SE537674C2 - Control system for autonomous vehicles, and a method for the control system - Google Patents

Control system for autonomous vehicles, and a method for the control system Download PDF

Info

Publication number
SE537674C2
SE537674C2 SE1350332A SE1350332A SE537674C2 SE 537674 C2 SE537674 C2 SE 537674C2 SE 1350332 A SE1350332 A SE 1350332A SE 1350332 A SE1350332 A SE 1350332A SE 537674 C2 SE537674 C2 SE 537674C2
Authority
SE
Sweden
Prior art keywords
vehicle
control
speed
friction
control system
Prior art date
Application number
SE1350332A
Other languages
Swedish (sv)
Other versions
SE1350332A1 (en
Inventor
Jon Andersson
Joseph Ah-King
Tom Nyström
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1350332A priority Critical patent/SE537674C2/en
Priority to DE112014001065.0T priority patent/DE112014001065T5/en
Priority to BR112015019993A priority patent/BR112015019993A2/en
Priority to PCT/SE2014/050310 priority patent/WO2014148989A1/en
Publication of SE1350332A1 publication Critical patent/SE1350332A1/en
Publication of SE537674C2 publication Critical patent/SE537674C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • B60W60/0018Planning or execution of driving tasks specially adapted for safety by employing degraded modes, e.g. reducing speed, in response to suboptimal conditions
    • B60W60/00182Planning or execution of driving tasks specially adapted for safety by employing degraded modes, e.g. reducing speed, in response to suboptimal conditions in response to weather conditions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/40Control within particular dimensions
    • G05D1/43Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/617Safety or protection, e.g. defining protection zones around obstacles or avoiding hazards
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/65Following a desired speed profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/20Static objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • B60W2710/207Steering angle of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/12Lateral speed
    • B60W2720/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Sammandrao Ett reglersystem (2) anpassat att reglera ett autonomt fordon (4) langs en planerad karvag, varvid reglersystemet är anpassat att ta emot en friktionssignal (6) som innefattar information om friktionen i far en vagbana som fordonet skall fardas pa, och en hastighetssignal (8) som innefattar information om fordonets hastighet v. Reglersystemet (2) innefattar en bearbetningsenhet (10) och en reglerenhet (12), varvid bearbetningsenheten är anpassad att bestdmma en variabel sakerhetsSM(p,v) relativt objekt i ndrheten av fordonet baserat pa den uppmalta friktionen och fordonets hastighet v; och att bestamma en trajektoria (14) far den planerade korvdgen sã att namnda bestamda sakerhetsSM uppfylls. Reglerenheten âr vidare anpassad att reglera fordonet med en reglersignal (16) sa att trajektorian faljs genom att paverka atminstone styrningen och hastigheten far fordonet flied anvandning av en uppsaltning regleringsregler, varvid namnda regleringsregler innefattar en regel som tar hansyn till sidoaccelerationen ay for fordonet. A control system (2) adapted to control an autonomous vehicle (4) along a planned carriageway, the control system being adapted to receive a friction signal (6) which includes information about the friction in a lane on which the vehicle is to travel, and a speed signal (8) comprising information about the speed of the vehicle v. The control system (2) comprises a processing unit (10) and a control unit (12), the processing unit being adapted to determine a variable safety SM (p, v) relative to the object in the vicinity of the vehicle based on the ground friction and vehicle speed v; and determining a trajectory (14) gets the planned sausage dough so that said determined safety SM is fulfilled. The control unit is further adapted to control the vehicle with a control signal (16) so that the trajectory is failed by affecting at least the steering and speed of the vehicle using a salting control rules, said control rules including a rule taking into account the lateral acceleration ay of the vehicle.

Description

Reglersystem far autonoma fordon, och en metod for reglersystemet Uppfinninciens omrade Foreliggande uppf inning avser en metod och ett reglersystem enligt ingresserna 5 for de oberoende pate ntkraven. Control system for autonomous vehicles, and a method for the control system Area of the invention The present invention relates to a method and a control system according to the preambles of the independent claims.

Mera specifikt avser uppfinnen en metod och ett reglersystem som farbattrar sakerheten far autonoma fordon vid karning i halt underlag. More specifically, the invention relates to a method and a control system that improves the safety of autonomous vehicles when raking in slippery surfaces.

Bakgrund till uppfinningen Ett fordon som kan framforas utan farare pa marken kallas ett forarlost markgaende fordon (eng. Unmanned ground vehicle; UGV). Det finns tvã typer av forarlasa markgaende fordon, de som fjarrstyrs och de som är autonoma. Background of the Invention A vehicle that can be driven without a driver on the ground is called an unmanned ground vehicle (UGV). There are two types of ground-going vehicles, those that are remote controlled and those that are autonomous.

Ett fjarrstyrt UGV är ett fordon som regleras av en mansklig operator via en kommunikationslank. Alla atgarder bestams av operataren baserat pa antingen direkt visuell observation eller med anvandning av sensorer sasom digitala videokameror. Ett enkelt exempel pa en fjarrstyrd UGV är en fjarrstyrd leksaksbil. Det finns en stor variation av fjarrstyrda fordon som anvands idag. Ofta anvands dessa fordon i farliga situationer och miljoer som är olampliga for manniskor att vistas i, till exempel far att desarmera bomber och vid farliga kemiska utslapp. A remote-controlled UGV is a vehicle that is regulated by a human operator via a communication link. All actions are determined by the operator based on either direct visual observation or the use of sensors such as digital video cameras. A simple example of a remote-controlled UGV is a remote-controlled toy car. There is a wide variety of remote controlled vehicles in use today. These vehicles are often used in dangerous situations and environments that are unsuitable for people to live in, for example father to disarm bombs and in case of dangerous chemical emissions.

Fjarrstyrda forarlasa fordon anvands ocksa i samband med overvakningsuppdrag och liknande. Remote-controlled driverless vehicles are also used in connection with monitoring assignments and the like.

Med ett autonomt fordon avses har ett fordon som ãr kapabelt att navigera och manovrera utan mansklig styrning. Fordonet anvander sensorer for att skaffa sig forstaelse for omgivningen. Sensordata anvands sedan av regleralgoritmer for att bestamma vad som är nasta steg for fordonet att ta, med hansyn till ett overordnat mal far fordonet, exempelvis att hamta och lamna gods vid olika positioner. Mera specifikt maste ett autonomt fordon kunna avlasa omgivningen tillrdckligt bra far att kunna genomfora den uppgift som den blivit tilldelad, exempelvis "flytta stenblocken fran plats A till plats B via gruvgangen C". Det autonoma fordonet behaver planera och falja en vag till den valda destinationen under det att den 1 detekterar och undviker hinder pa. vdgen. Dessutom maste det autonoma fordonet genomfOra sin uppgift sá fort som mOjligt utan att bega. misstag. Autonoma fordon har bland annat utvecklats for att kunna anvdndas i farliga miljoer, exempelvis inom fOrsvars- och krigsindustrin och inom gruvindustrin, bade ovanjord och underjord. Om manniskor eller vanliga, manuellt styrda fordon ndrmar sig de autonoma fordonens arbetsomrade orsakar de normalt ett avbrott i arbete pa grund av sakerhetsskal. NI& arbetsomradet ater är fritt kan de autonoma fordonen beordras att ateruppta arbetet. 10 Det autonoma fordonet anvdnder information avseende vdgen, omgivningen och andra aspekter som paverkar framfarten for att automatiskt reglera gaspadraget, bromsningen och styrningen. En noggrann bedOmning och identifiering av den planerade framfarten är nodvandig fOr att bedOma om en vag är farbar och är nOdvandig fOr att pa ett framgangsrikt salt kunna ersalta en manniskas bedOmning ndr det galler att framfora fordonet. VdgfOrhallanden kan vara komplexa och vid korning av ett vanligt forarstyrt fordon gar fOraren hundratals observationer per minut och justerar driften av fordonet baserat pa de uppfattade vagforhallandena for att exempelvis finna en framkomlig vag forbi objekt som kan finnas pa. vdgen. For att kunna ersdtta den manskliga uppfattningsformagan med 20 ett autonomt system innebdr det bland annat att pa ett exakt sdtt kunna uppfatta objekt for att effektivt kunna reglera fordonet sâ att man styr forbi dessa objekt. By an autonomous vehicle is meant a vehicle that is capable of navigating and maneuvering without human control. The vehicle uses sensors to gain an understanding of the surroundings. Sensor data is then used by control algorithms to determine what is the next step for the vehicle to take, with regard to an overriding template for the vehicle, for example to pick up and drop off goods at different positions. More specifically, an autonomous vehicle must be able to read the surroundings well enough to be able to carry out the task assigned to it, for example "move the boulders from place A to place B via the mine passage C". The autonomous vehicle needs to plan and follow a route to the selected destination while detecting and avoiding obstacles. vdgen. In addition, the autonomous vehicle must carry out its task as quickly as possible without committing. mistake. Autonomous vehicles have, among other things, been developed to be used in dangerous environments, for example in the defense and war industry and in the mining industry, both above ground and underground. If people or ordinary, manually controlled vehicles change the working range of the autonomous vehicles, they normally cause a break in work due to safety concerns. NI & the work area is free again, the autonomous vehicles can be ordered to resume work. The autonomous vehicle uses information regarding the road, the surroundings and other aspects that affect the travel to automatically regulate the throttle, braking and steering. An accurate assessment and identification of the planned progress is necessary to assess whether a road is passable and is necessary to be able to salt a person's assessment on a successful salt when it is necessary to drive the vehicle. Road conditions can be complex and when driving a normal driver-controlled vehicle, the driver makes hundreds of observations per minute and adjusts the operation of the vehicle based on the perceived road conditions to find, for example, a passable road past objects that may be on. vdgen. In order to be able to replace the human perception with an autonomous system, this means, among other things, being able to perceive objects in an exact way in order to be able to effectively control the vehicle so that one steers past these objects.

De tekniska metoder som anvdnds fOr att identifiera ett objekt i anslutning till fordonet innefattar bland annat att anvdnda en eller flera kameror och radar for att 25 skapa bilder av omgivningen. Aven laserteknik anvands, bade avscannande lasrar och fasta lasrar, f6r att detektera objekt och mdta avstand. Dessa bendmns ofta LIDAR (Light Detection and Ranging) eller LADAR (Laser Detection and Ranging). Dessutom är fordonet forsett med olika sensorer bland annat f6r att avkdnna hastighet och accelerationer i olika riktningar. Positioneringssystem (t.ex. 30 GPS) och annan tradlOs teknologi kan dessutom anvdndas fOr att bestamma om fordonet till exempel narmar sig en korsning, en avsmalning av vdgen, och/eller andra fordon. 2 Regleringen av ett autonomt fordon sâ att det framfors langs en planerad kOrvag sker vdsentligen genom att paverka fordonets styrning och hastighet, dvs. acceleration och retardation. Detta sker generellt genom att fordonets reglersystem avger reglerparametrar till olika enheter i fordonet, exempelvis motorn, styrningen, vdxelladan och bromssystemen. The technical methods used to identify an object adjacent to the vehicle include using one or more cameras and radars to create images of the surroundings. Laser technology is also used, both scanning lasers and fixed lasers, to detect objects and measure distance. These bends are often LIDAR (Light Detection and Ranging) or LADAR (Laser Detection and Ranging). In addition, the vehicle is equipped with various sensors, among other things to detect speed and accelerations in different directions. Positioning systems (eg GPS) and other wireless technology can also be used to determine if the vehicle is approaching, for example, an intersection, a narrowing of the road, and / or other vehicles. 2 The regulation of an autonomous vehicle so that it is driven along a planned carriageway takes place essentially by affecting the vehicle's steering and speed, ie. acceleration and deceleration. This is generally done by the vehicle's control system emitting control parameters to various units in the vehicle, for example the engine, the steering, the transmission and the braking systems.

US-2010/0114416 avser system och metod for att navigera ett autonomt fordon med anvandning av detektering och avstandsmdtning med laser. US-2010/0114416 relates to systems and methods for navigating an autonomous vehicle using laser detection and distance measurement.

US-2012/0035788 avser ett navigerings- och reglersystem for autonoma fordon och som innefattar sensorer, exempelvis lasersensorer, konfigurerade for att lokalisera objekt framfor fordonet sâ att det kan framforas utan att kollidera med dessa objekt. US-2012/0035788 relates to a navigation and control system for autonomous vehicles and which comprises sensors, for example laser sensors, configured to locate objects in front of the vehicle so that it can be driven without colliding with these objects.

En forare av en lastbil kan anpassa sitt korsalt efter de radande forhdllandena, om det är halt kan man t.ex. Oka sakerhetsavstandet till andra trafikanter och hinder langs vdgen. En maskin är inte lika bra som en mdnniska pa att anpassa sig till olika situationer. Detta innebdr att ett autonomt fordon antingen skulle framforas med en ãr for liten sâ att fordonet krockar, vilket i synnerhet kan intrdffa vid halt underlag, eller framforas med en Or stor sâ att fordonet ibland inte klarar att ta sig fram pa stallen där det egentligen hade fan plats. 25 Foljande dokument avser olika typer av system och metoder i samband med reglering av fordon, bland annat i samband med halt underlag. A driver of a truck can adapt his cross salt to the prevailing conditions, if it is slippery you can e.g. Increase the safety distance to other road users and obstacles along the road. A machine is not as good as a human being at adapting to different situations. This means that an autonomous vehicle would either be driven with a year too small so that the vehicle collides, which can occur in particular on slippery surfaces, or be driven with an Or large so that the vehicle sometimes fails to get to the stables where it actually had fan place. The following documents refer to different types of systems and methods in connection with the regulation of vehicles, including in connection with slippery surfaces.

US-2012/0083959 avser ett system och en metod for autonom reglering av ett fordon, med syftet att undvika slitage pa olika fordonsdelar. Regleringen baseras bland annat pa insignaler fran tva sensorer, dal- en sensor avkanner paverkan pa olika fordonsdelar och en annan sensor avkanner omgivningsrelaterade storheter, t.ex. ndrvaron av objekt nara fordonet, temperatur, fuktighet, etc. Sedan valjs den 3 av en fOrsta eller en andra manover som ãr bast betraffande att undvika slitage pa olika fordonsdelar. US-2012/0083959 relates to a system and method for autonomous control of a vehicle, with the aim of avoiding wear on various vehicle parts. The regulation is based, among other things, on input signals from two sensors, one sensor senses the impact on different vehicle parts and another sensor detects environment-related quantities, e.g. the presence of objects near the vehicle, temperature, humidity, etc. Then the 3 is selected by a first or a second maneuver which is best concerned with avoiding wear on various vehicle parts.

EP-2407357 beskriver ett autonomt bromssystem fOr ett fordon. En sensoranordning at' anpassad att detektera hinder i omgivningen till fordonet, och baserat pa avstandet till fordonet bestams bromsparametrar sá att fordonet automatiskt bromsar fOr att undvika hindret. FOr att bestamma bromsparametrarna anvands information om friktionen mot vagbanan och bromsparametrar for det autonoma bromssystemet anpassas darefter. EP-2407357 describes an autonomous braking system for a vehicle. A sensor device adapted to detect obstacles in the environment of the vehicle, and based on the distance to the vehicle, braking parameters are determined so that the vehicle automatically brakes to avoid the obstacle. To determine the braking parameters, information about the friction against the lane is used and braking parameters for the autonomous braking system are adapted accordingly.

I DE-19933782 beskrivs en metod for att fOrebygga kollisioner mellan tvã fordon som Mfg efter varandra. Egenskaper hos vagbanan, exempelvis friktion, mats och matvardena anvands for att berakna ett sakerhetsavstand till fordonet bakom. Om det faktiska avstandet är fOr litet accelererar fordonet automatiskt. DE-19933782 describes a method for preventing collisions between two vehicles as Mfg in succession. Properties of the lane, such as friction, mats and food values are used to calculate a safety distance to the vehicle behind. If the actual distance is too small, the vehicle accelerates automatically.

Foreliggande uppf inning har sin grund i uppfinnarnas iakttagelser att for ett bemannat fordon anpassar en fordonsf6rare sitt korsatt efter radande vagforhallanden och akar till exempel avstand till omgivande trafik vid halka. Ett autonomt fordon är inte lika anpassningsbart och har darfor ibland onodigt stor, alternativt alltfor liten, sakerhets, vilket medfor att det autonoma fordonets framf art vid halt underlag inte är tillfredsstallande. The present invention is based on the inventors' observations that for a manned vehicle, a vehicle driver adapts his intersection to radiating road conditions and, for example, distances himself from surrounding traffic in the event of slipping. An autonomous vehicle is not as adaptable and therefore sometimes has an unnecessarily large, or alternatively too small, safety, which means that the performance of the autonomous vehicle on slippery surfaces is not satisfactory.

Det generella syftet med fOreliggande uppf inning är att fOrbattra fOrmagan hos ett autonomt fordon att ta sig fram pa halt underlag. The general object of the present invention is to improve the ability of an autonomous vehicle to travel on slippery ground.

Sammanfattning av uppfinningen Ovan namnda syften astadkommes med uppfinningen definierad av de oberoende patentkraven. Summary of the Invention The above objects are achieved by the invention defined by the independent claims.

F6redragna utfOringsformer definieras av de beroende patentkraven. 4 Enligt fOreliggande uppfinning sker en detektering av underlagets friktion och utifran friktionsvardet anpassar det autonoma fordonet sitt kOrsatt vilket medfOr att man alltid kan ha en bra avvagning mellan sakerhet och transporteffektivitet. Korsattet anpassas bl.a. sá att hastigheten sanks och trafik och hinder Okas sa att sannolikheten fOr en kollision blir lag. Preferred embodiments are defined by the dependent claims. According to the present invention, the friction of the substrate is detected and, based on the value of the friction, the autonomous vehicle adapts its position, which means that one can always have a good balance between safety and transport efficiency. The corset is adapted i.a. saw that the speed sank and traffic and obstacles Okas said that the probability of a collision becomes law.

Mera i detalj astadkommes detta, enligt uppfinningen, genom att berakna en framtida korvag for fordonet, en sã kallad trajektoria, givet bland annat uppmatta friktionsvarden och en forutbestamd sannolikhetsmodell som anger sannolikheten 10 att den forutbestamda korvagen kan fOljas givet atminstone namnda friktionsvarden, som fOreligger langs den fOrutbestamda kOrvagen. Baserat pa sannolikheten regleras det autonoma fordonet sa att den forutbestamda korvagen kan fOljas ãr hogre an en fOrutbestamd sannolikhetstrOskel. Syftet med att anvanda en sannolikhetsmodell är att fOrsOka efterlikna de bed6mningar som en forare av ett fordon fortlopande gOr. Enligt modellen finns ett start antal samhorande varden for bland annat friktionen, fordonshastigheten, den framtida kOrvagens kurvform och sakerhets. Vid tillampning av uppfinningen antas det att sannolikhetstroskeln är konstant oberoende av de andra vardena. In more detail, this is achieved, according to the invention, by calculating a future sausage path for the vehicle, a so-called trajectory, given, inter alia, measured friction values and a predetermined probability model which indicates the probability that the predetermined sausage path can be followed given at least the said friction value. the predetermined carriage. Based on the probability, the autonomous vehicle is regulated so that the predetermined curve path can be followed higher than a predetermined probability threshold. The purpose of using a probability model is to try to mimic the assessments that a driver of a vehicle continuously makes. According to the model, there are a starting number of cohesive values for, among other things, friction, vehicle speed, the future curve shape of the curve and safety. In applying the invention, it is assumed that the probability threshold is constant independent of the other values.

Enligt den kanda tekniken som diskuterats ovan âr det kant att mata friktionen och sedan anpassa hastigheten for att halla ett avstand till ett framforvarande fordon, men det fOreliggande uppfinning syftar till att gOra är att lata fordonet sjalvt anpassa parametrar kring regleringen i bade lateral och longitudinell ledd vilket akar det autonoma fordonets formaga att framforas dar det är halt underlag. According to the prior art discussed above, it is possible to feed the friction and then adjust the speed to keep a distance from a vehicle in front, but the present invention aims to allow the vehicle itself to adjust parameters around the regulation in both lateral and longitudinal directions. which causes the autonomous vehicle to be able to be driven where there is slippery ground.

Saledes astadkommes en forbattrad reglering vid halt underlag genom foreliggande uppfinning genom att bland annat ta hansyn till sidoaccelerationen som fordonet är utsatt fOr i samband med regleringen av fordonet, och darigenom forbattra regleringen i lateral och longitudinell ledd. Thus, an improved regulation of slippery surfaces is achieved by the present invention by, among other things, taking into account the lateral acceleration to which the vehicle is subjected in connection with the regulation of the vehicle, and thereby improving the regulation in lateral and longitudinal joints.

Genom att tillampa fOreliggande uppfinning pa autonoma fOrarlOsa fordon astadkommes en optimal avvagning mellan effektivitet (hastighet) och sakerhet (undvikande av olyckor) som bl.a. är beroende av underlagets friktion, vilket g6r att man kan paverka fordonets framtida position genom att ange en sakerhets. By applying the present invention to autonomous driverless vehicles, an optimal balance is achieved between efficiency (speed) and safety (avoidance of accidents) which i.a. is dependent on the friction of the surface, which means that you can influence the future position of the vehicle by specifying a safety feature.

Kort ritningsbeskrivning Figur 1 är ett fOrenklat blockdiagram som schematiskt illustrerar fOreliggande uppfinning. Figur 2 är ett flOdesdiagram som illustrerar metoden enligt fOreliggande uppfinning. Figur 3 är en schematisk bild avsedd att illustrera foreliggande uppf inning. Brief Description of the Drawings Figure 1 is a simplified block diagram schematically illustrating the present invention. Figure 2 is a flow chart illustrating the method of the present invention. Figure 3 is a schematic view intended to illustrate the present invention.

Figur 4 är ett schematiskt blockschema som illustrerar en utfOringsform av foreliggande uppfinning. Figure 4 is a schematic block diagram illustrating an embodiment of the present invention.

Detaljerad beskrivninq av fOredraqna utfOrinqsformer av uppfinnimen Uppfinningen kommer nu att beskrivas mera detaljerat med hanvisning till bifogade figurer. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION The invention will now be described in more detail with reference to the accompanying figures.

Med hdnvisning forst till figur 1 avser foreliggande uppf inning ett reglersystem 2 anpassat att reglera ett autonomt fordon 4 langs en planerad korvag. Referring first to Figure 1, the present invention relates to a control system 2 adapted to control an autonomous vehicle 4 along a planned ridge path.

En planerad korvdg skall betraktas som ett Overgripande begrepp och kan 20 exempelvis avse den vag som fordonet maste folja for att komma fran en punkt A till en punkt B Reglersystemet är anpassat att ta emot en friktionssignal 6 som innefattar information om friktionen p fOr den vdgbana som fordonet skall fdrdas pa, och en hastighetssignal 8 som innefattar information om fordonets hastighet v. A planned sausage day is to be regarded as an overarching concept and may, for example, refer to the vagus which the vehicle must follow to get from a point A to a point B. The control system is adapted to receive a friction signal 6 which includes information about the friction on the roadway the vehicle is to be driven on, and a speed signal 8 which includes information about the speed of the vehicle v.

Friktionen fOr vagbanan bestams exempelvis med optiska medel genom att avge en ljusstrale mot vdgbanan och analysera det reflekterade ljuset. I EP2402737 anges ett exempel pa en sadan matning. The friction of the path is determined, for example, by optical means by emitting a light beam towards the path and analyzing the reflected light. EP2402737 gives an example of such a feed.

Enligt ett annat exempel for att bestamma vdgbanans friktion anvdnds en kdnd mdtanordning fOr att analysera hjulens hastigheter fOr fordonet 4. Genom att 6 bestdmma hjulhastigheterna far hjul pa samma axel och analysera skillnaden mellan dessa kan ett matt erhallas far friktionen pa vagbanan. Detektionen kan aven g6ras genom att mata hur stor drivande eller bromsande kraft som krdvs for att kara pa underlaget. According to another example, to determine the friction of the roadway, a known measuring device is used to analyze the speeds of the wheels for the vehicle 4. By determining the wheel speeds 6 wheels on the same axle and analyzing the difference between them, a mat can be obtained for the friction on the roadway. The detection can also be done by measuring how much driving or braking force is required to drive on the ground.

Enligt ytterligare ett exempel innefattar fordonet en kdnd matanordning far att analysera ett styrande moment far framhjulen pa fordonet 4 och jdmfara detta med troskelvarden, där ett lagre moment innebar lagre friktion, dvs. en halare vagbana. According to a further example, the vehicle comprises a known feeding device for analyzing a steering torque on the front wheels of the vehicle 4 and comparing this with the threshold value, where a lower torque meant lower friction, ie. en halare vagbana.

Fordonets hastighet v finns exempelvis tillganglig pa en lamplig databuss, där informationen fas exempelvis fran fordonets hastighetsmatare. The vehicle's speed v is available, for example, on a suitable data bus, where the information is obtained, for example, from the vehicle's speed feeder.

Enligt uppfinningen innefattar reglersystemet 2 en bearbetningsenhet 10 och en reglerenhet 12, varvid bearbetningsenheten är anpassad att bestdmma en variabel sakerhetsSM(p.,v) relativt objekt i narheten av fordonet baserat pa den uppmdtta friktionen och fordonets hastighet v. Bearbetningsenheten 10 är vidare anpassad att bestamma en trajektoria 14 for den planerade korvagen sâ att ndmnda bestamda sdkerhetsSM uppfylls. According to the invention, the control system 2 comprises a processing unit 10 and a control unit 12, the processing unit being adapted to determine a variable safety SM (p., V) relative object in the vicinity of the vehicle based on the measured friction and the vehicle speed v. The processing unit 10 is further adapted to determine a trajectory 14 for the planned carriageway so that the said specified safety SM is met.

Med trajektoria avses hdr den kurva som fordonet foljer pa karvagen, dvs. den position pa karvagen som fordonet kommer att ha. By trajectory is meant hdr the curve that the vehicle follows on the carriageway, ie. the position on the carriageway that the vehicle will have.

Reglerenheten är anpassad att reglera fordonet med en reglersignal 16 sá att trajektorian faljs. Detta sker genom att paverka atminstone styrningen, t.ex. girningsvinkeln for fordonet, och hastigheten for fordonet med anvandning av en uppsattning regleringsregler, varvid namnda regleringsregler innefattar en regel som tar hdnsyn till sidoaccelerationen ay for fordonet. The control unit is adapted to control the vehicle with a control signal 16 so that the trajectory is folded. This is done by influencing at least the control, e.g. the yaw angle of the vehicle, and the speed of the vehicle using a set of control rules, said control rules including a rule that takes into account the lateral acceleration ay of the vehicle.

Naturligtvis tas det vid regleringen hansyn till fordonets utstrackning, dvs. dess langd och bredd, i farhallande till den karvdg som foreligger, t.ex. avseende tillgangligt utrymme pa karvagen (exv. karvagens bredd och kurvatur). 7 Enligt en utfaringsform innefattar namnda uppsattning regleringsregler en regel som innebdr att summan av sidokrafterna for framhjulen respektive bakhjulen (F12 resp. F34) far fordonet skall vara lika stor oberoende av friktionsvardet, och att 5 sambandet F12 ± F34 = m*aygaller där m är fordonets massa. Detta kommer att forklaras ytterligare nedan. Of course, the regulation takes into account the extent of the vehicle, ie. its length and width, in relation to the carvage available, e.g. regarding available space on the carriageway (eg the width and curvature of the carriageway). According to one embodiment, said set of control rules comprises a rule which means that the sum of the lateral forces of the front wheels and the rear wheels (F12 and F34) respectively of the vehicle must be equal regardless of the friction value, and that the relationship F12 ± F34 = m * aygaller where m is vehicle mass. This will be explained further below.

Namnda uppsattning regleringsregler innefattar foretradesvis ett antal ekvationer for station& kurykorning (se nedan). The said set of control rules preferably includes a number of equations for station & curry grain (see below).

Saledes beraknas, enligt uppfinningen, en sakerhetsSM baserat pa fordonets hastighet och friktionen for vagbanan. Sakerhetsá att sannolikheten, dvs. risken, far att kora pa ett hinder blir lag. Sedan bestams trajektorian, dvs. den beraknade framtida karvagen med en farutbestambar langd i storleksordningen upp till 100 meter, sá att hindret undviks. Thus, according to the invention, a safety SM is calculated based on the speed of the vehicle and the friction of the roadway. Sakerhetsá that the probability, ie. the risk, getting to drive on an obstacle becomes law. Then the trajectory is determined, ie. the calculated future carriageway with a navigable length of the order of up to 100 meters, so that the obstacle is avoided.

Darefter berdknas reglerparametrar for fordonet sadana att den beraknade trajektorian faljs. Da tar man bland annat hansyn till ett antal allmant kanda ekvationer for station& kurykorning, vilka kommer att forklaras nedan. Thereafter, control parameters for the vehicle are calculated so that the calculated trajectory falls. Then one takes into account, among other things, a number of generally known equations for station & curry grain, which will be explained below.

I dessa ekvationer framgar bland annat hur friktionen pa'verkar regleringen. These equations show, among other things, how friction affects regulation.

Det galler att F12 ± F34 = M*ay, , där F12 är sidokraften pa framhjulen, F34 är sidokraf ten pa bakhjulen, ay är sidoaccelerationen och m är massan for fordonet. It holds that F12 ± F34 = M * ay,, where F12 is the lateral force on the front wheels, F34 is the lateral force on the rear wheels, ay is the lateral acceleration and m is the mass of the vehicle.

For linjara clack gäller aven: F12= C'* 12, och F34 = C'* 34 C betecknar sidkraftskoefficienten och a betecknar avdriftsvinkeln far respektive hjul. 8 Detta innebar att en fOrutsattning fOr att fordonet ska fOlja en fOrutbestamd trajektoria, med samma massa och samma sidoacceleration ay — dar sidoaccelerationen ãr direkt kopplad till kurvaturen fOr trajektorian och hastigheten 5 fOr fordonet — är att summan av F12 och F34 mdste vara lika stor aven om friktionen ãr lag. For linear clack, the following also applies: F12 = C '* 12, and F34 = C' * 34 C denotes the coefficient of lateral force and a denotes the drift angle of the respective wheels. 8 This meant that a prerequisite for the vehicle to follow a predetermined trajectory, with the same mass and the same lateral acceleration ay - if the lateral acceleration is directly linked to the curvature of the trajectory and the speed 5 of the vehicle - is that the sum of F12 and F34 must be equal if the friction is law.

For att F12 och F34 ska vara lika stora vid lag friktion dâ sidkraftskoefficienterna gar ner sã maste avdriftsvinklarna Oka vilket man astadkommer genom att vrida mer pa ratten. Alltsâ kommer friktionskoefficienten in aven i steget nal- man ska reglera fordonet, ddribland rattvinkeln, for att fOlja en trajektoria. In order for F12 and F34 to be equal in case of low friction when the lateral force coefficients go down as much as possible the drift angles Oka, which is achieved by turning the steering wheel more. Thus, the coefficient of friction also enters the step when adjusting the vehicle, including the steering wheel angle, to follow a trajectory.

Enligt uppf inning genomfOrs berdkningarna fOretrddesvis for den hastighet fordonet berdknas ha vid respektive position och om friktionen inte är tillrackligt hOg fOr att uppfylla kravet att F12 + F34 skall vara konstant sâ maste det gOras en berdkning om vid vilken hastighet fordonet klarar av att ta sig fram i den aktuella omgivningen och sanka farten till detta varde. According to the invention, the calculations are carried out preferably for the speed the vehicle is expected to have at the respective position and if the friction is not sufficiently high to meet the requirement that F12 + F34 must be constant, an estimate must be made of the speed at which the vehicle is able to reach in the current environment and slow down to this value.

Fordonets forvantade hastighet i en framtida position berdknas exempelvis genom att alltid forsoka Oka farten sâ mycket fordonet klarar av upp till dess maxhastighet, alternativt folja hastighetsbegransningar. Enligt ytterligare alternativ kan en hastighetsprofil foljas som till exempel mottas fran en separat modul utformad fOr att fã sá lag bransleforbrukning som mOjligt. The expected speed of the vehicle in a future position is calculated, for example, by always trying to increase the speed as much as the vehicle can handle up to its maximum speed, or to follow speed limits. According to further alternatives, a speed profile can be followed which, for example, is received from a separate module designed to obtain as low fuel consumption as possible.

En annan situation som kan intraffa är att det inte finns mojlighet till sd. mycket sdkerhetsSM kraver for den aktuella hastigheten och friktionen sa resulterar det i att hastigheten sanks. Another situation that may occur is that there is no possibility of sd. a lot of safety SM requires for the current speed and friction so it results in the speed decreasing.

Den fordonsdynamiska termen avdriftsvinkel a (aven benamnd slipvinkel) är vinkeln mellan ett rullande hjuls fdrdriktning och den riktning som hjulet pekar i (dvs. vinkeln fOr vektorsumman fOr hjulets hastighet framat vx och hjulets laterala hastighet vy). 9 Avdriftsvinkeln resulterar i en kraft som är parallell till hjulaxeln och kraftkomponenten som är vinkelratt mot hjulets fardriktning kallas kurvtagningens sidkraft. Denna sidkraft akar i stort sett linjact for avdriftsvinkelns forsta grader. Vid stOrre slipvinklar Okar sidkraften icke-linjart till ett maximum, varefter den sjunker. The vehicle dynamic term drift angle α (also called grinding angle) is the angle between the forward direction of a rolling wheel and the direction in which the wheel points (ie the angle of the vector sum for the wheel speed forward vx and the wheel lateral speed view). 9 The driving angle results in a force that is parallel to the wheel axle and the force component that is perpendicular to the direction of travel of the wheel is called the lateral force of the cornering. This lateral force is largely linear for the first degrees of the drift angle. At larger grinding angles, the lateral force increases non-linearly to a maximum, after which it decreases.

Avdriftsvinkeln a definieras enligt: CC= — arctan (—I vx I) Enligt ytterligare en utforingsform innefattar namnda uppsattning regleringsregler en hastighetsregel som innebar att hastigheten skall vara sa hog som mojligt, naturligtvis under fOrutsattning att ovriga regleringsregler är uppfyllda. The drift angle a is defined according to: CC = - arctan (—I vx I) According to a further embodiment, said set of control rules comprises a speed rule which meant that the speed should be as high as possible, of course provided that other control rules are met.

Enligt uppfinningen bestams fOretradesvis trajektorian sa att avstandet mellan fordonet och ett objekt inte är mindre an SM da trajektorian fOljs. According to the invention, the trajectory is preferably determined so that the distance between the vehicle and an object is not less than SM when the trajectory is followed.

Ett objekt kan exempelvis vara ett fast objekt langs korvagen, t.ex. en gruvvagg, men kan aven vara ett rorligt objekt, t.ex. ett annat fordon. An object can for example be a fixed object along the sausage route, e.g. a mining rock, but can also be a moving object, e.g. another vehicle.

I figur 3 visas en schematisk bild av en korvag 20 dar tva olika trajektorier inritats, Ti (heldragen) och T2 (streckad). Figure 3 shows a schematic view of a sausage wagon where two different trajectories have been drawn, T1 (solid) and T2 (dashed).

For respektive trajektoria har de berdknade sdkerhetsSM1 respektive SM2 markerats, clar SM1 är sakerhetsOr Ti och SM2 fOr 20 T2. For each trajectory, the calculated safety SM1 and SM2, respectively, have been marked, while SM1 is safety word Ti and SM2 for 20 T2.

Som framgar av figuren är SM1 storre an SM2, vilket skall tolkas sã att den uppmatta friktionen for Ti är lagre an for T2, dvs. vdgbanan ãr halare i fallet da. Ti berdknats och darfor maste sakerhetsT2 da man kan framfora fordonet med mindre sdkerhets. As can be seen from the figure, SM1 is larger than SM2, which is to be interpreted as meaning that the measured friction for T1 is lower than for T2, ie. vdgbanan ãr halare i fallet da. Ti berdknats and therefore must safetyT2 as you can drive the vehicle with less safety.

FOreliggande uppf inning innefattar aven en metod i ett reglersystem anpassat att reglera ett autonomt fordon langs en planerad kOrvag. The present invention also includes a method in a control system adapted to control an autonomous vehicle along a planned carriageway.

Metoden kommer nu att beskrivas med hanvisning till flodesschemat i figur 2. Det hanvisas aven till beskrivningen ovan av reglersystemet. The method will now be described with reference to the flow chart in Figure 2. It is also referred to the above description of the control system.

Metoden innefattar att: Al - mata friktionen p far en vagbana som fordonet skall fardas pd.; A2 - mata fordonets hastighet v. The method comprises: Al - feeding the friction on a lane on which the vehicle is to travel; A2 - feed vehicle speed v.

Matningen av friktionen sker exempelvis med anvandning av de mdtmetoder som beskrivits ovan. The friction is fed, for example, using the measuring methods described above.

Information om fordonets hastighet finns tillganglig via en lamplig databuss i fordonet dar informationen fa's exempelvis fran fordonets hastighetsmatare. Information about the vehicle's speed is available via a suitable data bus in the vehicle where the information is obtained, for example, from the vehicle's speed feeder.

Metoden enligt uppfinningen innefattar vidare att: B - bestamma en variabel sdkerhetsSM(p,v) relativt objekt i narheten av fordonet baserat pd den uppmatta friktionen p och fordonets hastighet v; 15 C - bestamma en trajektoria far den planerade karvagen sa att namnda bestamda sdkerhetsSM uppfylls, och D - reglera fordonet sa att trajektorian foljs genom att paverka dtminstone styrningen och hastigheten for fordonet med anvandning av en uppsattning regleringsregler, varvid namnda regleringsregler innefattar en regel som tar hansyn till sidoaccelerationen ay for fordonet. The method according to the invention further comprises: B - determining a variable safety SM (p, v) relative object in the vicinity of the vehicle based on the measured friction p and the speed of the vehicle v; C - determine a trajectory if the planned carriageway so that said determined safety SM is met, and D - regulate the vehicle so that the trajectory is followed by affecting at least the steering and speed of the vehicle using a set of control rules, said control rules including a rule that takes hansyn till sidoaccelerationen ay for fordonet.

Namnda uppsattning regleringsregler innefattar foretradesvis en regel som innebar att summan av sidokrafterna far framhjulen respektive bakhjulen (F12 resp. F34) skall vara lika stor oberoende av friktionsvardet, och att sambandet F12 25 + F34 = m*ay galler dar m är fordonets massa. Said set of control rules preferably comprises a rule which meant that the sum of the lateral forces causes the front wheels and rear wheels (F12 and F34 respectively) to be equal regardless of the friction value, and that the relationship F12 25 + F34 = m * ay grille where m is the mass of the vehicle.

Vidare innefattar uppsattningen regleringsregler faretradesvis ett antal ekvationer for station& kurvkarning. Dessa har beskrivits ovan. Furthermore, the set of control rules dangerously includes a number of equations for station & curve carving. These have been described above.

Enligt en utfaringsform innefattar namnda uppsattning regleringsregler en hastighetsregel som innebar att hastigheten skall vara sâ hog som majligt. 11 Steget B i metoden innefattar foretradesvis att trajektorian bestams sa att avstandet mellan fordonet och ett objekt inte är mindre an SM dá trajektorian foljs. According to one embodiment, said set of control rules comprises a speed rule which meant that the speed should be as high as possible. Step B of the method preferably comprises that the trajectory is determined so that the distance between the vehicle and an object is not less than SM when the trajectory is followed.

Foreliggande uppf inning innefattar vidare ett datorprogram (P) vid fordon, dar 5 ndmnda datorprogrammet (P) innefattar programkod fOr att orsaka en bearbetningsenhet 10; 500 eller en annan dator 500 ansluten till bearbetningsenheten 10; 500 att utfOra stegen enligt metoden som beskrivits ovan. The present invention further comprises a computer program (P) for vehicles, wherein said computer program (P) comprises program code for causing a processing unit 10; 500 or another computer 500 connected to the processing unit 10; 500 to perform the steps according to the method described above.

Vidare innefattar aven uppfinningen en datorprogramprodukt innefattande en programkod lagrad pa ett, av en dator lasbart, medium for att utfOra metodstegen som beskrivits ovan, nar namnda programkod ' Med hanvisning till blockschemat i figur 4 kommer nu datorn 500 att beskrivas. Furthermore, the invention also comprises a computer program product comprising a program code stored on a computer readable medium for performing the method steps described above, when said program code. Referring to the block diagram in Figure 4, the computer 500 will now be described.

Programmet P kan vara lagrat pa ett exekverbart vis eller pa komprimerat vis i ett minne 560 och/eller i ett Ids/skrivminne 550. NI& det är beskrivet att databehandlingsenheten 510 utfor en viss funktion ska det forstas att databehandlingsenheten 510 utfor en viss del av programmet vilket dr lagrat i minnet 560, eller en viss del av programmet som är lagrat i las/skrivminnet 550. The program P may be stored in an executable manner or in a compressed manner in a memory 560 and / or in an Ids / write memory 550. NI & it is described that the data processing unit 510 performs a certain function, it should be understood that the data processing unit 510 performs a certain part of the program which dr is stored in the memory 560, or a certain part of the program which is stored in the read / write memory 550.

Databehandlingsanordningen 510 kan kommunicera med en dataport 599 via en databuss 515. Det icke-flyktiga minnet 520 är avsett for kommunikation med databehandlingsenheten 510 via en databuss 512. Det separata minnet 560 är avsett att kommunicera med databehandlingsenheten 510 via en databuss 511. The data processing device 510 may communicate with a data port 599 via a data bus 515. The non-volatile memory 520 is intended for communication with the data processing unit 510 via a data bus 512. The separate memory 560 is intended to communicate with the data processing unit 510 via a data bus 511.

Las/skrivminnet 550 är anordnat att kommunicera med databehandlingsenheten 5 via en databuss 514. Till dataporten 599 kan enheterna som är anslutna till bearbetningsenheten 10 (se figur 1) vara anslutna. The read / write memory 550 is arranged to communicate with the data processing unit 5 via a data bus 514. The units connected to the processing unit 10 (see figure 1) can be connected to the data port 599.

NM- data mottages pa dataporten 599 lagras det temporart i den andra minnesdelen 540. Nal- mottaget indata temporart har lagrats, är databehandlingsenheten 5 iordningstalld att utfOra exekvering av kod pa ett vis som beskrivits ovan. NM data received on the data port 599 is temporarily stored in the second memory part 540. Once the input data has been temporarily stored, the data processing unit 5 is ready to perform code execution in a manner described above.

Delar av metoderna beskrivna hdri kan utforas av anordningen 500 (motsvarande bearbetningsenheten 10 i figur 1) med hjalp av databehandlingsenheten 510 som kOr 12 programmet lagrat i minnet 560 eller las/skrivminnet 550. Nar anordningen 500 Mr programmet, exekveras hari beskrivna metoder. Parts of the methods described herein may be performed by the device 500 (corresponding to the processing unit 10 in Figure 1) using the data processing unit 510 which runs the program 12 stored in the memory 560 or the read / write memory 550. When the device 500 is programmed, the methods described herein are executed.

Foreliggande uppf inning är inte begransad till ovan-beskrivna foredragna utfOringsformer. Olika alternativ, modifieringar och ekvivalenter kan anvandas. The present invention is not limited to the above-described preferred embodiments. Various alternatives, modifications and equivalents can be used.

UtfOringsformerna ovan skall darfor inte betraktas som begransande uppfinningens skyddsomfang vilket definieras av de bifogade patentkraven. 13 The above embodiments are, therefore, not to be construed as limiting the scope of the invention as defined by the appended claims. 13

Claims (16)

Pate ntkravPate ntkrav 1. En metod i ett reglersystem anpassat all reglera ett autonomt fordon langs en planerad korvag, dar metoden innefattar aft: Al - m5ta friktionen p for en vagbana som fordonet skall fardas pa; A2 - mata fordonets hastighet v; kannetecknad av att metoden innefattar att: B - bestamma en variabel sakerhetsSM(p,v) relativt objekt i narheten av fordonet baserat pa den uppmatta friktionen p och fordonets hastighet v; C - bestamma en trajektoria for den planerade korvagen sa aft namnda bestamda sakerhetsSM uppfylls, och D - reglera fordonet sa att trajektorian foljs genom all paverka atminstone styrningen och hastigheten far fordonet med anvandning av en uppsattning regleringsregler, varvid namnda regleringsregler innefattar en regel som tar hansyn till sidoaccelerationen ay for fordonet och dar namnda regleringsregler innefattar en regel som tar hansyn till friktionskoefficienten for fordonet.A method in a control system adapted to all regulate an autonomous vehicle along a planned basket carriage, the method comprising: Al - m5ta the friction p for a carriageway on which the vehicle is to be driven; A2 - feed vehicle speed v; characterized in that the method comprises: B - determining a variable safety SM (p, v) relative object in the vicinity of the vehicle based on the measured friction p and the vehicle speed v; C - determine a trajectory for the planned carriageway so that the said certain safety SM is met, and D - regulate the vehicle so that the trajectory is followed by all influences at least the steering and speed the vehicle uses using a set of control rules, said control rules include a rule that takes into account to the lateral acceleration ay of the vehicle and there the said control rules include a rule which takes into account the coefficient of friction of the vehicle. 2. Metoden enligt krav 1, varvid namnda uppsattning regleringsregler innefattar en regel som innebar aft summan av sidokrafterna for framhjulen respektive bakhjulen (F12 resp. F34) skall vara lika stor oberoende av friktionsvardet.The method according to claim 1, wherein said set of control rules comprises a rule which meant that the sum of the lateral forces of the front wheels and the rear wheels, respectively (F12 and F34, respectively) must be equal regardless of the friction value. 3. Metoden enligt krav 2, varvid sambandet F12 + F34 = m*ay galler dar m är fordonets massa.The method according to claim 2, wherein the relationship F12 + F34 = m * ay grid where m is the mass of the vehicle. 4. Metoden enligt nagot av foregaende krav, varvid namnda uppsattning regleringsregler innefattar en hastighetsregel som innebar all hastigheten skall vara sá hog som majligt.The method according to any of the preceding claims, wherein said set of control rules comprises a speed rule which meant all the speed shall be as high as possible. 5. Metoden enligt nagot av foregaende krav, varvid namnda uppsattning regleringsregler innefattar ett antal ekvationer for station& kurvkarning.The method according to any of the preceding claims, wherein said set of control rules comprises a number of equations for station & curve carving. 6. Metoden enligt nagot av foregaende krav, varvid trajektorian bestams 14 sa all avstandet mellan fordonet och ett objekt inte är mindre an SM da trajektorian fogs.The method according to any one of the preceding claims, wherein the trajectory is determined 14 so that all the distance between the vehicle and an object is not less than SM when the trajectory is joined. 7. Metoden enligt nagot av foregaende krav, varvid namnda objekt är ett fast objekt.The method according to any of the preceding claims, wherein said object is a fixed object. 8. Ett reglersystem (2) anpassat all reglera ett autonomt fordon (4) langs en planerad korvag, varvid reglersystemet är anpassat aft ta emot en friktionssignal (6) som innefattar information om friktionen p for en vagbana som fordonet skall fardas pa, och en hastighetssignal (8) som innefattar information om fordonets hastighet v; ka n net e c k n ad a v aft reglersystemet (2) innefattar en bearbetningsenhet (10) och en reglerenhet (12), varvid bearbetningsenheten är anpassad aft bestamma en variabel sakerhetsSM(p,v) relativt objekt i narheten av fordonet baserat pa den upprnatta friktionen p och fordonets hastighet v; och aft bestamma en trajektoria (14) f6r den planerade korvagen sa aft namnda bestamda sakerhetsSM uppfylls, och varvid reglerenheten är anpassad all reglera fordonet med en reglersignal (16) sa aft trajektorian foljs genom aft paverka atminstone styrningen och hastigheten f6r fordonet med anvandning av en uppsattning regleringsregler, varvid namnda regleringsregler innefattar en regel som tar hansyn till sidoaccelerationen ay for fordonet och dar namnda regleringsregler innefattar en regel som tar hansyn till friktionskoefficienten f6r fordonet.A control system (2) adapted to control an autonomous vehicle (4) along a planned basket carriage, the control system being adapted to receive a friction signal (6) which includes information on the friction p of a lane on which the vehicle is to be ridden, and a speed signal (8) comprising vehicle speed information v; The control system (2) may comprise a machining unit (10) and a control unit (12), the machining unit being adapted to determine a variable safety SM (p, v) relative to objects in the vicinity of the vehicle based on the friction achieved on and vehicle speed v; and determining a trajectory (14) for the planned carriageway so that said determined safety SM is met, and wherein the control unit is adapted to control all the vehicle with a control signal (16) so that the trajectory is followed by affecting at least the steering and speed of the vehicle using a set of control rules, wherein said control rules comprise a rule which takes into account the lateral acceleration ay of the vehicle and wherein said control rules comprise a rule which takes into account the coefficient of friction of the vehicle. 9. Reglersystemet enligt krav 8, varvid namnda uppsattning regleringsregler innefattar en regel som innebar aft summan av sidokrafterna for framhjulen respektive bakhjulen (F12 resp. F34) skall vara lika stor oberoende av friktionsvardet.The control system according to claim 8, wherein said set of control rules comprises a rule which meant that the sum of the lateral forces of the front wheels and the rear wheels, respectively (F12 and F34, respectively) shall be equal regardless of the friction value. 10. Reglersystemet enligt krav 9, varvid sambandet F12 4" F34 = m*ay galler dar m är fordonets massa.The control system according to claim 9, wherein the relationship F12 4 "F34 = m * ay grid where m is the mass of the vehicle. 11. Reglersystemet enligt nagot av kraven 8-10, varvid namnda uppsattning regleringsregler innefattar en hastighetsregel som innebar aft hastigheten skall vara sá hog som mojligt.The control system according to any one of claims 8-10, wherein said set of control rules comprises a speed rule which meant that the speed should be as high as possible. 12. Reglersystemet enligt nagot av kraven 8-11, varvid namnda uppsattning regleringsregler innefattar ett antal ekvationer for station& kurvkorning.The control system according to any one of claims 8-11, wherein said set of control rules comprises a number of equations for station & curve grain. 13. Reglersystemet enligt nagot av kraven 8-12, varvid trajektorian 10 bestams sa aft avstandet mellan fordonet och ett objekt inte är mindre an SM cla trajektorian fogs.The control system according to any one of claims 8-12, wherein the trajectory 10 is determined so that the distance between the vehicle and an object is not less than the SM cla trajectory fogs. 14. Reglersystemet enligt nagot av kraven 8-13, varvid namnda objekt är ett fast objekt.The control system according to any one of claims 8-13, wherein said object is a fixed object. 15. Datorprogram (P) vid fordon, dar namnda datorprogram (P) innefattar programkod f6r aft orsaka en bearbetningsenhet (10; 500) eller en annan dator (500) ansluten till bearbetningsenheten (10; 500) aft utfora stegen enligt metoden enligt nagot av kraven 1-7.Computer program (P) for vehicles, wherein said computer program (P) comprises program code for causing a processing unit (10; 500) or another computer (500) connected to the processing unit (10; 500) to perform the steps according to the method according to any of claims 1-7. 16. Datorprogramprodukt innefattande en programkod lagrad p ett, av en dator lasbart, medium far att utfora metodstegen enligt nagot av patentkraven 1-7, nar namnda programkod k6rs pa en bearbetningsenhet (10; 500) eller en annan dator (500) ansluten till bearbetningsenheten (10; 500). 16 1/2A computer program product comprising a program code stored on a computer readable medium may perform the method steps according to any one of claims 1-7, when said program code is executed on a processing unit (10; 500) or another computer (500) connected to the processing unit. (10; 500). 16 1/2
SE1350332A 2013-03-19 2013-03-19 Control system for autonomous vehicles, and a method for the control system SE537674C2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SE1350332A SE537674C2 (en) 2013-03-19 2013-03-19 Control system for autonomous vehicles, and a method for the control system
DE112014001065.0T DE112014001065T5 (en) 2013-03-19 2014-03-13 Control system for self-propelled vehicles and methods for the control system
BR112015019993A BR112015019993A2 (en) 2013-03-19 2014-03-13 control system for autonomous vehicles and a method for the control system
PCT/SE2014/050310 WO2014148989A1 (en) 2013-03-19 2014-03-13 Control system for autonomous vehicles, and a method for the control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1350332A SE537674C2 (en) 2013-03-19 2013-03-19 Control system for autonomous vehicles, and a method for the control system

Publications (2)

Publication Number Publication Date
SE1350332A1 SE1350332A1 (en) 2014-09-20
SE537674C2 true SE537674C2 (en) 2015-09-29

Family

ID=51580515

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1350332A SE537674C2 (en) 2013-03-19 2013-03-19 Control system for autonomous vehicles, and a method for the control system

Country Status (4)

Country Link
BR (1) BR112015019993A2 (en)
DE (1) DE112014001065T5 (en)
SE (1) SE537674C2 (en)
WO (1) WO2014148989A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9849883B2 (en) * 2016-05-04 2017-12-26 Ford Global Technologies, Llc Off-road autonomous driving
DE102016208675A1 (en) * 2016-05-19 2017-11-23 Lucas Automotive Gmbh Method for determining a safe speed at a future waypoint
US10173674B2 (en) * 2016-06-15 2019-01-08 Ford Global Technologies, Llc Traction based systems and methods
EP3260344B1 (en) * 2016-06-20 2021-10-06 Volvo Car Corporation Method and system for adjusting a safety margin threshold of a driver support function
WO2018026603A1 (en) 2016-08-02 2018-02-08 Pcms Holdings, Inc. System and method for optimizing autonomous vehicle capabilities in route planning
US11293765B2 (en) 2016-12-08 2022-04-05 Pcms Holdings, Inc. System and method for routing and reorganization of a vehicle platoon in a smart city
JP6539408B2 (en) * 2017-01-13 2019-07-03 バイドゥドットコム タイムズ テクノロジー (ベイジン) カンパニー リミテッドBaidu.com Times Technology (Beijing) Co., Ltd. Method and system for determining road surface friction of an autonomous vehicle using learning based model predictive control
US11260875B2 (en) 2017-12-07 2022-03-01 Uatc, Llc Systems and methods for road surface dependent motion planning
US10576991B2 (en) 2018-02-09 2020-03-03 GM Global Technology Operations LLC Systems and methods for low level feed forward vehicle control strategy
JP2019156175A (en) * 2018-03-13 2019-09-19 本田技研工業株式会社 Vehicle controller, vehicle control method and program
US10816987B2 (en) * 2018-10-15 2020-10-27 Zoox, Inc. Responsive vehicle control
US10940851B2 (en) * 2018-12-12 2021-03-09 Waymo Llc Determining wheel slippage on self driving vehicle
CN109814574B (en) * 2019-02-22 2022-07-19 百度在线网络技术(北京)有限公司 Method and device for planning speed of junction of automatic driving lanes and storage medium
CN112114582B (en) * 2019-06-19 2023-12-19 北京车和家信息技术有限公司 Unmanned method and device
SE544257C2 (en) * 2019-08-23 2022-03-15 Scania Cv Ab Method and control device for controlling driving of a vehicle along a road
DE102019132070A1 (en) * 2019-11-27 2021-05-27 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Method and device for determining a platoon dynamic of a vehicle platoon
BE1029667B1 (en) * 2021-12-02 2023-03-02 Ivex METHODS, SYSTEMS, STORAGE MEDIA AND EQUIPMENT FOR ANALYZING THE BAND ROAD FRICTION ESTIMATE OF TRAVEL CANDIDATES AT THE PLANNER LEVEL FOR SAFER ROUTE SELECTION IN AUTOMATED VEHICLES

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19933782B4 (en) * 1999-07-19 2013-08-01 Volkswagen Ag Method for avoiding rear-end collisions and device for carrying out the method
WO2011009009A1 (en) * 2009-07-15 2011-01-20 Massachusetts Institute Of Technology Methods and apparati for predicting and quantifying threat being experienced by a modeled system
DE102012215562B4 (en) * 2012-09-03 2024-03-07 Robert Bosch Gmbh Method for determining an avoidance trajectory for a motor vehicle and safety device or safety system

Also Published As

Publication number Publication date
SE1350332A1 (en) 2014-09-20
DE112014001065T5 (en) 2015-11-12
BR112015019993A2 (en) 2017-07-18
WO2014148989A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
SE537674C2 (en) Control system for autonomous vehicles, and a method for the control system
US9862364B2 (en) Collision mitigated braking for autonomous vehicles
US10150505B2 (en) Automated hitching assist system
CN105539434B (en) For hiding the paths planning method of steering operation
CN105539586B (en) Vehicle for autonomous driving hides the unified motion planning of moving obstacle
CN106564498B (en) Vehicle safety system
EP3644294B1 (en) Vehicle information storage method, vehicle travel control method, and vehicle information storage device
CN107792068B (en) Automatic vehicle lane change control system
US20190111922A1 (en) In-vehicle traffic assist
CN106394650B (en) Field-based torque steering control
US20140005875A1 (en) Safety Device for Motor Vehicle and Method for Operating a Motor Vehicle
WO2016018636A1 (en) Traffic signal response for autonomous vehicles
KR20180063199A (en) A system for controlling steering means of a vehicle in the event of an imminent collision with an obstacle
EP3431370B1 (en) Object height determination for automated vehicle steering control system
US10871777B2 (en) Autonomous vehicle sensor compensation by monitoring acceleration
CN110562233A (en) driver assistance
WO2014148978A1 (en) Control system and method for control of a vehicle in connection with detection of an obstacle
US11119491B2 (en) Vehicle steering control
US11747804B2 (en) Remote monitoring device for a fleet of autonomous motor vehicles, transport system and limiting method therefor
CN108602514A (en) Operator's skill scores based on the comparison operated with automated vehicle
SE537822C2 (en) Friction monitoring system and a method associated with such a system
WO2022224858A1 (en) Dynamically determining a towed trailer size
US20240149871A1 (en) Method for avoiding obstacles
CN113613487A (en) Method and control system for controlling an agricultural vehicle
SE541115C2 (en) Control system, and method in connection with a control system, for autonomous vehicles