt. Die beiden Kanalabschnitte K1 a, K1 b sind durch das Zentralrohr 20 und damit durch eine gemeinsame Kanalwand KW1 voneinander getrennt. Die beiden Kanalabschnitte K1a, K1 b sind in einer Richtung rechtwinklig zu einer Strömungsrichtung S, in diesem Fall in radialer Richtung zu der zentrale Achse Z nebeneinander angeordnet. Zudem sind die beiden Kanalabschnitte K1 a, K1 b in Strömungsrichtung S derart nacheinander angeordnet, dass der Abgasstrom nach dem ersten Kanalabschnitt K1a zunächst weitere Bauteile des Strömungskanals K durchströmt, bevor er den zweiten Kanalabschnitt K1 b durchströmt. Diese beiden vorderen Kanalabschnitte K1 a, K1 b bilden ein vorderes Paar P1 von Kanalabschnitten. In the flow channel K, a total of three heat transfer zones are provided for transferring heat from a hot exhaust gas stream to an exhaust gas stream that is colder relative to the hot exhaust gas stream. The heat transfer zones are specially designed as “duct-in-duct”. Using the front heat transfer zone as an example, the “duct-in-duct” arrangement includes two channel sections K1a, K1b with a common front channel wall KW1. The channel section K1a is formed by a front part of the central tube 20 . The channel section K1b is bounded on the inside by the outer front part of the central tube 20 and bounded on the outside by the inside of the first jacket tube 21 . The two channel sections K1 a, K1 b are separated from one another by the central tube 20 and thus by a common channel wall KW1. The two channel sections K1a, K1b are arranged next to one another in a direction perpendicular to a direction of flow S, in this case in a radial direction to the central axis Z. In addition, the two duct sections K1a, K1b are arranged one after the other in the flow direction S such that the exhaust gas flow after the first duct section K1a first flows through other components of the flow duct K before it flows through the second duct section K1b. These two front channel sections K1a, K1b form a front pair P1 of channel sections.
Ein zweites und hinteres Paar P2 von Kanalabschnitten K2a, K2b, die eine hintere Wärmetransferzone nach dem „duct-in-duct“-Prinzip bilden, umfasst den hinteren Teil des Zentralrohrs 20 sowie das zweite Mantelrohr 22. Auch hier begrenzt das Zentralrohr 20 den Kanalabschnitt K2a nach außen und den Kanalabschnitt K2b nach innen. Das zweite Mantelrohr 22 begrenzt den Kanalabschnitt K2b nach außen. Aus dieser Anordnung ergibt sich die rechtwinklig zur Strömungsrichtung S angeordnete benachbarte Geometrie mit nur einer gemeinsamen Kanalwand KW2. Nach dem Kanalabschnitt K2a werden auch bei dem hinteren Paar zunächst weitere Bauteile des Strömungskanals K durchströmt, bevor der zweite Kanalabschnitt K2b durchströmt wird. A second and rear pair P2 of channel sections K2a, K2b, which form a rear heat transfer zone according to the "duct-in-duct" principle, includes the rear part of the central tube 20 and the second jacket tube 22. Here, too, the central tube 20 delimits the channel section K2a to the outside and the channel section K2b to the inside. The second jacket tube 22 delimits the channel section K2b to the outside. This arrangement results in the adjacent geometry arranged at right angles to the flow direction S with only one common channel wall KW2. After the channel section K2a, further components of the flow channel K are also initially flowed through in the rear pair before the second channel section K2b is flowed through.
Die dritte Wärmetransferzone mit einer gemeinsamen Kanalwand KW3 wird durch das obere Paar P3 von Kanalabschnitten K3a, K3b gebildet. Der Kanalabschnitt K3a wird durch das Kanalsegment 27 gebildet, das das Verbindungsrohr 29 und das Zwischengehäuse 28 umfasst und das den Kanalabschnitt K3a nach außen begrenzt und die gemeinsame Kanalwand KW3 bildet. Der Kanalabschnitt K3b wird nach innen durch das Verbindungsrohr 29 und das Zwischengehäuse 28 begrenzt. Nach außen bildet im Wesentlichen die Innenseite des Außengehäuses 2 die Grenze für den Kanalabschnitt K3b. The third heat transfer zone with a common channel wall KW3 is formed by the upper pair P3 of channel sections K3a, K3b. The duct section K3a is formed by the duct segment 27, which includes the connecting pipe 29 and the intermediate housing 28 and which outwardly delimits the duct section K3a and forms the common duct wall KW3. The channel section K3b is delimited on the inside by the connecting pipe 29 and the intermediate housing 28. On the outside, essentially the inside of the outer housing 2 forms the boundary for the channel section K3b.
Zudem sind zwei SCR-Katalysator-Einheiten 31 , 32 vorgesehen und stromauf jeder SCR-Katalysator-Einheit 31 , 32 ist jeweils ein Injektor 41a, 42a zum Einspritzen von Zusatzstoff angeordnet. Die Art der Wärmeübertragung in den Wärmetransferzonen zu dem relativ kälteren Abgasstrom wird mit passiverWärmezufuhr umschrieben. Im Gegenteil dazu wird mit Hilfe der zusätzlichen am Außengehäuse 2 angeordneten Einrichtung 7 zum Erzeugen von thermischer Energie eine aktive Wärmezufuhr in den Abgasstrom erreicht. Hierzu ist im Zwischengehäuse 28 ein Flammrohr 70 vorgesehen, das vom Abgasstrom um- und durchströmt wird. Der heiße Abgasstrom durchströmt unmittelbar nacheinander den oberen Kanalabschnitt K3a, den vorderen Kanalabschnitt K1a und den hinteren Kanalabschnitt K2a. Zum ersten passiven Wärmeaustausch kommt es in dem vorderen Paar P1 im vorderen, äußeren Kanalabschnitt K1 b im ersten Mantelrohr 21 , nachdem dem Abgasstrom über einen Injektor 41a Reduktionsmittel zugeführt wurde und bevor er in die erste SCR-Katalysator-Einheit 31 einströmt. Nachfolgend ist der hintere, äußere Kanalabschnitt K2b vorgesehen, um den Abgasstrom nach dem Zuführen von Reduktionsmittel mit einem Injektor 42a erneut passiv zu erwärmen, bevor er in die zweite SCR-Katalysator-Einheit 32 einströmt. Der obere, äußere Kanalabschnitt K3b ermöglicht, den Abgasstrom zusätzlich mit passiver Wärme an der Stelle zu versorgen, an der mit Hilfe der Einrichtung 7 dem Abgasstrom aktiv Wärme zugeführt wird. Die aktive Wärme wird im oberen Kanalabschnitt K3a zugeführt und über die gemeinsame Kanalwand KW3 passiv im oberen Kanalabschnitt K3b an den Abgasstrom übertragen. Mit dem dritten Paar ist auch erreicht, dass der Abgasstrom vor der zweiten Behandlung mit Reduktionsmittel und nach einem entsprechend langen Strömungsweg ein zweites Mal mit passiver Wärme versorgt wird. Das erste Mal vor dem zweiten Injektor 42a vor dem Mischrohr 26 und das zweite Mal nach dem zweiten Mischrohr 26 unmittelbar vor der zweiten SCR- Katalysator-Einheit 32. In addition, two SCR catalytic converter units 31, 32 are provided and upstream of each SCR catalytic converter unit 31, 32 there is an injector 41a, 42a for injecting additive. The type of heat transfer in the heat transfer zones to the relatively colder exhaust gas stream is described as passive heat input. On the contrary, with the help of the additional device 7 arranged on the outer housing 2 for generating thermal energy, an active supply of heat into the exhaust gas flow is achieved. For this purpose, a flame tube 70 is provided in the intermediate housing 28, through which the exhaust gas stream flows. The hot exhaust gas stream flows through the upper duct section K3a, the front duct section K1a and the rear duct section K2a in immediate succession. The first passive heat exchange occurs in the front pair P1 in the front, outer channel section K1b in the first casing tube 21 after the exhaust gas flow has been supplied with reducing agent via an injector 41a and before it flows into the first SCR catalytic converter unit 31 . The rear, outer channel section K2b is then provided in order to again passively heat the exhaust gas flow after the supply of reducing agent with an injector 42a before it flows into the second SCR catalytic converter unit 32 . The upper, outer channel section K3b makes it possible to additionally supply the exhaust gas flow with passive heat at the point at which heat is actively supplied to the exhaust gas flow with the aid of the device 7 . The active heat is supplied in the upper channel section K3a and passively transferred to the exhaust gas flow in the upper channel section K3b via the common channel wall KW3. The third pair also ensures that the exhaust gas flow is supplied with passive heat a second time before the second treatment with reducing agent and after a correspondingly long flow path. The first time before the second injector 42a before the mixing tube 26 and the second time after the second mixing tube 26 immediately before the second SCR catalytic converter unit 32.
Mit dieser Architektur wird erreicht, dass der Wärmetransfer in den drei „duct-in-duct“- Wärmetransferzonen nacheinander durchgeführt wird. Ein theoretisches Strömungsteilchen wird dem hinteren Wärmetransfer erst dann zugeführt, wenn der vordere Wärmetransfer abgeschlossen ist. Entsprechend findet der obere Wärmetransfer erst dann statt, wenn der hintere Wärmetransfer abgeschlossen ist. Ein weiterer maßgeblicher Aspekt der Architektur ist es, dass der Abgasstrom insgesamt sechs Mal gefaltet, also um 180° umgelenkt wird. Ein dafür maßgebliches Bauteil ist der jeweils am Ende des Zentralrohrs 20 angeordnete und in Figur 2 verdeutlicht dargestellte Kragen 203, 204, der eine Faltung des Abgasstroms bewirkt, der aus dem jeweiligen Mantelrohr 21 , 22 austritt und nach der Faltung in die Katalysatoren 31a-d, 32a-d einströmt. Der Kragen 203, 204 lenkt mit seiner Außenseite 203a, 204a den aus dem Mantelrohr 21 , 22 ausströmenden Abgasstrom um 180° um. Der Kragen 203 bildet an der Einlassseite 201 mit seiner Innenseite 203i einen Trichter für das in das Zentralrohr 20 einströmende Abgas und der Kragen 204 bildet an der Auslassseite 202 mit seiner Innenseite 204i einen Diffusor für das aus dem Zentralrohr 20 ausströmende Abgas. With this architecture it is achieved that the heat transfer is carried out in the three "duct-in-duct" heat transfer zones one after the other. A theoretical flow particle is not added to the rear heat transfer until the front heat transfer is complete. Correspondingly, the upper heat transfer only takes place when the rear heat transfer is complete. Another key aspect of the architecture is that the exhaust gas flow is folded a total of six times, i.e. deflected by 180°. A decisive component for this is the collar which is arranged at the end of the central tube 20 and is illustrated in FIG 203, 204, which causes the exhaust gas flow to fold, which emerges from the respective jacket tube 21, 22 and, after folding, flows into the catalytic converters 31a-d, 32a-d. The collar 203, 204 deflects the exhaust gas stream flowing out of the jacket pipe 21, 22 by 180° with its outer side 203a, 204a. The collar 203 forms on the inlet side 201 with its inside 203i a funnel for the exhaust gas flowing into the central tube 20 and the collar 204 forms on the outlet side 202 with its inside 204i a diffuser for the exhaust gas flowing out of the central tube 20 .
Die zahlreichen Strömungswege sind auch in den Figuren 3-5 verdeutlicht, welche jeweils einen Schnitt in einer Ebene zeigen, wie sie in Figur 1 erkennbar ist. Die dargestellten Öffnungen sind, soweit sie keine Bezugsziffern tragen, nicht näher beschriebene Öffnungen in einem der Zwischenböden. Figur 3, ein Schnitt A-A durch die hintere Wärmetransferzone, lässt die vier Katalysatoren 32a-d erkennen, die um das Zentralrohr 20 und das zweite Mantelrohr 22 angeordnet sind. Im oberen Bereich ist das erste Mischrohr 25 im Schnitt dargestellt. Im unteren Bereich erkennt man in der Flucht das Rohr 30, welches den Abgasstrom im Außengehäuse 2 sammelt und in das Auslassrohr 11 führt. Der Schnitt B-B liegt in einem Zwischenboden 241 unmittelbar vor den vier Katalysatoren 32a-d. Der Abgasstrom strömt im oberen Bereich aus dem ersten Mischrohr 25 in das Innengehäuse 50. Im unteren Bereich strömt das Abgas aus dem Innengehäuse 51 in das zweite Mantelrohr 22. Zudem strömt ein weiterer Teil des Abgasstroms aus den Katalysatoren 32a-d heraus und findet seinen Weg durch mehrere Öffnungen in dem Zwischenboden nach unten hin zum Rohr 30. Nach dem Schnitt C-C bewegt sich der Abgasstrom gemäß Figur 5 aus dem Verbindungsrohr 29 heraus in das Zwischengehäuse 28 hinein und umströmt das im Zwischengehäuse 28 angeordnete Flammrohr 70, welches koaxial zum Zentralrohr 20 angeordnet ist. Der aus den in diesem Schnitt nicht dargestellten Katalysatoren 31a- d austretende Abgasstrom findet seinen Weg durch nicht näher bezifferte Öffnungen in einem Zwischenboden hin zu dem zweiten Mischrohr 26. Stromab des Zentralrohrs 20 ist ein Leitblech 23 vorgesehen, durch das eine Verteilung des Abgasstroms auf einen wiederum stromab vorgesehenen Filterkörper 60 der Filtereinheit 6 erfolgt, der in einem Filtergehäuse 61 gelagert ist. In den Figuren 6 bis 8 sind verschiedene vereinfachte Modelle für die passive und aktive Wärmezufuhr dargestellt, die sich mit der vorstehend beschriebenen konkreten Geometrie einer Box verwirklichen lassen. Für eine bessere Übersicht wird bei diesen Modellen auf die Darstellung von Außengehäuse, Einlassrohr, Auslassrohr, Kanalsegment und Zwischengehäuse sowie weiteren Bauteilen verzichtet. Nach FigurThe numerous flow paths are also illustrated in FIGS. 3-5, which each show a section in a plane as can be seen in FIG. The openings shown are, insofar as they do not have reference numbers, openings in one of the intermediate floors that are not described in detail. FIG. 3, a section AA through the rear heat transfer zone, shows the four catalytic converters 32a-d, which are arranged around the central tube 20 and the second casing tube 22. The first mixing tube 25 is shown in section in the upper area. In the lower area, the pipe 30 can be seen in alignment, which collects the flow of exhaust gas in the outer housing 2 and leads it into the outlet pipe 11 . Section BB is in an intermediate floor 241 immediately in front of the four catalytic converters 32a-d. In the upper area, the exhaust gas stream flows out of the first mixing tube 25 into the inner housing 50. In the lower area, the exhaust gas flows out of the inner housing 51 into the second jacket tube 22. Another part of the exhaust gas stream also flows out of the catalytic converters 32a-d and finds its way through several openings in the intermediate floor downwards to pipe 30. After section CC, the exhaust gas flow moves out of connecting pipe 29 into intermediate housing 28 according to FIG is. The exhaust gas flow emerging from the catalytic converters 31a-d, not shown in this section, finds its way through unspecified openings in an intermediate floor to the second mixing tube 26. A baffle plate 23 is provided downstream of the central tube 20, through which the exhaust gas flow is distributed to in turn downstream provided filter body 60 of the filter unit 6 takes place, which is mounted in a filter housing 61. Various simplified models for the passive and active supply of heat are shown in FIGS. 6 to 8, which can be realized with the concrete geometry of a box described above. For a better overview, the outer housing, inlet pipe, outlet pipe, channel segment and intermediate housing as well as other components are not shown on these models. By figure
6 strömt das noch relativ heiße Abgas in das Zentralrohr 20 und wird nach der Injektion mit dem ersten Injektor 41a mit Reduktionsmittel in der vorderen „duct-in-duct“- Anordnung durch die gemeinsame vordere Kanalwand KW1 das erste Mal im ersten Mantelrohr 21 passiv erwärmt, bevor es in die erste SCR-Katalysator-Einheit 31 einströmt. Danach erfolgt die zweite Injektion mit dem Injektor 42a im zweiten Mischrohr 26 und die zweite passive Erwärmung in der hinteren ,,duct-in-duct“-Anordnung durch die zweite gemeinsame Kanalwand KW2, bevor es die zweite SCR-Katalysator- Einheit 32 durchströmt. Ergänzend zu den passiven Erwärmungen wird gemäß Figur6, the still relatively hot exhaust gas flows into the central pipe 20 and, after injection with the first injector 41a with reducing agent in the front "duct-in-duct" arrangement, is passively heated for the first time in the first jacket pipe 21 through the common front duct wall KW1 , before it flows into the first SCR catalytic converter unit 31 . The second injection then takes place with the injector 42a in the second mixing tube 26 and the second passive heating in the rear “duct-in-duct” arrangement through the second common duct wall KW2 before it flows through the second SCR catalytic converter unit 32. In addition to the passive heating is shown in FIG
7 dem Abgasstrom unmittelbar nach dem Einströmen in die Box aktive Wärme über die Einrichtung 7 zugeführt. Die weitere Möglichkeit, von dem aktiv erhitzten Abgasstrom passive Wärme übereine „duct-in-duct“-Anordnung abzugreifen, ist in Figur7 active heat is supplied to the exhaust gas stream via the device 7 immediately after it has flowed into the box. The other possibility of tapping passive heat from the actively heated exhaust gas flow via a "duct-in-duct" arrangement is shown in FIG
8 dargestellt, nach der der Abgasstrom vor dem Eintreten in das zweite Mischrohr 26 durch die gemeinsame dritte Kanalwand KW3 passive Wärme aufnimmt. 8, according to which the exhaust gas flow absorbs passive heat before entering the second mixing tube 26 through the common third duct wall KW3.
Das Herzstück der Box-Geometrie, wie sie in den Figuren 1 bis 5 dargestellt ist, bilden die beiden Innengehäuse 50, 51 , die in den Figuren 9 und 10 dargestellt sind. Das jeweilige Innengehäuse 50, 51 verbindet das Mischrohr 25, 26 mit dem Mantelrohr 21 , 22, auf das folgend stromab die Katalysatoren 32a-32d angeordnet sind. Die das Mantelrohr 21 , 22 umgreifende Gestaltung der beiden Innengehäuse 50, 51 ermöglicht es, die beiden Gehäuse um das Mantelrohr 21 , 22 herum aneinander anzuordnen und gleichzeitig zwei Abgasströme unabhängig voneinander und entgegengesetzt in Richtung der zentralen Achse Z durch das Außengehäuse 2 zu führen. The core of the box geometry, as shown in FIGS. 1 to 5, is formed by the two inner housings 50, 51, which are shown in FIGS. 9 and 10. The respective inner housing 50, 51 connects the mixing tube 25, 26 to the casing tube 21, 22, on which the catalytic converters 32a-32d are arranged downstream. The design of the two inner housings 50, 51 that encompasses the jacket pipe 21, 22 makes it possible to arrange the two housings next to one another around the jacket pipe 21, 22 and at the same time to guide two exhaust gas flows independently of one another and in opposite directions in the direction of the central axis Z through the outer housing 2.
Das jeweilige Innengehäuse 50, 51 ist um die zentrale Achse Z herum angeordnet und schließt ein Volumen ein, das das Mischrohr 25, 26 in seiner Funktion als Einlassstutzen sowie das Mantelrohr 21 , 22 in seiner Funktion als Auslassstutzen verbindet. Das Innengehäuse begrenzt völlig unabhängig vom Außengehäuse ein separates oder eigenes Volumen. Der Einlassstutzen 25, 26 ist parallel und azentrisch zu der zentralen Achse Z und der Auslassstutzen 21 , 22 relativ zum Innengehäuse 50, 51 und in axialer Richtung der zentralen Achse Z gegenüberliegend zum Einlassstutzen 25, 26 und koaxial zu der zentralen Achse Z angeordnet. Das Innengehäuse 50, 51 ist mit dem Zentralrohr 20 derart kombiniert, dass das Zentralrohr 20 das Innengehäuse 50, 51 vollständig durchsetzt, wobei das Innengehäuse 50, 51 gegenüber dem Zentralrohr 20 abgedichtet ist. Zwei gleiche Innengehäuse 50, 51 in radialer Richtung zur zentralen Achse Z aneinander positioniert bilden ein punktsymmetrisches Gesamtgehäuse G mit zwei getrennten Kammern, wobei das Gesamtgehäuse G eine um die gleiche zentrale Achse Z umlaufende Kontur zum Befestigen in einem Außengehäuse 2 aufweist. Die Innengehäuse 51 , 52 weisen jeweils eine gleiche randseitige Außenkontur auf, die zu dem Gesamtgehäuse G zusammengesetzt einen um die zentrale Achse Z kreisförmig, elliptisch oder stetig umlaufenden äußeren Kragen 52 ergibt. Das Außengehäuse 2 weist einen Zwischenboden 242 auf, in den die Innengehäuse 50, 51 eingesetzt sind. Das Innengehäuse 50, 51 weist eine um den Auslassstutzen 21 , 22 umlaufende und halbkreisförmige, das Volumen begrenzende Kontur auf, die konzentrisch zu der zentralen Achse Z ist. Die Geometrie eines einzelnen Zwischengehäuses 50 ist in Figur 10 näher dargestellt. The respective inner housing 50, 51 is arranged around the central axis Z and encloses a volume that connects the mixing tube 25, 26 in its function as an inlet connector and the jacket tube 21, 22 in its function as an outlet connector. The inner housing delimits a separate or dedicated volume, completely independent of the outer housing. The inlet port 25, 26 is parallel and acentric to of the central axis Z and the outlet port 21, 22 relative to the inner housing 50, 51 and in the axial direction of the central axis Z opposite to the inlet port 25, 26 and coaxial with the central axis Z arranged. The inner housing 50, 51 is combined with the central tube 20 in such a way that the central tube 20 completely penetrates the inner housing 50, 51, with the inner housing 50, 51 being sealed off from the central tube 20. Two identical inner housings 50, 51 positioned next to one another in the radial direction to the central axis Z form a point-symmetrical overall housing G with two separate chambers, the overall housing G having a contour running around the same central axis Z for fastening in an outer housing 2. The inner housings 51 , 52 each have the same outer contour on the edge side, which when combined to form the overall housing G results in an outer collar 52 which runs around the central axis Z in a circular, elliptical or continuous manner. The outer housing 2 has an intermediate base 242 into which the inner housings 50, 51 are inserted. The inner housing 50, 51 has a volume-limiting semi-circular contour which runs around the outlet socket 21, 22 and is concentric with the central axis Z. The geometry of an individual intermediate housing 50 is shown in more detail in FIG.

Claims

Patentansprüche Vorrichtung (1 ) zum Leiten und zum Behandeln eines Abgasstroms mit a) einem Außengehäuse (2), einem an das Außengehäuse (2) anschließenden Einlassrohr (10) und einem an das Außengehäuse (2) anschließenden Auslassrohr (11 ), b) einem im Außengehäuse (2) angeordneten und den Abgasstrom leitenden Strömungskanal (K) mit einer Kanalwand und mit mehreren Kanalabschnitten, der das Einlassrohr (10) mit dem Auslassrohr (11 ) verbindet, c) wobei der Strömungskanal (K) zwei Kanalabschnitte (K1a, K1 b) mit einer gemeinsamen vorderen Kanalwand (KW1 ) aufweist, wobei die beiden Kanalabschnitte (K1a, K1 b) in einer Richtung rechtwinklig zu einer Strömungsrichtung (S) in diesem Strömungskanal (K) nebeneinander und in Strömungsrichtung (S) nacheinander angeordnet sind und ein vorderes Paar (P1 ) bilden dadurch gekennzeichnet, dass d) der Strömungskanal (K) zwei hintere Kanalabschnitte (K2a, K2b) mit einer gemeinsamen hinteren Kanalwand (KW2) aufweist, wobei die beiden hinteren Kanalabschnitte (K2a, K2b) in einer Richtung rechtwinklig zu der Strömungsrichtung (S) nebeneinander und in Strömungsrichtung (S) nacheinander angeordnet sind und ein hinteres Paar (P2) bilden, wobei e) eine erste SCR-Katalysator-Einheit (31 ) im Strömungskanal (K) stromab der beiden vorderen Kanalabschnitte (K1a, K1 b) und eine zweite SCR- Katalysator-Einheit (32) im Strömungskanal (K) stromab der beiden hinteren Kanalabschnitte (K2a, K2b) angeordnet ist. Vorrichtung (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass die Strömungsrichtungen S in den beiden vorderen Kanalabschnitten (K1a, K1 b) entgegengesetzt und in den beiden hinteren Kanalabschnitten (K2a, K2b) gleichgerichtet sind. Vorrichtung (1 ) nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass eine Einrichtung (7) für eine aktive Wärmezufuhr in den Strömungskanal (K) vorgesehen ist. Vorrichtung (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Strömungskanal (K) zwei weitere obere Kanalabschnitte (K3a, K3b) mit einer gemeinsamen oberen Kanalwand (KW3) aufweist, wobei die beiden oberen Kanalabschnitte (K3a, K3b) in einer Richtung rechtwinklig zu einer Strömungsrichtung nebeneinander und in Strömungsrichtung (S) nacheinander angeordnet sind und ein oberes Paar (P3) bilden. Vorrichtung (1 ) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass alle Kanalabschnitte (K1a-K3b) in Strömungsrichtung (S) nacheinander angeordnet sind. Vorrichtung (1 ) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass a) der erste Kanalabschnitt (K2a) des hinteren Paares (P2) stromauf der ersten SCR-Katalysator-Einheit (31 ) und der zweite Kanalabschnitt (K2b) des hinteren Paares (P2) stromab der ersten SCR-Katalysator-Einheit (31 ) angeordnet ist und/oder b) der erste Kanalabschnitt (K3a) des oberen Paares (P3) stromauf des ersten Kanalabschnitts (K1 a) des vorderen Paares (P1 ) und der zweite Kanalabschnitt (K3b) des oberen Paares (P3) stromab der ersten SCR-Katalysator- Einheit (31 ) angeordnet ist und/oder c) der zweite Kanalabschnitt (K3b) des oberen Paares (P3) stromauf des zweiten Kanalabschnitts (K2b) des hinteren Paares (P2) angeordnet ist. Vorrichtung (1 ) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass stromauf der ersten SCR-Katalysator-Einheit (31 ) eine erste Öffnung (41 ) im Strömungskanal (K) für das Einspritzen von Zusatzstoff in den Strömungskanal (K) und/oder stromab der ersten SCR-Katalysator-Einheit (31 ) und stromauf der zweiten SCR-Katalysator-Einheit (32) eine zweite Öffnung (42) im Strömungskanal (K) für das Einspritzen von Zusatzstoff in den Strömungskanal (K) vorgesehen ist.. - 18 - Vorrichtung (1 ) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass in Strömungsrichtung (S) zwischen jeweils zwei der folgenden Bauteile das vordere Paar (P1 ) und zwischen jeweils zwei der folgenden Bauteile jeweils das hintere Paar (P2) angeordnet ist: erste Öffnung (4 ) erstes Mischrohr (25) erste SCR-Katalysator-Einheit (31 ) zweite Öffnung (42) zweites Mischrohr (26) zweite SCR-Katalysator-Einheit (32). Vorrichtung (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Strömungskanal (K) derart aufgebaut ist, dass der Strömungskanal (K) den Abgasstrom vier- bis achtmal, bevorzugt sechsmal um 180° umlenkt oder faltet. Vorrichtung (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das vordere Paar (P1) durch ein Zentralrohr (20) und ein um das Zentralrohr (20) herum oder koaxial zu dem Zentralrohr (20) angeordnetes erstes Mantelrohr (21 ) gebildet ist, wobei ein erster Teil des Zentralrohrs (20) die gemeinsame erste Kanalwand (KW1 ) bildet, das Zentralrohr (20) koaxial zu einer zentralen Achse (Z) angeordnet ist und das hintere Paar (P2) durch das Zentralrohr (20) und ein um das Zentralrohr (20) herum oder koaxial zu dem Zentralrohr (20) angeordnetes zweites Mantelrohr (22) gebildet ist und ein zweiter Teil des Zentralrohrs (20) die gemeinsame hintere Kanalwand (KW2) bildet. - 19 - Vorrichtung ( ) nach einem der vorhergehenden Ansprüche mit einem Innengehäuse (50, 51 ) zum Leiten eines Abgasstroms und zum Anordnen und Befestigen innerhalb eines Außengehäuses (2), wobei das Innengehäuse (50, 51 ) um die zentrale Achse (Z) herum angeordnet ein Volumen einschließt und das Innengehäuse (50, 51 ) das Mischrohr (25, 26) als Einlassstutzen sowie das Mantelrohr (21 , 22) als Auslassstutzen aufweist, wobei das Mischrohr (25, 26) und das Mantelrohr (21 , 22) an das Innengehäuse (50, 51 ) anschließen und durch das Innengehäuse (50, 51 ) verbunden sind, dadurch gekennzeichnet, dass das Mischrohr (25, 26) parallel und azentrisch zu der zentralen Achse (Z) und das Mantelrohr (21 , 22) relativ zum Innengehäuse (50, 51 ) und in axialer Richtung der zentralen Achse (Z) gegenüberliegend zum Mischrohr (25, 26) und koaxial zu der zentralen Achse (Z) angeordnet ist. Vorrichtung (1 ) nach Anspruch 11 , dadurch gekennzeichnet, dass das Innengehäuse (50, 51 ) mit dem Zentralrohr (20) kombiniert ist und das Zentralrohr (20) koaxial zu der zentralen Achse (Z) und derart im Mantelrohr (21 , 22) angeordnet ist, dass das Zentralrohr (20) das Innengehäuse (50, 51 ) und/oder das Mantelrohr (21 , 22) vollständig durchsetzt. System bestehend aus einer Vorrichtung zum Behandeln von Abgas nach einem der vorhergehenden Ansprüche und einer Abgasanlage für eine Verbrennungskraftmaschine, wobei die Abgasanlage ein Krümmersystem, ein System mit einem Oxidationskatalysator, ein Rohrsystem und ein Schalldämpfersystem sowie Sensoren umfasst. Device (1) for guiding and treating an exhaust gas flow with a) an outer housing (2), an inlet pipe (10) connected to the outer housing (2) and an outlet pipe (11) connected to the outer housing (2), b) a Flow channel (K) arranged in the outer housing (2) and guiding the flow of exhaust gas, having a channel wall and having a plurality of channel sections, which connects the inlet pipe (10) to the outlet pipe (11), c) the flow channel (K) having two channel sections (K1a, K1 b) having a common front channel wall (KW1), the two channel sections (K1a, K1b) being arranged next to one another in a direction perpendicular to a direction of flow (S) in this flow channel (K) and one after the other in the direction of flow (S) and a front pair (P1) characterized in that d) the flow channel (K) has two rear channel sections (K2a, K2b) with a common rear channel wall (KW2), the two rear channel sections (K2a, K2b) in a direction at right angles to are arranged side by side in the direction of flow (S) and one after the other in the direction of flow (S) and form a rear pair (P2), with e) a first SCR catalytic converter unit (31) in the flow channel (K) downstream of the two front channel sections (K1a, K1 b) and a second SCR catalytic converter unit (32) in the flow channel (K) downstream of the two rear channel sections (K2a, K2b) is arranged. Device (1) according to claim 1, characterized in that the directions of flow S in the two front channel sections (K1a, K1b) are opposite and in the two rear channel sections (K2a, K2b) are directed in the same direction. Device (1) according to claim 1 or claim 2, characterized in that a device (7) for an active supply of heat in the flow channel (K) is provided. Device (1) according to one of the preceding claims, characterized in that the flow channel (K) has two further upper channel sections (K3a, K3b) with a common upper channel wall (KW3), the two upper channel sections (K3a, K3b) in one Direction perpendicular to a flow direction are arranged next to each other and in the flow direction (S) one after the other and form an upper pair (P3). Device (1) according to one of the preceding claims, characterized in that all channel sections (K1a-K3b) in the flow direction (S) are arranged one after the other. Device (1) according to one of the preceding claims, characterized in that a) the first channel section (K2a) of the rear pair (P2) upstream of the first SCR catalytic converter unit (31) and the second channel section (K2b) of the rear pair ( P2) is arranged downstream of the first SCR catalytic converter unit (31) and/or b) the first channel section (K3a) of the upper pair (P3) upstream of the first channel section (K1 a) of the front pair (P1) and the second channel section (K3b) of the upper pair (P3) is arranged downstream of the first SCR catalytic converter unit (31) and/or c) the second channel section (K3b) of the upper pair (P3) upstream of the second channel section (K2b) of the rear pair ( P2) is arranged. Device (1) according to any one of the preceding claims, characterized in that upstream of the first SCR catalytic converter unit (31) a first opening (41) in the flow channel (K) for injecting additive into the flow channel (K) and / or downstream of the first SCR catalytic converter unit (31) and upstream of the second SCR catalytic converter unit (32), a second opening (42) is provided in the flow channel (K) for injecting additive into the flow channel (K). - 18 - Device (1) according to one of the preceding claims, characterized in that in the direction of flow (S) the front pair (P1) is arranged between each two of the following components and the rear pair (P2) is arranged between each two of the following components : first opening (4) first mixing tube (25) first SCR catalytic converter unit (31) second opening (42) second mixing tube (26) second SCR catalytic converter unit (32). Device (1) according to one of the preceding claims, characterized in that the flow channel (K) is constructed such that the flow channel (K) deflects or folds the exhaust gas flow four to eight times, preferably six times by 180°. Device (1) according to one of the preceding claims, characterized in that the front pair (P1) is formed by a central tube (20) and a central tube (20) around or coaxially to the central tube (20) arranged first jacket tube (21). is, wherein a first part of the central tube (20) forms the common first channel wall (KW1), the central tube (20) is arranged coaxially to a central axis (Z) and the rear pair (P2) through the central tube (20) and a around the central tube (20) or coaxially to the central tube (20) arranged second jacket tube (22) is formed and a second part of the central tube (20) forms the common rear channel wall (KW2). - 19 - Device (10) according to any one of the preceding claims, having an inner housing (50, 51) for conducting an exhaust gas flow and for arranging and fastening within an outer housing (2), the inner housing (50, 51) rotating about the central axis (Z) arranged around enclosing a volume and the inner housing (50, 51) has the mixing tube (25, 26) as an inlet connector and the jacket tube (21, 22) as an outlet connector, the mixing tube (25, 26) and the jacket tube (21, 22) connect to the inner housing (50, 51) and are connected through the inner housing (50, 51), characterized in that the mixing tube (25, 26) is parallel and acentric to the central axis (Z) and the jacket tube (21, 22) is arranged relative to the inner housing (50, 51) and in the axial direction of the central axis (Z) opposite to the mixing tube (25, 26) and coaxially to the central axis (Z). Device (1) according to claim 11, characterized in that the inner housing (50, 51) is combined with the central tube (20) and the central tube (20) coaxially to the central axis (Z) and such in the jacket tube (21, 22) is arranged such that the central tube (20) completely penetrates the inner housing (50, 51) and/or the jacket tube (21, 22). System consisting of a device for treating exhaust gas according to one of the preceding claims and an exhaust system for an internal combustion engine, the exhaust system comprising a manifold system, a system with an oxidation catalyst, a pipe system and a silencer system and sensors.
PCT/EP2022/084955 2021-12-23 2022-12-08 Device for treating exhaust gas WO2023117457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202021004178 2021-12-23
DEDE202021004178.8 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023117457A1 true WO2023117457A1 (en) 2023-06-29

Family

ID=86901402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/084955 WO2023117457A1 (en) 2021-12-23 2022-12-08 Device for treating exhaust gas

Country Status (1)

Country Link
WO (1) WO2023117457A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69704351T2 (en) 1996-05-15 2001-12-13 Silentor Holding A/S, Hedehusene SILENCER
DE102010021438A1 (en) 2010-05-25 2011-12-01 Mtu Friedrichshafen Gmbh exhaust aftertreatment device
WO2014107129A1 (en) * 2013-01-04 2014-07-10 Scania Cv Ab Silencer including a particle filter, a vaporisation pipe and a scr-catalyst
DE102015004425A1 (en) 2014-04-04 2015-10-08 Scania Cv Ab Exhaust after-treatment device and a motor vehicle with such an exhaust aftertreatment device
EP2957739A1 (en) * 2013-06-10 2015-12-23 Eberspächer Exhaust Technology GmbH & Co. KG Exhaust gas unit for an internal combustion engine
WO2017034466A1 (en) * 2015-08-27 2017-03-02 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust gas stream
DE102020007553A1 (en) * 2020-12-10 2021-03-18 FEV Group GmbH Exhaust box for an exhaust aftertreatment system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69704351T2 (en) 1996-05-15 2001-12-13 Silentor Holding A/S, Hedehusene SILENCER
DE102010021438A1 (en) 2010-05-25 2011-12-01 Mtu Friedrichshafen Gmbh exhaust aftertreatment device
WO2011147556A1 (en) * 2010-05-25 2011-12-01 Mtu Friedrichshafen Gmbh Exhaust gas after-treatment device
WO2014107129A1 (en) * 2013-01-04 2014-07-10 Scania Cv Ab Silencer including a particle filter, a vaporisation pipe and a scr-catalyst
EP2957739A1 (en) * 2013-06-10 2015-12-23 Eberspächer Exhaust Technology GmbH & Co. KG Exhaust gas unit for an internal combustion engine
DE102015004425A1 (en) 2014-04-04 2015-10-08 Scania Cv Ab Exhaust after-treatment device and a motor vehicle with such an exhaust aftertreatment device
WO2017034466A1 (en) * 2015-08-27 2017-03-02 Scania Cv Ab Exhaust treatment system and method for treatment of an exhaust gas stream
DE102020007553A1 (en) * 2020-12-10 2021-03-18 FEV Group GmbH Exhaust box for an exhaust aftertreatment system

Similar Documents

Publication Publication Date Title
DE112008002531B4 (en) aftertreatment system
DE112012006960B4 (en) Exhaust system mixing device with impactor
DE112010005012B4 (en) exhaust aftertreatment system
DE102012016423B3 (en) Exhaust system with mixing and or evaporation device
EP1286026B1 (en) Exhaust system for a motor vehicle
EP2574750B1 (en) Mixing and/or evaporating device
EP3015672B1 (en) Exhaust gas treatment device
DE102009030963A1 (en) Device and method for cooling an exhaust gas
DE102014205782B4 (en) Exhaust gas purification device for internal combustion engines
EP2802754A2 (en) Cylinder block arrangement with an exhaust gas system
DE202021103400U1 (en) Vehicle exhaust system with end cap mixer
EP3365540B1 (en) Exhaust gas purification system and internal combustion engine with exhaust gas purification system
DE69002283T2 (en) GAS TURBINE ENGINE UNIT.
EP1795499A2 (en) Reformer, system comprising this reformer and process for operating the reformer
EP1984673B1 (en) Device for the combustion of organic substances
EP4086439A1 (en) Exhaust gas treatment module
WO2023117457A1 (en) Device for treating exhaust gas
DE102012014528A1 (en) Mixing- or evaporation device for exhaust system of internal combustion engine, particularly of motor vehicle, has guide blade that protrudes in direction towards long side wall, where additional guide blade protrudes in acute angle
DE102021134474B3 (en) Inner housing and device for treating exhaust gas
DE102021134471A1 (en) Apparatus for treating exhaust gas I
WO2023117453A1 (en) Device for treating exhaust gas iii
WO2023117462A1 (en) Device for treating exhaust gas ii
DE102021134473A1 (en) Exhaust Gas Treatment Device III
DE102021134472A1 (en) Device for treating waste gas II
DE102020116485A1 (en) EXHAUST SYSTEM COMPONENT WITH SCREW-SHAPED HEATING DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22835247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE