SE537602C2 - Cross-country skiing for the practice of classic cross-country skiing - Google Patents

Cross-country skiing for the practice of classic cross-country skiing Download PDF

Info

Publication number
SE537602C2
SE537602C2 SE1130121A SE1130121A SE537602C2 SE 537602 C2 SE537602 C2 SE 537602C2 SE 1130121 A SE1130121 A SE 1130121A SE 1130121 A SE1130121 A SE 1130121A SE 537602 C2 SE537602 C2 SE 537602C2
Authority
SE
Sweden
Prior art keywords
ski
span
longitudinal
spring
reducing mechanism
Prior art date
Application number
SE1130121A
Other languages
Swedish (sv)
Other versions
SE1130121A1 (en
Inventor
Mats Cedervall
Original Assignee
Mats Cedervall
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mats Cedervall filed Critical Mats Cedervall
Priority to SE1130121A priority Critical patent/SE537602C2/en
Priority to EP12858291.3A priority patent/EP2790801A4/en
Priority to PCT/SE2012/051416 priority patent/WO2013089637A1/en
Publication of SE1130121A1 publication Critical patent/SE1130121A1/en
Publication of SE537602C2 publication Critical patent/SE537602C2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C5/00Skis or snowboards
    • A63C5/06Skis or snowboards with special devices thereon, e.g. steering devices
    • A63C5/07Skis or snowboards with special devices thereon, e.g. steering devices comprising means for adjusting stiffness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C7/00Devices preventing skis from slipping back; Ski-stoppers or ski-brakes
    • A63C7/005Devices preventing skis from slipping back, actuated by the boot

Landscapes

  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

Sammandrag Foreliggande uppfinning avser metoder och arrangemang for att ge en Idassisk ldngdakningskida med overldgsna fast och glidegenskaper jamfort med en konventionell skida. Detta uppnas genom att ha en skida med en spannreducerande mekanism som kollapsar skidans spann ndr akaren anbringar en nedatriktad kraft pa mekanismen som ãr stone an ett visst troskelvdrde. Skidan atergar till sitt ursprungliga spanntillstand nar namnda kraft reduceras under ett andra troskelvdrde. Namnda Spannreducerande mekanism ger en skida med alla nedatriktade krafter fordelade i fastzonen ndr den spannreducerande mekanismen ãr kollapsad, och en skida med alia nedatriktade krafter fordelade i glidzonen nar mekanismen inte ãr kollapsad. Summary The present invention relates to methods and arrangements for providing an Idasic longitudinal roofing ski with superior firmness and sliding properties over a conventional ski. This is achieved by having a ski with a span-reducing mechanism that collapses the ski's span when the rider applies a downward force on the mechanism which is stone at a certain threshold value. The ski returns to its original tension condition when said force is reduced below a second threshold value. Said tension reducing mechanism provides a sheath with all the downward forces distributed in the fixed zone when the tension reducing mechanism is collapsed, and a sheath with all the downward forces distributed in the sliding zone when the mechanism is not collapsed.

Description

Langdskida for utovande av klassisk langdskidakning Tekniskt Omrade Uppfmningen avser en klassisk langdskida, I synnerhet en skida med spann som har fastzon och glidzon. Technical Ski The invention relates to a classic cross-country ski, in particular a ski with a span that has a fixed zone and a sliding zone.

Teknikens standnunkt Klassiska langdskidor har i allmanhet spann for att ge bra glidegenskaper. Detta spann fungerar som en bojd bladfjader. Styvheten och hOjden pa spannet valjs for att matcha vikten pa skidakaren. Nar skidakaren lagger all sin vikt pa lampligt stalle pa en skida sa bar spannets styvhet tillata fastzonen att atminstone delvis vara i kontakt med snon. Kontakten mellan fa.stzonen och snon forbattras nar skidakaren skjuter ifran nedat med foten. Spannet ãr ofta konstruerat sâ att kontakten forbattras ytterligare nar skidakaren lagger sin vikt och trycker med framre delen av foten. I glidfasen lagger skidakaren mer vikt narmare halen. State of the art Classic cross-country skis generally have a span to provide good gliding properties. This span acts as a curved leaf spring. The stiffness and height of the team are selected to match the weight of the skier. When the skier places all his weight in a suitable place on a ski, the rigidity of the span should allow the fixed zone to be at least partially in contact with the snow. The contact between the fastening zone and the rope is improved when the skier shoots from below with the foot. The span is often designed so that the contact is further improved when the skier puts his weight and presses with the front part of the foot. In the sliding phase, the skier puts more weight closer to the tail.

Fastzonen pa en skida har en yta med fastvalla eller annan metod att motsta bakatrorelser, sasom fiskfjallsstruktur, stighudar, kemisk belagging osv. Denna fastvalla, eller annan metod, Or bara effektiv nar kontakten med underlaget har signifikant tuck. Det vill saga, att under franskjutsfasen hindra skidan fran att glida bakat genom den positiva reaktionskraften som underlaget paverkar skidan med. The fixed zone on a ski has a surface with a solid wall or other method of resisting back movements, such as fish mountain structure, riser skins, chemical coating, etc. This mooring, or other method, is only effective when the contact with the substrate has significant tuck. That is to say, during the French firing phase, the ski is prevented from sliding backwards by the positive reaction force with which the surface affects the ski.

For en traditionell skida, anpassad for klassiska skidakningsteg kan det noteras att det namnda trycket under skidan inte Or idealt fordelat. I en ideal situation skulle alla krafter frail skidakarens vikt och franskjut fordelas i fastzonen. Dock, for skidor med traditionellt spann kommer en signifikant del av krafterna fordelas i glidzonerna. Detta for att kompromissa glidet i glidfasen mot fastet i franskjutsfasen. Ju styvare spannet Or desto battre Or glidet, och ju mjukare spannet Or desto battre faste. 1 Professionella tavlingsskidakare har oftast ett styvt spann, eftersom de kan anbringa stora franskjuts- och stakningskrafter. Motionsakare har vanligtvis mjukare spann, vilket ger ett samre glid. For a traditional ski, adapted for classic skiing steps, it can be noted that the mentioned pressure under the ski is not ideally distributed. In an ideal situation, all forces frail the skier's weight and French shot would be distributed in the fixed zone. However, for skis with a traditional span, a significant part of the forces will be distributed in the sliding zones. This is to compromise the sliding in the sliding phase against the fastening in the French firing phase. The stiffer the span Or the better Or slipped, and the softer the span Or the better fast. 1 Professional skiers usually have a rigid span, as they can apply large French skating and stabbing forces. Exercisers usually have softer spans, which gives a smoother glide.

Det fmns ett antal uppfinningar inorn omradet som forsoker att forbattra kompromissen mellan faste och glid. I US4300786, US4221400, US7360782, US 2011/0233900 Al och US4754989 beskrivs olika system och metoder for att statiskt Andra spannet. Detta 18ser inte problemet att ha bra glid och bra faste, det Or bara att man kan an.dra kompromissen sa att man exempeMs valjer att ha daligt eller bra glid. There are a number of inventions in the art which seek to improve the compromise between fastening and sliding. US4300786, US4221400, US7360782, US 2011/0233900 A1 and US4754989 describe various systems and methods for statically Second span. This does not see the problem of having good glide and good fastness, it Or just that you can change the compromise said that you exempeMs choose to have bad or good glide.

I US5427400 sá Andras karakteristiken av spannet genom att spannet ãr styvare nar man star pa halen jamfort med nar man star pa framre delen av foten. En springa i skidans bas anvands for att astadkomma detta. Troligtvis ãr detta inte signifikant mer effektivt an att placera framre delen av foten narmre spannets centrum, och Mien mer forskjuten bakat. Detta ar det satt vilket de fiesta skidor tillverkas idag. In US5427400 Andras saw the characteristic of the span in that the span is stiffer when standing on the tail compared to when standing on the front part of the foot. A gap in the base of the ski is used to achieve this. This is probably not significantly more efficient than placing the front part of the foot closer to the center of the span, and Mien more offset backwards. This is the way most skis are made today.

Pa liknande sat i US 5829776 sa Andras karakteristiken av spannet genom att trycka ner halen pa en platta som krokar fast i fratm-e delen av binclningen for att Oka spannets styvhet. Detta Or relativt begransat eftersom man far mjukare spann endast da man lyfter Mien. Problemet med detta Or att man tvingar skidakaren att lyfta Mien for att minska spannet. Lyftande av Mien sker vanligtvis inte i den initiala franskjutsfasen. Ytterligare ett problem med denna metod är att spannet forstyvas nar mer vikt laggs pa, men i den ideala situationen ska spannet bli mindre styvt nar mycket vikt anvands i franskjutsfasen 2 Problemlosning Foreliggande uppfinning loser namnda nackdelar och kompromisser med traditionellt spann. In a similar way in US 5829776, Andras said the characteristic of the span by pressing the tail down on a plate which hooks into the front part of the binding to increase the stiffness of the span. This Or is relatively limited because you get a softer span only when you lift Mien. The problem with this is that you force the skier to lift Mien to reduce the span. Lifting of the Mien usually does not take place in the initial French firing phase. Another problem with this method is that the span is stiffened when more weight is put on, but in the ideal situation the span should become less stiff when a lot of weight is used in the French firing phase. 2 Problem solving The present invention solves the mentioned disadvantages and compromises with traditional span.

Detta astadkoms genom mekanismer som ger skidan ett dynamiskt spann. This is achieved through mechanisms that give the ski a dynamic span.

I samband med foreliggande uppfinning betyder dynamisk spann ett spann som har ett dynamiskt motstandsmonster mot yttre krafter. Ett traditonellt spann fungerar som en bladfjader, och ger saledes ett progressivt motstand mot yttre krafter. Det dynamiska spannet dr ett spann vars motstand initialt fungerar som ett normalt progressivt spann, men nar den yttre franskjutskraften blir stone an ett visst justerbart gransvarde kollapsar spannet nastan totalt och pa sa vis fOrdelas alla krafter i fastzonen. I det foljande kallas detta tillstand f6r lagre spanntillstand. Detta dynamiska spann astadkoms genom ett antal olika mekanismer, vilka är beskrivna i mer detalj i detaljbeskrivningen och figurerna. 3 Enligt en forsta utforingsform av uppfinningen astadkoms dynamiskt spann genom att ha en skida som bestar av en framre och en bakre del. Dessa delar âr forenade genom en gemensam bas. Basen har tva glidzoner, fram respektive bak, och en fastzon mellan dessa. Den framre och bakre delen är ocksa forenade av ett gangjarn, som ar placerat nara basen. Den framre och bakre delen har en mekanism for dynamiskt spann fastsatt i den byre ytan pa dessa. Denna mekanism for dynamiskt spann bestar av en kil som sitter mellan kanterna pa de ovre ytorna ndr spannet har hogt tillstand. Denna kil ãr fjdderbelastad sa att den bara kan tryckas ner om en nedatga.ende kraft stone an en fOrbestamd och justerbart niva anbringas. Denna nedatgaende kraft skapas av skidakaren. Ndr skidakaren trycker med tillrackligt stor kraft kommer kilen att tryckas ner och de byre delarna av den framre och bakre delen kommer att komma narmare varandra, och pa sa. salt forsatta skidan i lagt spanntillstand och ger pa sa salt skidan bra faste. In the context of the present invention, dynamic span means a span which has a dynamic pattern of resistance to external forces. A traditional span acts as a leaf spring, thus giving a progressive resistance to external forces. The dynamic span is a span whose resistance initially functions as a normal progressive span, but when the external shear force becomes stone at a certain adjustable spruce value, the span almost completely collapses and thus all forces in the fixed zone are distributed. In the following, this state is called the lower span state. This dynamic span is achieved by a number of different mechanisms, which are described in more detail in the detailed description and figures. According to a first embodiment of the invention, dynamic span is achieved by having a ski consisting of a front and a rear part. These parts are united by a common base. The base has two sliding zones, front and rear, respectively, and a fixed zone between them. The front and rear parts are also joined by a hinge, which is located near the base. The front and rear parts have a dynamic span mechanism attached to the bearing surface thereof. This dynamic span mechanism consists of a wedge located between the edges of the upper surfaces when the span is high. This wedge is spring-loaded so that it can only be depressed if a descending force stone of a predetermined and adjustable level is applied. This downward force is created by the skier. When the skier presses with sufficient force, the wedge will be pushed down and the upper parts of the front and rear part will come closer to each other, and so on. salt continue the ski in the laid tension condition and gives the salt ski a good fast.

Detta ldgre spanntillstand kommer att fOrbli tills skidakaren tar bort den nedatgaende kraften. Da kommer den fjanerbelastade kilen att tryckas upp mellan de Ovre delarna av framre och bakre delen av skidan, och pa sa salt aterstalla spannet till dess hogre tillstand med bra glidegenskaper. This lower tension condition will remain until the skier removes the downward force. Then the spring-loaded wedge will be pushed up between the upper parts of the front and rear part of the ski, and then salt will restore the span to its higher condition with good sliding properties.

Enligt en andra utf6ringsform av uppfinningen astadkoms dynamiskt spann genom att ha en skida som bestar av en framre och en bakre del. Dessa delar ãr forenade genom en gemensam bas. Basen har tva. glidzoner, frarn respektive bak, och en fastzon mellan dessa. Den framre och bakre delen är ocksa forenade av ett gangjdrn, som ar placerat nara basen. Den ovre delen av den bakre delen har forldngning som sticker ut ovanfor den framre delen. I slutet av denna fOrldngnings firms ett gangjarn med en plan del fastsatt. Denna plana del gar emot oversidan pa den frarnre delen, med en liten vinkel framat. Denna plana del ãr ¥ fjdderbelastad sa att den bara kan rora sig om den belastas med tillrackligt hog kraft. Den namnda vinkeln vdljs sa att fjadern inte behOver vara kraftig. Nar skidan belastas med tillackligt stor kraft kommer den nedre delen av den plana delen att glida langs oversidan pa den framre delen av skidan, vilken bOr ha lag friktion. Den namnda plana delen kommer att rotera runt gangjarnet som ãr fastsatt i 4 fOrlangningen. Nar den plana delen glider kommer vinkeln att andras och pa sâ vis kra.vs mindre och mindre kraft for att trycka den nedat. Salunda kommer forlangningen rOra sig nedat tills den tar emot oversidan pa den frarnre delen av skidan. Pa sâ vis har den beskrivna mekanismen kollapsat sá att spannet har ett la.gt tillstand, och pa samma sat som den fOrsta utforingsformen kommer detta tillstand att kvarsta tills skidakaren avlagsnar den nedatga.ende kraften. Da kommer den fjaderbelastade plana delen tryckas tillbaks igen och aterstalla skidan i dess Ovre spanntillstand med bra glidegenskaper. I en variant av denna utforingsform ar fjadern belagen i gangjarnet som sitter fast i fOrlangningen. Denna fjader ãr da av torsionstyp. According to a second embodiment of the invention, dynamic span is achieved by having a sheath consisting of a front and a rear part. These parts are united by a common base. The base has two. sliding zones, front and rear, respectively, and a fixed zone between them. The front and rear parts are also joined by a curtain, which is located near the base. The upper part of the rear part has an extension which protrudes above the front part. At the end of this extension, a hinge with a flat part is attached. This flat part goes towards the top of the front part, with a small angle forward. This flat part is spring loaded so that it can only move if it is loaded with sufficiently high force. The said angle is chosen so that the spring does not have to be strong. When the ski is loaded with sufficient force, the lower part of the flat part will slide along the upper side of the front part of the ski, which should have low friction. The said flat part will rotate around the hinge which is fixed in the 4 extension. As the flat part slides, the angle will change and thus less and less force is required to push it down. Salunda will move downwards until it receives the upper side of the lower part of the ski. In this way, the described mechanism has collapsed so that the span has a low state, and in the same way as the first embodiment, this state will remain until the skier removes the descending force. Then the spring-loaded flat part will be pushed back again and restore the ski in its upper tension condition with good sliding properties. In a variant of this embodiment, the spring is coated in the hinge which is fixed in the extension. This spring is then of the torsion type.

Enligt en tredje utforingsform av uppfmningen astadkoms dynamisk spann pa liknande sat som i den andra utf6ringsformen, forutom att istallet fOr ett gangjarn och en plan del sa trycker forlangningen ner mot en kil, som glider pa Overdelen av framre delen av skidan. Denna kil är fjaderbelastad. Nar tillrackligt stor kraft anbringas glider kilen framat och forlangningen kan kollapsa mot frarnre delen av skidan. Overgangen mellan olika spanntillstand sker pa liknande satt som fOr de tva f8rsta utforingsformerna Enligt en fjarde utfOringsform av uppfmningen astadkoms dynamisk spann pa liknande satt som i den tredje utforingsformen, forutom att istallet for glidande sá har minst en av kilen och forlangningen ett kullager for minskad friktion. According to a third embodiment of the invention, dynamic span is achieved in a similar manner as in the second embodiment, except that instead of a hinge and a flat part, the extension presses down against a wedge, which slides on the upper part of the front part of the ski. This wedge is spring loaded. When sufficient force is applied, the wedge slides forward and the extension may collapse towards the lower part of the ski. The transition between different clamping conditions takes place in a similar way as for the first two embodiments According to a fourth embodiment of the invention, dynamic tension is achieved in a similar way as in the third embodiment, except that instead of sliding it has at least one of the wedge and the requirement a ball bearing for reduced friction .

Enligt en femte utforingsform av uppfmningen astadkoms dynamisk spann genom att ha en fackverkskontruktion inuti skidan eller externt. Fackverket bestar av styva stanger. Fackverket har ett antal fjaderbelastade stanger och nar dessa belastas tillrackligt mycket av skidakaren ger de vika och fackverket kollapsar, och pa sa vis salts skidan i lagt spanntillstand. According to a fifth embodiment of the invention, dynamic span is achieved by having a truss construction inside the ski or externally. The truss consists of rigid rods. The truss has a number of spring-loaded rods and when these are loaded sufficiently by the skier, they give way and the truss collapses, and thus the ski is salted in the laid condition.

Enligt en sjatte utforingsform av uppfmningen astadkoms dynamisk spann genom att ha en fjader med dubbelt krOkning internt i skidan eller externt. Fjadern med dubbel krokning har egenskapen att den har tva stabila tillstand, ett dar den ãr krokt at ena hâllet, och ett ddr den ãr krokt at andra hallet. Mellan dessa tillstand finns en skarp Overgangspunkt, dar fjaderns motstandskraft andrar polaritet. En sa.dan fjader anvands for att ge skidan en dynamiskt spann enligt vad som beskrivits for de andra utforingsformerna. Som en jamforelse kan namnas att det vanligaste anvandningsomradet for sadana fjadrar ãr sjdlvlindande reflexer och leksaker. According to a sixth embodiment of the invention, dynamic span is achieved by having a spring with double curvature internally in the ski or externally. The spring with a double hook has the property that it has two stable conditions, one where it is hooked on one side, and one where it is hooked on the other side. Between these states there is a sharp transition point, where the resilience of the spring changes polarity. Such a spring is used to give the ski a dynamic range as described for the other embodiments. As a comparison, it can be mentioned that the most common area of application for such springs is self-winding reflectors and toys.

Enligt en sjunde utforingsform av uppfinningen astadkoms dynamisk spann genom att ha en skida som bestar av en framre och en bakre del. Dessa delar är fOrenade genom en gemensam bas. Basen har tva glidzoner, fram respektive bak, och en fastzon mellan dessa. According to a seventh embodiment of the invention, dynamic span is achieved by having a ski consisting of a front and a rear part. These parts are united by a common base. The base has two sliding zones, front and rear, respectively, and a fixed zone between them.

Oversidorna pa den framre och bakre delen ãr forenade av en mekansim for dynamiskt spann. Denna mekanism bestar av tvâ plattor som ãr forenade med tre gangjarn, tva som sitter ihop med overdelen av den framre och bakre delen pa skidan, och ett som forbinder de tva plattorna. Mekanismen bestar aven av en tryckande fjader de trycker det mellersta gandarnet uppat. Gangjarnen r konstruerade med en begransad rorelsefrihet som begransar hur hOgt upp fjadern kan trycka det mellersta gangjarnet. Nar inga externa krafter paverkar mekanismen har skidan ett h6gt spanntillstand. Nar tillrãckligt starka krafter pabringas mekanismen kollapsar den och skidan overgar till ett lagt sparmtillstand. Skidan atergar till Mgt spanntillstand ndr den externa kraften avlagsnas. The upper sides of the front and rear are joined by a dynamic span mechanism. This mechanism consists of two plates which are joined by three hinges, two which sit together with the upper part of the front and rear part of the ski, and one which connects the two plates. The mechanism also consists of a pushing spring, they push the middle gandarn up. The hinges are constructed with a limited freedom of movement that limits how high up the spring can push the middle hinge. When no external forces affect the mechanism, the ski has a high tension condition. When sufficiently strong forces are applied to the mechanism, it collapses and the ski transitions to a state of sperm state. The ski returns to Mgt tension state when the external force is removed.

Enligt en attonde utforingsform av uppfmningen astadkoms dynamisk spann genom att kombinera nagon av ovanstdende utforingsformer med en elektromekanisk eller elektromagnetisk mekanism. Alla fjaderbelastade delar kan ersattas med elektriska motorer eller elektromagneter. Pa sa vis ãr det mOjligt att basera spannets kollaps pa andra aspekter an kraftens storlek. Till exempel kan kollapsen vara baserad pa indata fran sensorer sasom accelerationsmaare, trycksensorer, fotlage, hastighet etc. 6 Enligt en nionde utfOringsform av uppfinnings astadkoms dynamisk spann genom att kombinera nagon av ovanstaende utforingsformer med en skidbindning. I synnerhet innefattar bindningen fjdderdelen av den dynamiska spannmekanismen. Vidare kan bindningen justeras pa sa sat att aktiveringen av den dynamiska spannmekanismen inte bara styrs av den palagda kraftens storlek, utan ocksa forhallandet mellan kraften som paverkar den framre och bakre delen av bindningen. According to an eighth embodiment of the invention, dynamic range is achieved by combining any of the above embodiments with an electromechanical or electromagnetic mechanism. All spring-loaded parts can be replaced with electric motors or electromagnets. In this way, it is possible to base the collapse of the span on other aspects than the magnitude of the force. For example, the collapse may be based on input from sensors such as accelerometers, pressure sensors, footwork, speed, etc. 6 According to a ninth embodiment of the invention, the dynamic range is achieved by combining any of the above embodiments with a ski binding. In particular, the bond comprises the quarter of the dynamic clamping mechanism. Furthermore, the binding can be adjusted in such a way that the activation of the dynamic tensioning mechanism is not only controlled by the magnitude of the applied force, but also the ratio between the force which affects the front and rear part of the binding.

En fordel med utforingsforrnerna av uppfmningen ãr att de ger en skida med bade bra glidegenskaper och bra fastegenskaper samtidigt. An advantage of the embodiments of the invention is that they provide a ski with both good sliding properties and good fastening properties at the same time.

Ytterligare en fordel är att eftersom med uppfinningen kan spannets hojd designas med ett signifikant gap mellan basen och snarl dr det mOjligt att ha ytstrukturer i belaget med valdigt bra fastegenskaper, som till exempel fiskfjallsmOnster etc. Another advantage is that since with the invention the height of the span can be designed with a significant gap between the base and snarl, it is possible to have surface structures in the coating with very good fastening properties, such as fish mountain patterns etc.

Figurforteckning Figur 1 illustrerar en klassisk langdskida som belastas med ungefar halften av skidakarens vikt. List of figures Figure 1 illustrates a classic cross-country ski that is loaded with about half the weight of the skier.

Figur 2 illustrerar en klassisk ldngdskida som belastas med hela skidakarens vikt. Figure 2 illustrates a classic longitudinal ski that is loaded with the entire weight of the skier.

Figure 3 illustrerar en klassisk ldngdskida som belastas med hela skidakarens vikt plus kraften i franskjutet. Figure 3 illustrates a classic longitudinal ski that is loaded with the entire weight of the skier plus the force of the French shot.

Figur 4 illustrerar en klassisk ldngdskida med dynamiskt spann enligt uppfmningen och hur krafterna fordelas. Figure 4 illustrates a classic longitudinal ski with a dynamic span according to the invention and how the forces are distributed.

Figure illustrerar en klassisk langdskida med en mekanism Rir att ge skidan dynamiskt spann. Figure illustrates a classic cross-country ski with a Rir mechanism to give the ski dynamic range.

Figur 6 illustrerar en forstorad version av mekanismen i figur 5. Mekanismen har hogt spanntillstand. Figure 6 illustrates an enlarged version of the mechanism of Figure 5. The mechanism has a high tension condition.

Figur 7 illustrerar en fOrstorad version av mekanismen i figur 5. Mekanismen har lagt spanntillstand. 7 Figur 8 illustrerar en forstorad version av en annan mekanism for dynamiskt spann. Mekanismen har hogt spanntillstand. Figure 7 illustrates an enlarged version of the mechanism in Figure 5. The mechanism has added tension. Figure 8 illustrates an enlarged version of another dynamic span mechanism. The mechanism has a high tension state.

Figur 9 illustrerar en fOrstorad version av ytterligare en annan mekanism fOr dynamiskt spann. Mekanismen har hOgt spanntillstand. Figure 9 illustrates an enlarged version of yet another dynamic span mechanism. The mechanism has a high tension state.

Figur illustrerar en forstorad version av ytterligare en annan mekanism for dynamiskt spann. Mekanismen har hogt spanntillstand. Figure illustrates an enlarged version of yet another dynamic span mechanism. The mechanism has a high tension state.

Figur 11 illustrerar en fOrstorad version av ytterligare en annan mekanism fOr dynamiskt spann. Mekanismen har hogt spanntillstand. Figure 11 illustrates an enlarged version of yet another dynamic span mechanism. The mechanism has a high tension state.

Figur 12 illustrerar en forstorad version av ytterligare en annan mekanism for dynamiskt spann. Mekanismen har hogt spanntillstand. Figure 12 illustrates an enlarged version of yet another dynamic span mechanism. The mechanism has a high tension state.

Figur 13 illustrerar en klassikt ldngdskida med dynamiskt spann erhallet genom en fjader med dubbel kurvatur. Skidan har h5gt spanntillstand. Figure 13 illustrates a classic longitudinal ski with dynamic span obtained through a spring with double curvature. The ski has a high tension condition.

Figur 14 illustrerar en f6rstorad version av ytterligare en annan mekanism fOr dynamiskt spann. Mekanismen har Mgt spanntillstand. Figure 14 illustrates an enlarged version of yet another dynamic span mechanism. The mechanism has a very tight state.

Figur illustrerar samma dynamiska spannmekanism som i figur 14. Mekanismen har agt spanntillstand. Figure illustrates the same dynamic tensioning mechanism as in figure 14. The mechanism has a tight tensioning state.

Figur 16 illustrerar en forstorad version av ytterligare en annan mekanism fOr dynamiskt spann. Mekanismen har hogt spanntillstand. Figure 16 illustrates an enlarged version of yet another dynamic span mechanism. The mechanism has a high tension state.

Figur 17 illustrerar hur en skidpjdxa kan fastsattas i skidan fOr optimal aktivering av den dynamiska spannmekanismen. Figure 17 illustrates how a ski pole can be attached to the ski for optimal activation of the dynamic tensioning mechanism.

Figur 18 illustrerar en fi5rstorad version av ytterligare en annan mekanism for dynamiskt spann, ddr mekanismen ãr integrerad med bindningen. Figure 18 illustrates an enlarged version of yet another dynamic span mechanism in which the mechanism is integrated with the bond.

Detalibeskrivning av uppfinningen Uppfinning kommer i det foljande att beskrivas i mer detalj hari med 8 referenser till de bifogade figurerna, dar ett flertal utfOringsformer av uppfinningen visas. DETAILED DESCRIPTION OF THE INVENTION The invention will be described in more detail below with 8 references to the accompanying figures, in which a number of embodiments of the invention are shown.

Uppfinningen kan emellertid utforas i manga olika former och skall inte tolkas som begransad till de utforingsformer som visas hari, snarare tillhandahalls dessa utforingsformer sa att denna detaljbeskrivning skall vara grundlig och fullstandig, och kommer fullstandigt fOrmedla omfattningen av uppfinning for fackmannen Mom teknikomradet. Pa ritningarna hanvisar likadana hanvisningsbeteckningar till likadana element. However, the invention may be embodied in many different forms and should not be construed as limited to the embodiments shown herein, rather, these embodiments are provided so that this detailed description will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, like reference numerals refer to like elements throughout.

Vidare kommer fackman Mom omradet att inse att medan foreliggande uppfmning primart beskrivs som en apparat som an en del av en skida, kan uppfmningen dven utforas i skidbindningar liksom andra anordningar utanfor skidan som kan utfora de funktioner som beskrivs hari. Furthermore, those skilled in the art will recognize that while the present invention is primarily described as an apparatus as part of a ski, the invention may also be embodied in ski bindings as well as other devices outside the ski which may perform the functions described herein.

Dessutom b8r det vara klart f6r en fackman inom omradet att ritningarna inte an helt detaljerade eller i ratt skala. F8r illustrativt syfte visas vissa delar stone och oproportionerliga i forhallande till verkligheten. In addition, it should be clear to a person skilled in the art that the drawings are not fully detailed or on a straight scale. For illustrative purposes, certain parts are shown stone and disproportionate in relation to reality.

Figur 1 visar en ungefarlig Oversikt Over hur de vertikala krafterna paverkar en klassisk ldngdskida ndr den an deMs belastad. Detta ãr till exempel en vanlig situation nar akaren dubbelstakar, sá att ungefar hdlften av dkarens vikt belastar en skida. I detta fall kan det ses att kraften fOrdelas pa skidan 100 i en framre del 102 och en bakre del 101. 9 Figur 2 illustrerar en typisk Oversikt Over hur de vertikala krafter paverkar en klassisk ldngdskida ndr den ãr belastad med stOrre delen av skidakarens vikt. Detta är till exempel en vanlig situation nar skidakaren glider pa en skida efter att ha franskjutit med den andra, sâ att ungefar hela skidakarens vikt är pa en skida. I detta fall kan det ses att kraften fordelas pa skidan 200 i en framre del 202 och en bakre del 201, men jamfort med Figur 1 kan noteras att delar av kraften ocksâ fordelas i fastzonen, som illustreras av de prickade kraftlinjerna 203. Det torde vara uppenbart for fackmannen inom omradet att pa grund av detta är det illustrerade spannet inte idealisk fOr att glida pa en skida. Figure 1 shows a harmless Overview of how the vertical forces affect a classic longitudinal ski when it is loaded. This is, for example, a common situation when the driver doubles, so that about half of the driver's weight loads a ski. In this case, it can be seen that the force is distributed on the ski 100 in a front part 102 and a rear part 101. 9 Figure 2 illustrates a typical Overview of how the vertical forces affect a classic longitudinal ski when it is loaded with most of the skier's weight. This is, for example, a common situation when the skier slips on one ski after shooting with the other, so that almost the entire weight of the skier is on one ski. In this case it can be seen that the force is distributed on the sheath 200 in a front part 202 and a rear part 201, but compared with Figure 1 it can be noted that parts of the force are also distributed in the fixed zone, which is illustrated by the dotted power lines 203. It should be it is obvious to the person skilled in the art that due to this the illustrated span is not ideal for sliding on a ski.

Figur 3 visar en typisk bild av hur de vertikala krafterna paverkar en klassisk langdskida nar den dr belastad med skidakarens hela vikt plus ytterligare kraft som orsakas av franskjutet i franskjutsfasen. Detta ãr till exempel en vanlig situation ndr skidakaren a.ker med omvdxlande diagonalsteg och skjuter ifran for att producera en drivkraft. I detta fall kan det ses att kraften fordelas pa skidan 300 i en framre del 302 och en bakre del 301, men jamfort med Figur 2 kan noteras att en betydande del av kraften nu kommer fran fastzonen, sasom illustreras av de prickade kraftlinjerna 303. Emellertid är det mesta av kraften fortfarande fiirdelad i glidande sektionerna 301 och 302. Salunda bOr det vara uppenbart fOr fackmannen inom teknikomradet att det visade spannet inte ger ett perfekt taste. 10 Figur 4 illustrerar en typisk overblick Over hur de vertikala krafterna kommer att distribueras i franskjutsfasen ndr en skida med den foreslagna uppfinningen implementerad i spannet arivands. Den totala kraften kommer fran skidakarens vikt och ytterligare kraft som orsakas av franskjutet i franskjutsfasen. Detta ãr till exempel en vanlig situation ndr skidakaren Aker med omvdxlande diagonalsteg och skjuter ifran for att producera en drivkraft. I detta fall kan man se att viss kraft fordelas pa skidan 400 i en framre del 402 och en bakre del 401, men jamfort med Figur 3 kan noteras att nu endast en mycket liten del ãr fOrdelad i glidzonerna, och att nastan all kraft kommer fran lastzonen, sasom illustreras av prickade kraftlinjerna 403. Det torde vara uppenbart for fackmannen Mom omradet att en skida med dynamiskt spann ger ett mycket battre faste an en konventionell klassisk langdakningsskida. Figure 3 shows a typical picture of how the vertical forces affect a classic cross-country ski when it is loaded with the skier's full weight plus additional force caused by the French shot in the French shot phase. This is, for example, a common situation when the skier moves with alternating diagonal steps and pushes away to produce a driving force. In this case, it can be seen that the force is distributed on the sheath 300 in a front part 302 and a rear part 301, but compared with Figure 2 it can be noted that a significant part of the force now comes from the fixed zone, as illustrated by the dotted power lines 303. However most of the force is still distributed in the sliding sections 301 and 302. Thus, it should be apparent to those skilled in the art that the span shown does not provide a perfect taste. Figure 4 illustrates a typical overview of how the vertical forces will be distributed in the French firing phase during a ski with the proposed invention implemented in the range arivands. The total force comes from the weight of the skier and additional force caused by the French shot in the French shot phase. This is, for example, a common situation when the skier Aker alternates with diagonal steps and pushes away to produce a driving force. In this case it can be seen that some force is distributed on the sheath 400 in a front part 402 and a rear part 401, but compared with Figure 3 it can be noted that now only a very small part is distributed in the sliding zones, and that almost all force comes from the load zone, as illustrated by the dotted power lines 403. It should be obvious to the person skilled in the art that a ski with a dynamic span gives a much better fastness than a conventional classic long-distance ski.

Figur illustrerar en typisk oversikt av en utforingsform av uppfmningen. En klassisk ldngdskida 501 har en dynamisk spannmekanism 502. 11 Figur 6 och 7 visar en foredragen utfOringsform av uppfinningen. Figur 6 illustrerar den mekanism som beskrivs i 502 i en stone skala fOr okad tydlighet och darmed visas endast delar av skidan 501. Mekanismen bestar av ett antal delar, av vilka endast de viktigaste visas for att klargora presentationen. Skidan 501 bestar av en framre och en bakre del. Delarna sitter ihop med en gemensam bas. Basen bar tva glidzoner, vid den framre och bakre delen respektive, och en fastzon. De framre och bakre delar ãr ocksâ forenade med ett gangjarn 602, som ãr belaget nara basen. De frarnre och bakre delarna har en dynamisk spannmekanism fast vid de ovre ytorna. Denna dynamiska spannmekanism bestar i huvudsak av en vinklad kil 613 som ãr inklamd mellan tva plattor 603 och 604. Plattan 603 ar fast vid den ovre ytan av den bakre delen av skidan 501 och plattan 604 ar fast vid den ovre delen av den framre delen av skidan 501. Kilen är fast pa insidan av den framre delen av skidan med ett gangjarn 614. En fjader konstruktion besta.ende av en justerskruv 612, en fjader 611 och en mutter 610 anvands for att justera den erforderliga kraften som kravs for att trycka kilen 613 nedat. Fjadern 611 och muttern 610 ar fasta vid varandra och kilen 613 sá att de inte kan rotera nar stallskruven 612 vrids. I det hoga spanntillstandet trycker fjadern i ovannamnda konstruktion kilen 613 uppat, sa att den ãr inklamd mellan plattorna 603 och 604. Den dynamiska spannmekanism bestar ocksa av en ovre vinklad plattform 605 som ãr fast vid plattan 603 med ett gangjarn 607. Den vinldade plattform 605 kan trycka mot den vinklade kilen 613. Nar plattformen 605 trycks ned med en kraft som ãr st6rre an kraften fran fjadern konstruktionen 610-612 plus friktion /lir sig kilen 613 nedat och den ãr inte langre inklamd mellan plattorna 603 och 604, vilket far den dynamiska spannmekanismen att kollapsa till ett lagt spanntillstand, sasom visas i Figur 7. Plattorna 603 och 604 och kilen 613 bar snedstallda kanter, sa att nar den palagda kraften reduceras kommer kilen 613 att pressas mellan plattorna 603 och 604 av fjaderkonstruktionen 610-612. Vinkeln pa denna snedstallning kommer att avera vid vilken kraftniva skidan atergar till hogt spanntillstand. 12 Figur 8 visar en annan utforingsform, som ãr en variant pa utfOringsformen som beskrivs i Figur 5-7. Skillnaden i denna utforingsform är att en fjader 803 trycker direkt pa kilen 802 Figur 9 illustrerar ytterligare en annan utforingsform dar dynamiskt spann uppnas genom att ha en skida 901 som bestar av en framre och en bakre del. Delarna forenas av en gemensam bas. Basen har tva glidzoner, fram respektive bak, och en lastzon. De framre och bakre delarna ãr ocksa fOrenade med ett gangjarn 902, som ãr beldget ndra basen. Den ovre delen av den bakre delen har en forldngning 903 som straeker sig ut ovanfor den frdmre delen. I slutet av denna forldngning sitter en led 904 med en plan struktur 905 bifogad. Denna plana struktur 905 gar emot den Ovre delen av den framre delen av skidan 901 med en vinkel frama.t. Den är ocksa forhindrad att glida bakat genom fOrhojningen 920. Den plana strukturen 905 trycks ocksa tillbaka av en fjaderkonstruktion bestaende av en fjader 906, justerskruv 907 och en mutter 908 fast vid skidan. Saledes kan den plana strukturen 905 bara rOra sig framat om skidan 901 dr belastad med tillrackligt stor vertikal kraft. Den namnda vinkeln är vald sa att fjadern 906 inte behover vara stark och tung. Ndr skidan 901 ãr belastad med tillracklig kraft, som bestams av stdllskruven 907, kommer den nedre anden av den plana strukturen 905 glider ldngs ytan av den framre delen av skidan 901, som skall ha lag friktion. Den ovre delen av den plana strukturen 905 kommer att rotera runt leden 904 fast vid fOrldngningen 903. Eftersom den nedre dnden av den plana strukturen 905 glider ytterligare framat Andras vinkeln och darmed kravs mindre och mindre kraft for att trycka den neat. Darfor kommer forrangningen 903 att rora sig nedat tills den nar den owe delen av den frdmre delen av skidan 901. Saledes har den beskrivna mekanismen kollapsat till ett lagt spanntillstand, och endast en liten nedatriktad kraft kravs flir att halla mekanismen i detta tillstand. Detta laga spanntillstand kvarstar tills akaren tar bort nastan all nedatriktade kraft, da kommer den fjdderbelastade plana strukturen 905 att tryckas tillbaka igen, och pa sa salt aterstalla skidan till ett Mgt spann tillstand med goda glidegenskaper. 13 Figur illustrerar ytterligare en annan utforingsform dâr dynarniskt spann uppnas genom att ha en skida 1001 som bestar av en framre och en bakre del. Delarna är forenade av en gemensam bas. Basen har tva glidzoner, vid den framre respektive bakre delen, och en fastzon. De frdmre och bakre delarna ãr ocksa forenade med ett gangjarn 1002, som är beldget ndra basen. Den ovre delen av den bakre delen har en forldngning 1003 som stracker sig ut ovanfor den framre delen. Pa den ovre ytan av den framre delen av skidan 1001 firms en kil 1009 som har en vinklad Ovre yta beldgen. Kilen 1009 stoppas att glida bakat av den lilla fOrhojningen 1020. Den plana strukturen skjuts tillbaka av en fjader konstruktion bestaende av en fjader 1006, justerskruv 1007 och en mutter 1008 fast vid skidan. Saledes kan kilen 1009 bara rora sig framat om skidan belastad med tillracklig kraft. Den namnda vinkeln av den Ovre ytan hos kilen 1009 vdljs sá att fjddern 1006 inte behover vara stark och tung. Ndr skidan êir belastad med tillracklig kraft, som bestams av stallskruven 1007, kommer kilen 1009 glider framat Fangs ytan pa den framre delen av skidan 1001, som skall ha lag friktion. Eftersom kilen 1009 glider ytterligare framat kommer den bakre kanten av kilen 1009 gá fri fran den framre kanten pa forlangningen 1003, och &armed kommer forldngningen att rora sig nedat tills den vidror den ovre delen av den framre delen av skidan 1001. Saledes har den beskrivna mekanismen kollapsat till ett lag spanntillstand, och endast en liten nedatriktad kraft krdvs far att halla den mekanism i detta tillstand. Detta 'Aga spanntillstand kvarstar tills akaren tar bort nastan all den nedatriktade kraften, da kommer kilen 1009 att skjutas tillbaka igen, och pa sa sat aterstalla skidor till ett hogt spanntillstand med goda glidegenskaper. Figure illustrates a typical overview of an embodiment of the invention. A classic length ski 501 has a dynamic tensioning mechanism 502. Figures 6 and 7 show a preferred embodiment of the invention. Figure 6 illustrates the mechanism described in 502 on a stone scale for increased clarity and thus only parts of the sheath 501 are shown. The mechanism consists of a number of parts, of which only the most important ones are shown to clarify the presentation. The ski 501 consists of a front and a rear part. The parts sit together with a common base. The base carried two sliding zones, at the front and rear, respectively, and a fixed zone. The front and rear parts are also joined by a hinge 602, which is coated near the base. The front and rear parts have a dynamic clamping mechanism attached to the upper surfaces. This dynamic clamping mechanism consists essentially of an angled wedge 613 which is clamped between two plates 603 and 604. The plate 603 is fixed to the upper surface of the rear part of the sheath 501 and the plate 604 is fixed to the upper part of the front part of the sheath. the sheath 501. The wedge is fixed on the inside of the front part of the sheath with a hinge 614. A spring construction consisting of an adjusting screw 612, a spring 611 and a nut 610 is used to adjust the force required to press the wedge. 613 nedat. The spring 611 and the nut 610 are fixed to each other and the wedge 613 so that they cannot rotate when the stable screw 612 is turned. In the high clamping state, the spring in the above construction pushes the wedge 613 upwards, so that it is clamped between the plates 603 and 604. The dynamic clamping mechanism also consists of an upper angled platform 605 which is fixed to the plate 603 with a hinge 607. The wound platform 605 can press against the angled wedge 613. When the platform 605 is depressed with a force greater than the force from the spring structure 610-612 plus friction / the wedge 613 slides down and it is no longer clamped between the plates 603 and 604, which causes it the dynamic clamping mechanism to collapse into a laid clamping condition, as shown in Figure 7. The plates 603 and 604 and the wedge 613 had sloping edges, so that when the applied force is reduced, the wedge 613 will be pressed between the plates 603 and 604 of the spring structure 610-612. The angle of this tilt will average at which power level the ski returns to high tension condition. Figure 8 shows another embodiment, which is a variant of the embodiment described in Figure 5-7. The difference in this embodiment is that a spring 803 presses directly on the wedge 802. Figure 9 illustrates yet another embodiment where dynamic span is achieved by having a sheath 901 consisting of a front and a rear part. The parts are united by a common base. The base has two sliding zones, front and rear, respectively, and a load zone. The front and rear parts are also joined by a hinge 902, which is a beldget change base. The upper part of the rear part has an extension 903 which extends above the front part. At the end of this obsolescence, a joint 904 with a planar structure 905 is attached. This flat structure 905 abuts the upper part of the front part of the sheath 901 at an angle forward. It is also prevented from sliding backwards through the ridge 920. The flat structure 905 is also pushed back by a spring structure consisting of a spring 906, adjusting screw 907 and a nut 908 fixed to the sheath. Thus, the planar structure 905 can only move forward if the ski 901 is loaded with sufficiently large vertical force. The said angle is chosen so that the spring 906 does not have to be strong and heavy. When the sheath 901 is loaded with sufficient force, which is determined by the adjusting screw 907, the lower spirit of the flat structure 905 will slide along the surface of the front part of the sheath 901, which should have low friction. The upper part of the planar structure 905 will rotate around the joint 904 fixed to the extension 903. As the lower end of the planar structure 905 slides further forward the angle of the other and thus less and less force is required to push it neatly. Therefore, the precursor 903 will move downward until it reaches the upper part of the front part of the sheath 901. Thus, the described mechanism has collapsed to a laid tension state, and only a small downward force is required to keep the mechanism in this state. This low tension condition remains until the field removes almost all of the downward force, then the spring-loaded flat structure 905 will be pushed back again, and then salt will restore the ski to a high span condition with good sliding properties. Figure illustrates yet another embodiment where dynamic span is achieved by having a sheath 1001 consisting of a front and a rear portion. The parts are united by a common base. The base has two sliding zones, at the front and rear, respectively, and a fixed zone. The front and rear parts are also joined by a hinge 1002, which is beldget other base. The upper part of the rear part has an extension 1003 which extends above the front part. On the upper surface of the front part of the ski 1001 there is a wedge 1009 which has an angled upper surface bellows. The wedge 1009 is stopped from sliding backwards by the small ridge 1020. The flat structure is pushed back by a spring construction consisting of a spring 1006, adjusting screw 1007 and a nut 1008 fixed to the ski. Thus, the wedge 1009 can only move forward if the ski is loaded with sufficient force. The said angle of the upper surface of the wedge 1009 is chosen so that the spring 1006 need not be strong and heavy. When the ski is loaded with sufficient force, which is determined by the stable screw 1007, the wedge 1009 will slide forward. Capture the surface of the front part of the ski 1001, which must have low friction. As the wedge 1009 slides further forward, the trailing edge of the wedge 1009 will move free from the leading edge of the extension 1003, and the armature will move downward until it touches the upper part of the front part of the sheath 1001. Thus, the described mechanism has collapsed into a law of tension, and only a small downward force is required to keep the mechanism in this state. This' Aga tension condition remains until the field removes almost all the downward force, then the wedge 1009 will be pushed back again, and in this way restore skis to a high tension condition with good sliding properties.

Med hanvisning nu till Figur 11, som visar ytterligare en utforingsform som ãr en variant av utforingsformen som illustreras i Figur 10. I den utforingsform som illustreras i Figur 11 ãr kilen 1009 i Figur 10 ersatt av en kil 1109 med rullager 1110 for att minska friktionen. Dessutom har forldngningen 1103 ett rullager 1111 for att ytterligare reducera friktionen. 14 Figur 12 illustrerar ytterligare en annan utfOringsform dar dynamiskt spann uppnas genom att ha en fjaderbelastad fackverksstruktur inbaddad inuti skidan. Figur 12 visar en skiss Over fackverkets struktur. Fackverksstrukturen bestar av en ovre lang stang 1201 som stracker sig fran den framre delen av spannet till den bakre delen. Referring now to Figure 11, which shows a further embodiment which is a variant of the embodiment illustrated in Figure 10. In the embodiment illustrated in Figure 11, the wedge 1009 in Figure 10 is replaced by a wedge 1109 with roller bearings 1110 to reduce friction. . In addition, the extension 1103 has a roller bearing 1111 to further reduce friction. Figure 12 illustrates yet another embodiment where dynamic span is achieved by having a spring-loaded truss structure embedded within the ski. Figure 12 shows a sketch of the truss structure. The truss structure consists of an upper long rod 1201 which extends from the front part of the span to the rear part.

Fackverksstrukturen bestar ocksa av en lagre lang stang 1204 som stracker sig fran den framre delen av spann till den bakre delen. Den ovre stangen 1201 och den undre stangen 1204 är fOrbundna med styva balkar 1203, vilket ger fackverksstrukturen styva egenskaper. The truss structure also consists of a lower long bar 1204 which extends from the front part of the bucket to the rear part. The upper rod 1201 and the lower rod 1204 are connected to rigid beams 1203, which gives the truss structure rigid properties.

Nara mitten av fackverksstrukturen är den ovre stangen 1201 och den undre stangen 1204 forbundna med styva balkar 1202, som r fasta permanent till den ovre stangen 1201, men som kan rora sig ldn.gs den nedre stangen 1204. Forflyttningen av 1202 langs stangen 1204 begransas av en fidder 1205 som är fast till stangerna 1202. Ndr fackverksstrukturen ür belastad med tillrãcklig stor neda.triktad kraft dar stangerna 1202 ãr fasta i stangen 1201 kommer fjadern 1205 att forlangas och darmed forlorar fackverksstrukturen sin styvhet vid denna punkt och kollapsar darmed. Skidan kommer da in i ett lagt spanntillstand och kommer inte tillbaka till hogt spanntillstand forran den nedatriktade kraften avldgsnas. Near the center of the truss structure, the upper rod 1201 and the lower rod 1204 are connected by rigid beams 1202, which are fixed permanently to the upper rod 1201, but which can move along the lower rod 1204. The movement of 1202 along the rod 1204 is limited. of a spring 1205 which is fixed to the rods 1202. If the truss structure is loaded with a sufficiently large downwardly directed force where the rods 1202 are fixed in the rod 1201, the spring 1205 will be required and thus the truss structure loses its rigidity at this point and thereby collapses. The ski then enters a laid tension state and does not return to a high tension state until the downward force is released.

Figur 13 illustrerar ytterligare en annan utfOringsform ddr dynamisk Spann uppnas genom att ha en dubbelkrokt fjader 1302 fast vid skidan 1303. Den Ovre delen av Figur 13 visar en forstorad sidovy 1302 och en forstorad vy framifran 1301 av den dubbelkrOkta fjadern. Den dubbelkrokta fjadern har formen av en yta, vilken har en egenskap att den har tva stabila tillstand, ett ddr den ãr krOkt i en riktning, och ett ddr den är krokt i den andra riktningen. Mellan dessa till tillstand finns en skarp overgangspunkt, dar den b6jande kraften hos fjadern andrar polaritet. En dubbelkrOkt fidder anvands med en Overgangspunkt som ger skidan en dynamisk spann sasom beskrivits for de andra utfOringsformerna av denna uppfmning. Som referens kan namnas att den kanske vanligaste anvandningen av dubblakrokta fiddrar ãr reflektorer och leksaker som kan fdsta sig sjalv runt olika objekt, se t.ex. US3410023. Figure 13 illustrates yet another embodiment where the dynamic span is achieved by having a double hook spring 1302 attached to the sheath 1303. The upper part of Figure 13 shows an enlarged side view 1302 and an enlarged front view 1301 of the double curved spring. The double-crooked spring has the shape of a surface, which has the property that it has two stable conditions, one where it is curved in one direction, and one where it is crooked in the other direction. Between these to the state there is a sharp transition point, where the bending force of the spring changes polarity. A double-curved feeder is used with a transition point which gives the ski a dynamic range as described for the other embodiments of this invention. As a reference, it can be mentioned that perhaps the most common use of double-hook feathers is reflectors and toys that can attach themselves around different objects, see e.g. US3410023.

Figur 14 och visar ytterligare en annan utforingsform av uppfmningen. Skidan 1401 bestar av en framre och en bakre del. Dessa delar f8renas av en gemensam bas 1404. Basen 1404 har tvá glidzoner, pa den frdmre respektive bakre delen, och en fastzon. Framre delen har en ovre yta 1402 och bakre delen har en ovre yta 1403 och dessa ãr forenade genom en dynamisk spannmekanism som är fast vid dessa ovre ytor 1402 och 1403. Denna dynamiska spannmekanism bestar huvudsakligen av tva plattor 1430 som är f8renade med varandra medelst gangjarnet 1421. De tva plattorna 1430 dr ocksa ansluten till den framre ovre ytan 1402 med gangjdrnet 1422 och till den bakre byre ytan 1403 med gangjarnet 1420. Del av konstruktionen ãr ocksâ en tryckande fjader 1410 som trycker uppat pa gangjdrnet 1421. Gan.gjdrnen 1420, 1421 och 1422 är konstruerade med ett begransat rorelseomfang som begransar hur hogt fjadern 1410 kan skjuta gangjdrnet 1421. Ndr ingen yttre kraft verkar pa den dynamiska spannmekanismen har skidan ett h8g spanntillstand, sasom illustreras i Figur 14. Nar tillrackligt stor yttre nedatriktad kraft appliceras pa namnda mekanism, kollapsar mekanismen och skidan intar ett lag spanntillstand, sasom illustreras i Figur 15. Skidan 1401 atergar till ett hogt spanntillstand ndr den yttre kraften avlagsnas. 16 Figur 16 illustrerar ytterligare en annan utfOringsform dar dynamiskt spann uppnas genom att ha en skida 1601 som bestar av en framre och en bakre del. Delarna forenas av en gemensam bas. Basen har tvâ glidzoner, vid den framre respektive bakre delen, och en fastzon. De framre och bakre delarna ãr ocksa forenade med ett gangjarn, som ãr belaget nara basen. Den ovre delen av den bakre delen har en forlangning 1603 som stracker sig ut ovanfor den framre delen. I slutet av denna forlangning finns en led 1604 med en plan struktur 1605 bifogad. Gangjarnet 1604 har en integrerad torsionsfjader som trycker den plana strukturen 1605 i en moturs riktning. Den plana strukturen 1605 gar mot den i5vre delen av den framre delen av skidan i en vinkel. Det farhindras ocksa att glida bakat av den lilla forhojningen 1620. Saledes kan den plana strukturen 1605 bara ga framat om skidan belastad med tillracklig stor kraft. Den namnda vinkeln ar vald sa att torsionsfjadern inte behover vara stark och tung. Nar skidan àr belastad med tillrackligt stor kraft tvingas den nedre anden av den plana strukturen 1605 att glida langs ytan av den framre delen av skidan 1601, som skall ha lag friktion. Den ovre delen av den plana strukturen kommer att rotera runt det fjaderbelastade gangjarnet 1604 fast vid forlangningen 1603. Alit eftersom den plana strukturen glider langre fram andras vinkeln och darmed kravs mindre och mindre kraft for att pressa ner den. Dad& kommer forlangningen att rora sig nedat tills den vidror den ovre delen av den framre delen av skidan 1601. Saledes har den beskrivna mekanismen kollapsat till ett lagt spanntillstand, och endast en liten kraft kravs for att halla mekanismen i detta tillstand. Detta laga spanntillstand kvarstar tills akaren tar bort nastan all den neda.triktade kraften, da kommer den fjaderbelastade plana strukturen att tryckas tillbaka igen, och pa sâ satt aterstalla skidan till ett hogt spanntillstand med goda glidegenskaper. 17 En ytterligare utforingsform ãr en variant av alla utforingsformer ovan dar en fjader anvandes. I denna utforingsform ersatts fjadrarna med en elektrisk anordning, sasom en elektromagnet eller en elektrisk motor. I denna utforingsform aktiveras inte mekanismen bara av kraftens trOskelvarde. Aktiveringen baseras pa elektriska sensorer sasom accelerometrar, tryckgivare och hastighetsensorer, vilkas utsignaler bearbetas av en mikroprocessor. Mikroprocessorn aktiverar sedan den elektriska motorn eller elektromagneten. Figure 14 and shows yet another embodiment of the invention. The ski 1401 consists of a front and a rear part. These parts are joined by a common base 1404. The base 1404 has two sliding zones, on the front and rear parts, respectively, and a fixed zone. The front part has an upper surface 1402 and the rear part has an upper surface 1403 and these are joined by a dynamic clamping mechanism which is fixed to these upper surfaces 1402 and 1403. This dynamic clamping mechanism consists mainly of two plates 1430 which are joined to each other by means of the hinge 1421. The two plates 1430 are also connected to the front upper surface 1402 with the hinge 1422 and to the rear upper surface 1403 with the hinge 1420. Part of the construction is also a pressing spring 1410 which presses upwards on the hinge 1421. The hinge 1420, 1421 and 1422 are constructed with a limited range of motion which limits how high the spring 1410 can push the hinge 1421. When no external force acts on the dynamic tensioning mechanism, the ski has a high tensioning state, as illustrated in Figure 14. When sufficiently external downward force is applied to said mechanism, the mechanism collapses and the ski assumes a low tension state, as illustrated in Figure 15. The ski 1401 returns to In a high clamping state when the external force is deposited. Figure 16 illustrates yet another embodiment where dynamic span is achieved by having a sheath 1601 which consists of a front and a rear part. The parts are united by a common base. The base has two sliding zones, at the front and rear, respectively, and a fixed zone. The front and rear parts are also joined by a hinge, which is coated near the base. The upper part of the rear part has a extension 1603 which extends above the front part. At the end of this request there is a joint 1604 with a flat structure 1605 attached. The hinge 1604 has an integrated torsion spring which presses the planar structure 1605 in a counterclockwise direction. The planar structure 1605 abuts the upper part of the front part of the ski at an angle. It is also prevented from sliding backwards by the small elevation in 1620. Thus, the flat structure in 1605 can only move forward if the ski is loaded with sufficient force. The said angle is chosen so that the torsion spring does not have to be strong and heavy. When the sheath is loaded with sufficient force, the lower spirit of the planar structure 1605 is forced to slide along the surface of the front portion of the sheath 1601, which should have low friction. The upper part of the planar structure will rotate around the spring-loaded hinge 1604 fixed to the extension 1603. All because the planar structure slides further forward the angle of the other and thus less and less force is required to push it down. Dad & the request will move downwards until it touches the upper part of the front part of the ski 1601. Thus, the described mechanism has collapsed to a laid tension state, and only a small force is required to keep the mechanism in this state. This low tension condition remains until the field removes almost all the downward force, then the spring-loaded flat structure will be pushed back again, and thus restore the ski to a high tension condition with good sliding properties. A further embodiment is a variant of all embodiments above where a spring is used. In this embodiment, the springs are replaced with an electrical device, such as an electromagnet or an electric motor. In this embodiment, the mechanism is not activated only by the threshold threshold of the force. Activation is based on electrical sensors such as accelerometers, pressure sensors and speed sensors, the output signals of which are processed by a microprocessor. The microprocessor then activates the electric motor or electromagnet.

I annu en annan variant av ovanstaende utforingsformer ar halen ansluten till deaktiveringen av den dynamiska spannmekanismen, pa ett sadant satt att spannet endast atergar till ett hogt spanntillstand om halen lyfts fran skidan. In yet another variant of the above embodiments, the tail is connected to the deactivation of the dynamic tensioning mechanism, in such a way that the span only returns to a high tensioning state if the tail is lifted from the sheath.

I annu en annan variant av ovanstaende utforingsformer är halen ansluten till aktiveringen av den dynamiska spannmekanism, pa ett sadant satt att spannet endast kan gâ over till lagt spanntillstand om forhallandet mellan trycket under halen och framfoten trycket ligger inom ett visst intervall. Till exempel om det mesta av vikten ligger pa halen aktiveras inte overgangen till lagt spanntillstand. In yet another variant of the above embodiments, the tail is connected to the activation of the dynamic tensioning mechanism, in such a way that the span can only change to a laid tensioning state if the ratio between the pressure under the tail and the forefoot pressure is within a certain range. For example, if most of the weight is on the tail, the transition to the added tension condition is not activated.

Figur 17 illustrerar ytterligare en annan utforingsform. Figur 17 visar hur en pjaxa kan fastas pa skidor tillsammans med dynamiska spannmekanismer. I Figur 17 liknar den dynamiska spannmekanism den som visas i Figur 6 och 7, men det kan vara en mangd olika dynamiska spannmekanisms sasom beskrivits tidigare. I Figur 17 placeras pjaxan 1750 pa en platta 1730. Plattan 1730 kan integreras med skidbindningen eller en platta dar skidbindning kan monteras. Figure 17 illustrates yet another embodiment. Figure 17 shows how a boot can be fastened to skis together with dynamic tensioning mechanisms. In Figure 17, the dynamic tensioning mechanism is similar to that shown in Figures 6 and 7, but there may be a variety of dynamic tensioning mechanisms as previously described. In Figure 17, the boot 1750 is placed on a plate 1730. The plate 1730 can be integrated with the ski binding or a plate where the ski binding can be mounted.

Under plattan 1730 firms ett gangjarn 1720, som ãr placerad vid en viss position i fram-bak riktningen. Det bar vara uppenbart att nar den resulterande kraften fran skon verkar bakom gangjarnet 1720 fmns det ingen kraft som trycker pa den dynamiska spannmekanismen 1710. Below the plate 1730 there is a hinge 1720, which is placed at a certain position in the front-rear direction. It should be obvious that when the resulting force from the shoe acts behind the hinge 1720, there is no force pressing on the dynamic tensioning mechanism 1710.

Nar den resulterande kraften verkar framfor gangjarnet 1720 pressar plattan 1730 ned pa den dynamiska spannmekanismen. Det bor sta Idart for fackmannen inom omradet att det ãr mojligt att ha ett system dar den dynamiska spannmekanism endast aktiveras nar skidakarens tyngd verkar pa skidan tillrackligt langt fram. 18 Figur 18 illustrerar en annan f6redragen utfOringsform av uppfinningen. Skidan 1801 bestar av en framre och en bakre del. Delarna forenas av en gemensam bas. Basen bar tva glidzoner, vid den framre respektive bakre delen, och en fastzon. De framre och bakre delarna har en dynamisk spannmekanism fast vid de ovre ytorna och denna dynamiska spannmekanism integreras med skidans bindning. Denna dynamiska spannmekanism bestar i huvudsak av en vinklad kil 1832 som ligger inkldmd mellan tva plattor 1810 och 1811. Plattan 1811 ãr fast vid undersidan av den ovre ytan av den bakre delen av skidan 1801 och plattan 1810 ãr fast vid undersidan av den ovre ytan av den framre delen av skidan 1801. Kilen 1832 är fast vid en platta 1831 som as den nedre ytan av skidbindningens platta. Plattan 1831 as ansluten till en balk 1830 som delvis platsar i en skara i pjdxan 1850 dá namnda pjdxor as fast vid bindningen. Tillsammans utgor plattan 1831 och balken 1830 en del av skidbindningen. Kombinationen av plattan 1831 och balken 1830 fungerar som en bladfjdder, som ãr farbojd och drar kilen 1832 uppat med en viss kraft, men vinkeln i kilen 1832 hailer den fran att rOra sig ytterligare uppat ndr nArnnda dynamiska spannmekanism är i hogt spanntillstand. Den bindande delen bestar av 1831 och 1830 ãr fast vid skidan med fastena 1820 och 1821. Nar dkaren anbringar neddiriktad kraft av en viss storlek till den framre delen av skidpjaxan 1850 kommer namnda bindningsdelar 1831 och 1830 att bojas och saledes skjuta kilen 1832 nedat, och darmed kollapsa skidan till ett lAgt spanntillstand. Storleken nedatriktade kraft som behovs kan justeras av den langsgdende placeringen av fastelementet 1820 och h6jden av fdstelementet 1821. Skidan kommer inte att aterga till h6gt spanntillstand forrdn det mesta av namnda nedatriktade kraft avldgsnas. Det bor stâ klart for fackmannen inom omradet att den mekanism som beskrivs i Figur 18 inte kommer att kollapsa om dkaren applicerar nedatriktade kraften nara hdlomradet av pjaxan 1850. 19 Foreliggande uppfinning dr inte begransad till de ovan beskrivna foredragna utforingsformerna. Olika alternativ, modifieringar och ekvivalenter kan anvandas. Darfor bor de ovannamnda utfOringsformerna inte tas som begransande for uppfinningen, vilken definieras av de bifogade patentkraven. When the resulting force acts in front of the hinge 1720, the plate 1730 presses down on the dynamic clamping mechanism. It should be borne in mind by those skilled in the art that it is possible to have a system in which the dynamic tensioning mechanism is activated only when the weight of the skier acts on the ski sufficiently far forward. Figure 18 illustrates another preferred embodiment of the invention. The 1801 ski consists of a front and a rear part. The parts are united by a common base. The base carried two sliding zones, at the front and rear, respectively, and a fixed zone. The front and rear parts have a dynamic clamping mechanism attached to the upper surfaces and this dynamic clamping mechanism is integrated with the binding of the ski. This dynamic clamping mechanism consists essentially of an angled wedge 1832 which is sandwiched between two plates 1810 and 1811. The plate 1811 is fixed to the underside of the upper surface of the rear part of the sheath 1801 and the plate 1810 is fixed to the underside of the upper surface of the front part of the ski 1801. The wedge 1832 is fixed to a plate 1831 which is the lower surface of the ski binding plate. The plate 1831 is connected to a beam 1830 which partly fits in a crowd in the pjdxan 1850 when the said pjdxor is attached to the binding. Together, the slab in 1831 and the beam in 1830 form part of the ski binding. The combination of the plate 1831 and the beam 1830 acts as a leaf spring, which is bent and pulls the wedge 1832 upwards with a certain force, but the angle of the wedge 1832 prevents it from moving further upwards when the dynamic tensioning mechanism is in a high tensioning state. The binding part consists of 1831 and 1830 is fixed to the ski with the fasten 1820 and 1821. When the diver applies downward force of a certain size to the front part of the ski jacket 1850, said binding parts 1831 and 1830 will be bent and thus push the wedge down 1832, and thereby collapsing the ski to a low tension state. The amount of downward force required may be adjusted by the longitudinal position of the fastening member 1820 and the height of the support member 1821. The sheath will not return to the high tension condition until most of said downward force is released. It should be apparent to those skilled in the art that the mechanism described in Figure 18 will not collapse if the diver applies the downward force near the area of the jacket of 1850. The present invention is not limited to the preferred embodiments described above. Various alternatives, modifications and equivalents can be used. Therefore, the above-mentioned embodiments should not be construed as limiting the invention, which is defined by the appended claims.

Claims (30)

PatentkravPatent claims 1. En ldngdskida (501) for att utova klassisk ldngdskidakning, inklusive en glidande fas och en franskjutande fas, kannetecknad av: En skida innefattande en frdmre del, en bakre del, en spannreducerande mekanism och en skidbindning, ndmnda framre del och namnda bakre del har en gemensam nedre yta, namnda gemensamma nedre yta har en framre och en bakre glidyta och en central fastzon, namnda framre del och namnda bakre del ãr forbundna med varandra med atminstone namnda spannreducerande mekanism, namnda spannreducerande mekanism har ett hog spanntillstAnd och ett Mgt spanntillstand dal- det hOga spanntillstandet ãr ett tillstand ddr namnda skidas spann ãr Mgt och namnda fdstzon inte ãr i kontakt med den underliggande ytan och det ldga spanntillstandet ár ett tillstand ddr namnda skidas spann är lagt och namnda fdstzon är i kontakt med namnda underlag, ndmnda laza spanntillstand ger namnda skida egenskapen att neddtriktade krafter verkande pa namnda spannreducerande mekanism fordelas framst i namnda fdstzon, ndmnda spannreducerande mekanism karaktdriserad av att aktivering av namnda spannreducerande mekanism kollapsar namnda hoga spanntillstand till namnda raga spanntillstand, namnda spannreducerande mekanism karaktdriserad av att inaktivering av namnda spannreducerande mekanism aterstdller namnda laga spanntillstand till namnda hoga spanntillstand .A longitudinal ski (501) for performing classic longitudinal skiing, including a sliding phase and a transverse firing phase, characterized by: A ski comprising a front part, a rear part, a span reducing mechanism and a ski binding, said front part and said rear part has a common lower surface, said common lower surface has a front and a rear sliding surface and a central fixed zone, said front part and said rear part are connected to each other with at least said tension reducing mechanism, said tension reducing mechanism has a high tension condition and a high tension condition. the low span condition is a condition where the said ski span is Mgt and the said foot zone is not in contact with the underlying surface and the low tension condition is a condition where the said ski span is laid and said foot zone is in contact with said surface, said laza clamping condition gives said sheath the property that downward forces acting on said clamping reducing mechanism are distributed said in said fasting zone, said tension reducing mechanism characterized in that activation of said tension reducing mechanism collapses said high tension state to said low tension state, said tension reducing mechanism characterized in that deactivation of said tension reducing mechanism restores said low tension state to said normal tension state. 2. En ldngdskida (501) enligt patentkrav 1, kdnnetecknad av att naninda spannreducerande mekanism baseras pa en kil (613).A length ski (501) according to claim 1, characterized in that the nanosupply reduction mechanism is based on a wedge (613). 3. En ldngdskida(501) enligt krav 2, kannetecknad av att ndmnda 161 (613) ãr inkldmd mellan namnda frarnre del av skidan och namnda bakre del av skidan nar namnda spannreducerande mekanism ãr i namnda hoga spanntillstand.A length ski (501) according to claim 2, characterized in that said 161 (613) is sandwiched between said front part of the ski and said rear part of the ski when said tension reducing mechanism is in said high tension condition. 4. En langdskida (501) enligt krav 2 eller 3, kannetecknad av att ndmnda kil trycks pa av en fjadermekanism (610-612).A longitudinal ski (501) according to claim 2 or 3, characterized in that said wedge is pressed by a spring mechanism (610-612). 5. En ldngdskida (501) enligt krav 4, kannetecknad av att namnda fjadermekanism (610-612) ãr justerbar.A length ski (501) according to claim 4, characterized in that said spring mechanism (610-612) is adjustable. 6. En ldngdskida enligt krav 4 eller 5, kannetecknad av att namnda fjadermekanism ãr integrerad med namnda kil. 21A length ski according to claim 4 or 5, characterized in that said spring mechanism is integrated with said wedge. 21 7. En ldngdskida enligt patentkrav 6, kannetecknad av att namnda fjadermekanism ãr integrerad med ndmnda skidbindning.A longitudinal ski according to claim 6, characterized in that said spring mechanism is integrated with said ski binding. 8. En langdskida (901) enligt patentkrav 1, kannetecknad av att namnda spannreducerande mekanism baseras pa en forldngning fran namnda bakre del av skidan.A longitudinal ski (901) according to claim 1, characterized in that said span reduction mechanism is based on an extension from said rear part of the ski. 9. En langdskida (901) enligt krav 8, kannetecknad av att ndmnda forldngning har en fjdderbelastad utlosningsmekanism fast mellan namnda forlangning och namnda frdmre del av skidan.A longitudinal ski (901) according to claim 8, characterized in that said extension has a spring-loaded release mechanism fixed between said extension and said front part of the ski. 10. En ldngdskida (901) enligt patentkrav 9, kannetecknad av att namnda fjdderbelastade utlosningsmekanism ãr baserad pa en platta (905) fast via ett gangjarn (904) till namnda forlangning, namnda platta glider mot namnda frdmre del av skidan och plattan trycks pa av en fidder.A longitudinal ski (901) according to claim 9, characterized in that said spring-loaded release mechanism is based on a plate (905) fixed via a hinge (904) to said extension, said plate slides against said front part of the ski and the plate is pressed by a feeder. 11. En ldngdskida (1001) enligt patentkrav 9, kannetecknad av att namnda filderbelastade utlosningsmekanism ãr baserad pa en snedstalld kil (1009) som glider pa namnda frdmre del av skidan, namnda forldngning trycker pa namnda snedstallda kil (100) och namnda snedstallda kil trycks pa av en fjader (1006).A longitudinal ski (1001) according to claim 9, characterized in that said filter-loaded release mechanism is based on an inclined wedge (1009) sliding on said front part of the ski, said extension presses said inclined wedge (100) and said obliquely pressed wedge pa of a feather (1006). 12. En ldngdskida (1601) enligt patentkrav 9, kannetecknad av att namnda fjdderbelastade utlOsningsmekanism ãr baserad pa en platta (1605) fast via ett gangjam(1604) till ndmnda forldngning, namnda platt glider mot namnda framre del av skidan och namnda gangjarn (1604) har en integrerad torsionsfjdder.A longitudinal ski (1601) according to claim 9, characterized in that said spring-loaded release mechanism is based on a plate (1605) fixed via a hinge (1604) to said extension, said plate slides against said front part of the ski and said hinge (1604). ) has an integrated torsion spring. 13. En ldngdskida (1101) enligt patentkrav 11, kdnnetecknad av att namnda lutande kil (1109) har ett lager f8r minskad friktion.A longitudinal ski (1101) according to claim 11, characterized in that said inclined wedge (1109) has a bearing for reduced friction. 14. En ldngdskida (1101) enligt krav 11 eller 13, varvid namnda forldngning har ett lager for minskad friktion.A length ski (1101) according to claim 11 or 13, wherein said extension has a bearing for reduced friction. 15. En ldngdskida enligt krav 10 till 14, varvid ramnda fjader stoppas av en forhojning i namnda framre del av skidan.A longitudinal ski according to claims 10 to 14, wherein said spring is stopped by an elevation in said front part of the ski. 16. En rangdskida enligt patentkrav 1, kannetecknad av att ndmnda spannreducerande mekanism baseras pa en fackverksstruktur med atminstone en fjdderbelastad stang (1202), varvid fackverksstrukturen har egenskapen att den kollapsar nar den ár belastad med tillrdckligt av namnda nedatriktade krafter.A rank sheath according to claim 1, characterized in that said tension-reducing mechanism is based on a truss structure with at least one spring-loaded rod (1202), the truss structure having the property of collapsing when it is loaded with sufficient said downward forces. 17. En ldngdskida enligt patentkrav 1, kdnnetecknad av att ndmnda spannreducerande mekanism baseras pa en dubbelkrokt fjdder (1302), 22 varvid namnda dubbelkrokta fjader har egenskapen att den kollapsar ndr den ãr belastad med tillrackligt av ndmnda nedatriktade krafter.A longitudinal ski according to claim 1, characterized in that said span-reducing mechanism is based on a double-hook spring (1302), said double-hook spring having the property of collapsing when it is loaded with sufficiently said downward forces. 18. En ldngdskida (1401) enligt patentkrav 1, kannetecknad av att namnda spannreducerande mekanism baseras pa en f8rsta platta forbunden med ett forsta gangjdrn till namnda framre del av skidan och en andra platta ansluten till namnda bakre del av skidan med ett andra gangjarn, varvid namnda forsta platta och namnda andra platta ãr ansluten till varandra med ett tredje gangjam.A longitudinal sheath (1401) according to claim 1, characterized in that said span reduction mechanism is based on a first plate connected to a first hinge to said front part of the sheath and a second plate connected to said rear part of the sheath by a second hinge, wherein said first plate and said second plate are connected to each other by a third gangjam. 19. En langdskida (1401) enligt patentkrav 18, kannetecknad av att namnda tredje gangjarn trycks pa av en fjadermekanism (1410).A longitudinal ski (1401) according to claim 18, characterized in that said third hinge is pressed on by a spring mechanism (1410). 20. En ldngdskida (1401) enligt patentkrav 18 eller 19, van i atminstone ett av namnda gLigjarn har ett begransad rotationsspann.A longitudinal ski (1401) according to claim 18 or 19, used in at least one of said gligjarn has a limited rotating span. 21. En rangdskida enligt krav 1 till 20, kannetecknad av att namnda skidbindning ãr anordnad sã att den trycker pa namnda spannreducerande mekanismA ranking ski according to claims 1 to 20, characterized in that said ski binding is arranged so as to press on said span-reducing mechanism. 22.22. 23. En langdskida enligt krav 1 till 20, kannetecknad av att namnda skidbindning ãr integrerad med namnda spannreducerande mekanism 23.En langdskida enligt krav 1 till 22, kannetecknad av att namnda aktivering utilises genom att ndmnda nedatriktade krafter applicerade pa namnda spannreducerande mekanism overstiger en viss niva.A cross-country ski according to claims 1 to 20, characterized in that said ski binding is integrated with said span-reducing mechanism 23. A cross-country ski according to claims 1 to 22, characterized in that said activation is utilized by said downward forces applied to said span-reducing mechanism exceeding a certain niva. 24. En langdskida enligt krav 1 till 22, kdnnetecknad av att namnda aktivering utl8ses genom att namnda nedatriktade krafter applicerade pa namnda spannreducerande mekanism overstiger en viss niva och dessutom att ndmnda nedatriktade krafter har en viss kvot mellan framfoten och hdlomradet.A longitudinal ski according to claims 1 to 22, characterized in that said activation is triggered by said downward forces applied to said span reducing mechanism exceeding a certain level and further said said downward forces having a certain ratio between the forefoot and the heel area. 25. En ldngdskida enligt krav 1 till 24, kannetecknad av att namnda inaktivering utilises av att de namnda nedatriktade krafterna applicerade pa namnda spannreducerande mekanism minskar under en viss niva.A length ski according to claims 1 to 24, characterized in that said inactivation is utilized by the said downward forces applied to said span reduction mechanism decreasing below a certain level. 26. En langdskida enligt krav 1 till 24, kannetecknad av att namnda inaktivering utilises av att namnda nedatriktade krafter applicerade pa namnda spannreducerande mekanism minskar under en viss niva och dessutom att namnda nedatriktade krafter har en viss kvot mellan framfoten och hdlomradet.A longitudinal ski according to claims 1 to 24, characterized in that said inactivation is utilized in that said downward forces applied to said span reduction mechanism decrease below a certain level and in addition that said downward forces have a certain ratio between the forefoot and the heel area. 27. En langdskida enligt krav 1 till 26, kannetecknad av att ndmnda spannreducerande mekanism ãr ansluten till en pjdxa under namnda utovande av klassiskt ldngdskidakning 23A cross-country ski according to claims 1 to 26, characterized in that said span-reducing mechanism is connected to a pole during said practice of classical longitudinal ski 23 28. En langdskida enligt krav 1 till 27, kannetecknad av att namnda fastzon har ett grovt monster for okat grepp.A cross-country ski according to claims 1 to 27, characterized in that said fixed zone has a coarse sample for increased grip. 29. En ldngdskida enligt krav 1 till 28, kdnnetecknad av att namnda gemensamma nedre yta ãr uppdelad i atminstone tva delar.A longitudinal ski according to claims 1 to 28, characterized in that said common lower surface is divided into at least two parts. 30. En ldngdskida enligt krav 1 till 29, kannetecknad av att namnda skida kan delas upp i atminstone tva. delar. 24A longitudinal ski according to claims 1 to 29, characterized in that said ski can be divided into at least two. parts. 24
SE1130121A 2011-12-16 2011-12-16 Cross-country skiing for the practice of classic cross-country skiing SE537602C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SE1130121A SE537602C2 (en) 2011-12-16 2011-12-16 Cross-country skiing for the practice of classic cross-country skiing
EP12858291.3A EP2790801A4 (en) 2011-12-16 2012-12-17 A cross-country ski for practicing classic cross-country skiing
PCT/SE2012/051416 WO2013089637A1 (en) 2011-12-16 2012-12-17 A cross-country ski for practicing classic cross-country skiing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1130121A SE537602C2 (en) 2011-12-16 2011-12-16 Cross-country skiing for the practice of classic cross-country skiing

Publications (2)

Publication Number Publication Date
SE1130121A1 SE1130121A1 (en) 2013-06-17
SE537602C2 true SE537602C2 (en) 2015-07-21

Family

ID=48612950

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1130121A SE537602C2 (en) 2011-12-16 2011-12-16 Cross-country skiing for the practice of classic cross-country skiing

Country Status (3)

Country Link
EP (1) EP2790801A4 (en)
SE (1) SE537602C2 (en)
WO (1) WO2013089637A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE537616C2 (en) * 2013-02-28 2015-08-04 Ulf Ekström Cross Country Skiing
WO2015094081A1 (en) * 2013-12-16 2015-06-25 Inadco Ab Ski and method for manufacturing a ski
SI25609A (en) * 2018-03-23 2019-09-30 Elan, D.O.O. Foldable ski

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262924A (en) * 1979-02-14 1981-04-21 Corwin Charles H Hinge ski
SE436690B (en) * 1983-05-20 1985-01-21 Eriksson Karl G V DEVICE FOR SKI WITH VARIABLE SPAN
FR2556975B3 (en) * 1983-12-23 1986-04-11 Tmc Corp DEVICE FOR PREVENTING THE RETROGRADE SLIDING OF A SKI
DE3564376D1 (en) * 1984-02-10 1988-09-22 Tmc Corp SKI DE FOND
FR2666021B1 (en) * 1990-08-24 1992-11-13 Salomon Sa CROSS-COUNTRY SKIING, PARTICULARLY FOR THE PRACTICE OF THE ALTERNATIVE PIT.
DE4240342C1 (en) * 1992-12-01 1994-02-03 Manfred Geith Ski binding device for long distance and touring skis - involves binding fixed to rearward end of rigid lever plate whose other front end is pivotably fitted to ski
FR2719780B1 (en) * 1994-05-11 1996-07-12 Salomon Sa Device for cross-country skiing and skiing equipped with such a device.
FR2719782B1 (en) * 1994-05-11 1997-08-08 Salomon Sa Device for cross-country skiing and skiing equipped with such a device.
CZ305931B6 (en) * 2008-12-05 2016-05-11 Jiří Popel Ski with climbing system, particularly cross-country ski

Also Published As

Publication number Publication date
EP2790801A1 (en) 2014-10-22
EP2790801A4 (en) 2015-08-19
SE1130121A1 (en) 2013-06-17
WO2013089637A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
US7708302B2 (en) Snowboards
CN101102824B (en) Ski with suspension system
US6848703B2 (en) Platform for raising the bindings for a boot, and board for gliding over snow equipped with such a platform
SE537602C2 (en) Cross-country skiing for the practice of classic cross-country skiing
NL8003104A (en) SKATE RIDERS EXERCISER.
RU2595547C2 (en) Attachment
JP2008518673A (en) Multi-edge snowboard
US6702315B2 (en) Methods and apparatus for resisting gliding device runaway
EP3658248A1 (en) Adjustable pivotable hurdle for an obstacle course
US9339718B2 (en) Assistance system for a gliding board or snowshoe
CA2485378C (en) Snowboard binding with reduced vertical profile
WO2009123576A1 (en) Platform for mounting a ski binding on a ski
CA2597902A1 (en) Ski binding having a dynamically variable upward heel release threshold
WO2012060714A1 (en) Roller ski
SE514390C2 (en) Snowboard Brake Device
EP2253357B1 (en) Loop binding with rotating platform
US6840530B2 (en) Load distributing system for snowboards
US20170225062A1 (en) Snow ski and skate board platform combination
US20020096860A1 (en) Adjustable ski suspension and ski tip stiffener devices
JP5508307B2 (en) snow board
JPH01223983A (en) Safety binding for ski
EP2233023A1 (en) A device for soles of shoes suitable for increasing the elevation of the user, and shoes provided with said device
SE1330114A1 (en) Cross-country skiing for the practice of classic cross-country skiing
KR20090053408A (en) Snow board
JP2003250949A (en) Apparatus for improving operability of snowboard and the board

Legal Events

Date Code Title Description
NUG Patent has lapsed