SE537465C2 - Arrangements for counteracting the cooling of an exhaust gas treatment component in a vehicle - Google Patents
Arrangements for counteracting the cooling of an exhaust gas treatment component in a vehicle Download PDFInfo
- Publication number
- SE537465C2 SE537465C2 SE1351079A SE1351079A SE537465C2 SE 537465 C2 SE537465 C2 SE 537465C2 SE 1351079 A SE1351079 A SE 1351079A SE 1351079 A SE1351079 A SE 1351079A SE 537465 C2 SE537465 C2 SE 537465C2
- Authority
- SE
- Sweden
- Prior art keywords
- exhaust gas
- exhaust
- retarder
- heat exchanger
- gas treatment
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 22
- 238000002485 combustion reaction Methods 0.000 claims abstract description 34
- 239000007788 liquid Substances 0.000 claims abstract description 20
- 239000007789 gas Substances 0.000 claims description 137
- 239000003054 catalyst Substances 0.000 claims description 52
- 239000002245 particle Substances 0.000 claims description 16
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 238000004140 cleaning Methods 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims 1
- 101100440985 Danio rerio crad gene Proteins 0.000 abstract 1
- 101100440987 Mus musculus Cracd gene Proteins 0.000 abstract 1
- 101100467905 Mus musculus Rdh16 gene Proteins 0.000 abstract 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 35
- 238000000034 method Methods 0.000 description 19
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 18
- 229910021529 ammonia Inorganic materials 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 239000010410 layer Substances 0.000 description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 7
- 239000004202 carbamide Substances 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000004071 soot Substances 0.000 description 6
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- BXKLGDDYHDKOIO-UHFFFAOYSA-N 3-methyl-5-(3-methyl-1,2,3a,4-tetrahydropyrrolo[2,3-b]indol-8b-yl)-8b-[3-methyl-8b-[3-methyl-8b-[3-methyl-5-(3-methyl-1,2,3a,4-tetrahydropyrrolo[2,3-b]indol-8b-yl)-1,2,3a,4-tetrahydropyrrolo[2,3-b]indol-8b-yl]-1,2,3a,4-tetrahydropyrrolo[2,3-b]indol-5-yl]-1,2,3a,4-tetrahydropyrrolo[2,3-b]indol-5-yl]-1,2,3a,4-tetrahydropyrrolo[2,3-b]indole Chemical compound CN1CCC2(C1Nc1ccccc21)c1cccc2c1NC1N(C)CCC21c1cccc2c1NC1N(C)CCC21c1cccc2c1NC1N(C)CCC21C12CCN(C)C1Nc1c2cccc1C12CCN(C)C1Nc1ccccc21 BXKLGDDYHDKOIO-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 235000004879 dioscorea Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000010913 used oil Substances 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T10/00—Control or regulation for continuous braking making use of fluid or powdered medium, e.g. for use when descending a long slope
- B60T10/02—Control or regulation for continuous braking making use of fluid or powdered medium, e.g. for use when descending a long slope with hydrodynamic brake
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/0205—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/0234—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using heat exchange means in the exhaust line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
- F01N3/208—Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N5/00—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
- F01N5/02—Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D57/00—Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders
- F16D57/04—Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders with blades causing a directed flow, e.g. Föttinger type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/02—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/20—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2260/00—Exhaust treating devices having provisions not otherwise provided for
- F01N2260/02—Exhaust treating devices having provisions not otherwise provided for for cooling the device
- F01N2260/024—Exhaust treating devices having provisions not otherwise provided for for cooling the device using a liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2260/00—Exhaust treating devices having provisions not otherwise provided for
- F01N2260/08—Exhaust treating devices having provisions not otherwise provided for for preventing heat loss or temperature drop, using other means than layers of heat-insulating material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2410/00—By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/06—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Transportation (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
537 46 Sammandrag Foreliggande uppfirming avser ett atTangemang for att motverka kylning av en avgasbehandlande komponent i ett fordon. Arrangemanget innefattar ett bromssystem (11) SOTTI innefattar en bromskomponent i form av en retarder (1 la) som är farhunden med fordonets drivlina, och en forsta ledning (11c) som ar anpassad att leda ett vatskeformigt medium till retardern (11a) vid driftstillfallen som retardern (1 la) är aktivcrad. Bromssystemet (11) innefattar en fOrsta vartitevaxlare (110 for kylning av det vatskeformiga mediet vilken är anordnad i avgasledningen (2) i en position mellan fOrbran- ningsrnotom (1) och den avgasbehandiande kornponenten (6), och en andra ledning (1 le), som är anpassad att mottaga varmt vatskeformigt medium fran retardern (1 la) och att leda det till den forsta vartnevaxlaren (11f) vid driftstillfallen som retardern (11 a) är aktiverad. 537 46 Summary The present invention relates to an arrangement for counteracting cooling of an exhaust gas treatment component in a vehicle. The arrangement comprises a braking system (11). the retarder (1 la) is active crad. The brake system (11) comprises a first varite heat exchanger (110 for cooling the liquid medium which is arranged in the exhaust line (2) in a position between the combustion engine (1) and the exhaust gas treating grain component (6), and a second line (1e) , which is adapted to receive hot liquid medium from the retarder (1a) and to lead it to the first warning exchanger (11f) at the operating times in which the retarder (11a) is activated.
Description
537 46 Arrangemang for att motverka nedkylning av en avgasbehandlande komponent ett fordon UPPFINNINGENS BAKGRUND OCH KAND TEKNIK Foreliggande uppfmning avser ea atTangemang for att motverka nedkylning av en avgasbehandlande komponent i ett fordon enligt patentkravets I ingress. BACKGROUND OF THE INVENTION AND PRIOR ART The present invention relates to an arrangement for counteracting cooling of an exhaust gas treatment component in a vehicle according to the preamble of claim 1.
Avgasledningar hos forbranningsmotorer sasom dieselmotorer kan innefatta ett flertal avgasbehandlande kornponenter sisorn, exempelvis, ett partikelfilter DPF (Diesel Par- ticulate Filter) och en SCR-katalysator (Selective Catalytic Reduction). Ett partikelfilter fingar upp sotpartiklar i avgaserna varefter de forbranns vid en regenereringsprocess. For att rena avgaserna fran kvaveoxider sprutas en urealosning in i avgasledningen i en position uppstroms SCR-katalysatom. UrealOsningen forangas av de varma avgaserna i avgasledningen sa aft ammoniak bildas. Ammoniaken och kvaveoxiderna avgaserna reagerar med varandra i SCR katalysatorn si att kvavgas och vatteninga bildas. FOr att en SCR katalysator ska ha en hOg verkningsgrad kravs att den har en temperatur Over ett lagsta varde som kan vara av storleksordningen 200°C. SCR katalysatorn bar dock inte ha en alltfor hog temperatur eftersom dess verkningsgrad OM- ker Over ett visst varde sarntidigt som det films en risk att de aktiva skikten i SCR kata- lysatom skadas av alltfor heta avgaser. Exhaust lines of internal combustion engines such as diesel engines may include a plurality of exhaust gas treatment grain components, for example, a particulate filter DPF (Diesel Particulate Filter) and an SCR catalyst (Selective Catalytic Reduction). A particulate filter traps soot particles in the exhaust gases after which they are burned in a regeneration process. To purify the exhaust gases from nitrogen oxides, a urea solution is injected into the exhaust line in a position upstream of the SCR catalyst. The urea solution is evaporated by the hot exhaust gases in the exhaust line so that ammonia is formed. The ammonia and the nitrogen oxides the exhaust gases react with each other in the SCR catalyst so that nitrogen gas and water are formed. In order for an SCR catalyst to have a high efficiency, it is required that it has a temperature above a minimum value which can be of the order of 200 ° C. However, the SCR catalyst should not have an excessively high temperature because its efficiency OMker Over a certain value while filming a risk that the active layers in the SCR catalyst are damaged by too hot exhaust gases.
Det är vanligt att tunga fordon är forsedda rned en hydrodynamisk broms i form av en hydraulisk retarder som svarar for bromsningen av fordonet di det framfors i nedfors- backar. DA en retarder aktiveras leds normalt inget bransle till forbranningsmotorn. It is common for heavy vehicles to be equipped with a hydrodynamic brake in the form of a hydraulic retarder which is responsible for braking the vehicle as it is driven downhill. When a retarder is activated, no fuel is normally directed to the internal combustion engine.
Forbranningsmotom pumpar darvid kall luft genom de avgasbehandlande komponentema i avgassystemet under bromsprocessen. Ar nedforsbacken ling hinner en SCR katalysator kylas ned till en lagre temperatur an den temperatur som erfordras fir att kunna spruta in urealosning i avgasledningen. Det kan i Adana fall ta en inte forsum- bar tidsperiod innan SCR katalysatom ater uppnar en temperatur vid vilken den kan reducera halten av kvaveoxider i avgaserna pa ett optirnalt Ott. The internal combustion engine thereby pumps cold air through the exhaust gas treatment components in the exhaust system during the braking process. On the downhill slope, an SCR catalyst has time to cool down to a lower temperature than the temperature required to be able to inject ureal solution into the exhaust line. In the case of Adana, it may take a non-negligible period of time before the SCR catalyst again reaches a temperature at which it can reduce the content of nitrogen oxides in the exhaust gases of an optimum.
GB 2 058 911 visar en vatrnevaxlare for att kyla olja som anvands i en hydraulisk retarder. Varrnevaxlaren är anordnad i en bypassledning till en inloppsledning som leder luft till en forbranningsmotor. Med hjalp av en ventil kan inloppsluften ledas genom bypassledningen och kyla oljan i varrnevaxlaren innan den leds till forbranningsmo- 1 537 46 torn. Darmed kan retarderoljan erhalla en kylning samtidigt som den varmda inloppsluften rnotverkar att forbranningsmotorn kyls ned da retardern är aktiverad. GB 2 058 911 discloses a water exchanger for cooling oil used in a hydraulic retarder. The heat exchanger is arranged in a bypass line to an inlet line which leads air to an internal combustion engine. With the aid of a valve, the inlet air can be led through the bypass line and cool the oil in the heat exchanger before it is led to the internal combustion engine. Thus, the retarder oil can obtain a cooling at the same time as the heated inlet air prevents the internal combustion engine from cooling down when the retarder is activated.
EP 1 547 842 visar en metod for att atervinna bromsenergi hos ett hybridfordon som drivs av en forbranningsmotor och en elektrisk maskin. Under en bromsprocess arbetar den elektriska maskinen som generator och den genererar elektrisk energi som nomialt lagTas i ett batten. Under en langvarig bromsprocess utvecklas en mycket star mangd bromsenergi. Batteriet har armed inte alltid kapacitet att lagra all elektrisk energi som genereras under en sadan bromsprocess. I detta fall leds genererad elektrisk energi till en elektrisk uppviirmningsanordning for direkt eller indirekt varmning av avgaser i en avgasledning. Darmed kan avgasbehandlande komponenter i avgasledningen erhalla en uppvarmning under bromsprocessen med hybridfordonet. EP 1 547 842 discloses a method for recovering braking energy of a hybrid vehicle driven by an internal combustion engine and an electric machine. During a braking process, the electrical machine acts as a generator and it generates electrical energy that is nominally charged in a bat. During a long braking process, a very large amount of braking energy is developed. The battery does not always have the capacity to store all the electrical energy generated during such a braking process. In this case, generated electrical energy is led to an electric heating device for direct or indirect heating of exhaust gases in an exhaust line. Thus, exhaust gas treatment components in the exhaust line can obtain a heating during the braking process with the hybrid vehicle.
SAMMANFATTNING AV UPPFINNINGEN Syftet med fOreliggande uppfinning 51- att uppratthalla en onskad driftstemperatur hos en avgasbehandlande komponent i en avgasledning vid driftstillfallen som en hydraulisk retarder är aktiverad i ett fordon. SUMMARY OF THE INVENTION The object of the present invention 51- to maintain a desired operating temperature of an exhaust gas treatment component in an exhaust line at the time of operation when a hydraulic retarder is activated in a vehicle.
Detta syfte upprias med arrangemanget av det inledningsvis namnda slaget, vilket kan- netecknas av de sardrag som anges i patentkravets 1 kannetecknande del. Ett vatskeformigt medium som leds genom en hydraulisk retarder erhaller en kraftig uppvarmning cid retardem bromsar fordonets drivlina. Det vatskeformiga mediet an lampligen en olja som har egenskapen att den kan vamtas till en hog temperatur med bibehallna egenskaper. Det vanna vatskeformiga mediet som lamnar retardem behover under alla omstandigheter kylas innan det pa nytt kart anvandas i retardem. Dà retardem är aktiverad motorbromsar fordonet och kall luft pumpas genom avgasledningen. Avgasbehandlande komponenter i avgasledningen riskerar armed att kylas ned till en ternperatur vid vilken de inte kan rena avgasema pa ett onskvart salt. De avgasbehand- lande komponentema bar saledes ett behov att varmas samtidigt som det vatskeformiga mediet i retardems bromssystem har ett behov av att kylas. Enligt uppfmningen innefattar bromssystemet en fOrsta ledning SOIT1 leder det varma vatskeformiga mediet fran retardem da den är aktiverad till en forsta varmevaxlare som är anordnad i avgasledningen i en position uppstroms den avgasrenande komponenter. Darmed erhaller luften som pampas genom avgasledningen en uppvarmning samtidigt som det vatskeformiga mediet erhaller en kylning. Den avgasrenande komponenten kan clamed uppratthalla 2 537 46 en relativt hog temperatur under hela den tid som retardern är aktiverad och fordonet motorbromsas och clamed borja rena avgasema pa ett vasentligen optirnalt satt sa snart som retardern inaktiveras och bransle ater sprutas in i forbranningsmotorn. This object is achieved with the arrangement of the kind mentioned in the introduction, which can be characterized by the features stated in the can-drawing part of claim 1. A liquid medium which is led through a hydraulic retarder obtains a strong heating cid retardem brakes the vehicle's driveline. The liquid medium is suitable for an oil which has the property that it can be heated to a high temperature with retained properties. The aqueous liquid medium which leaves the retardem must in any case be cooled before it is used again in the retardem. When the retardem is activated the engine brakes the vehicle and cold air is pumped through the exhaust line. Exhaust gas treatment components in the exhaust line risk being cooled down to a temperature at which they cannot clean the exhaust gases of an unsalted salt. The exhaust gas treatment components thus had a need to be heated at the same time as the liquid-shaped medium in the brake system of the retarder has a need to be cooled. According to the invention, the braking system comprises a first line SOIT1 leading the hot liquid medium from the retarder as it is activated to a first heat exchanger arranged in the exhaust line in a position upstream of the exhaust gas purifying components. Thereby, the air pumped through the exhaust line receives a heating at the same time as the liquid medium receives a cooling. The exhaust gas purifying component can be maintained at a relatively high temperature throughout the time the retarder is activated and the vehicle is engine braked and clamed to start cleaning the exhaust gases in a substantially optimal manner as soon as the retarder is deactivated and fuel is injected back into the internal combustion engine.
Enligt en utforingsform av fOreliggande uppfinning är avgasledningen uppdelad i tva parallella ledningar i ett parti som är belaget Indian forbra.nningsmotom och den avgasbehandlande komponenten och att den fOrsta vannevaxlaren är anordnad i en av namnda parallella ledningar. Arrangemanget kan innefatta ett ftirsta flodeselement som är anpassat att fordela gasflodet i avgasledningen mellan de tva parallella ledning- ama. Mimed kan hela avgasflodet fran forbranningsmotorn ledas genom den parallella ledningen sorn saknar varmevaxlare cla retardem inte är aktiverad. Forekomsten av varmevaxlaren paverkar dartned inte avgaserna under drift av forbranningsmotom. Hela eller delar av luftflodet kan ledas genom den andra parallella ledningen som innefattar vannevaxlaren da retardern är aktiverad och fordonet motorbromsas. Darrned kan luften som pumpas genom avgasledningen vid driftstilicallen äâ retardern ärakti- verad varmas av det varma vatskeformiga mediet fran retardern. According to an embodiment of the present invention, the exhaust line is divided into two parallel lines in a portion which is coated with the Indian combustion engine and the exhaust gas treating component and that the first water exchanger is arranged in one of said parallel lines. The arrangement may comprise a first river element which is adapted to distribute the gas flow in the exhaust line between the two parallel lines. Mimed, the entire exhaust flow from the internal combustion engine can be led through the parallel line so that there is no heat exchanger cla retardem is not activated. The presence of the heat exchanger does not affect the exhaust gases during operation of the internal combustion engine. All or part of the air flow can be led through the second parallel line which includes the water exchanger when the retarder is activated and the vehicle is engine braked. There, the air pumped through the exhaust line at the operating style of the retarder can be heated by the hot liquid medium from the retarder.
Enligt en utforingsform av foreliggande uppfinning innefattar arrangemanget ett andra flodeselement i bromssystemet vilket at anpassat att leda ett varierbart flade av det vatskeforrniga mediet till vannevaxlaren. Varmeoverforingen i en varmevaxlare at relaterad till de varmeoverfOrande mediemas temperatur och flode. Genom att, exernpelvis, variera flOclet av det vatskeformiga mediet genom den forsta varrnevaxlaren kan luften i avgasledningen varmas till en varierbar temperatur. According to an embodiment of the present invention, the arrangement comprises a second river element in the brake system which is adapted to guide a variable surface of the liquid-shaped medium to the water exchanger. The heat transfer in a heat exchanger is related to the temperature and flow of the heat transfer media. By, for example, varying the flow of the liquid medium through the first heat exchanger, the air in the exhaust line can be heated to a variable temperature.
Arrangemanget kan innefatta en styrenhet som är anpassad att styra det fOrsta flocle- selementet och/eller det andra flodeselementet och darmed varrneoverfOringen i varrnevaxlaren cla retardern ar aktiverad sa att gasen som leds till den avgasbehandlande komponenten har en temperatur inom ett intervall i vilket den avgasrcnande komponenten har en optimal avgasbehandlande kapacitet. Med en sadan styming kan den avgasbehandlande komponenten uppratthalla en optimal driftstemperatur under hela den tid som retardern ar aktiverad och fordonet motorbromsas. Den har saledes aven en optimal temperatur for att behandla avgaser sa snart sorn motorbromsprocessen avslutas och avgaser Ater borjar stromma genom den avgasbehandlande komponenten. I detta fall elimineras forekomsten av en uppvarmningsperiod med en bristfallig av- gasrening efter att en rnotorbromsningsprocess avslutats. 3 537 46 Enligt en utforingsform av fOreliggande uppfinning är styrenheten anpassad att utfera styrningen av varmeoverforingen i varmevaxlaren med njalp av information fi-an atminstone en sensor som avkanner en parameter som är relaterad till den avgasbehandlande komponentens temperatur. Darned erhalls pa ett enkelt satt en aterkoppling till oat den avgasbehandlande komponenten har en acceptabel temperatur. Om ndmnda sensor visar att den avgasbehandlande temperaturen liar en for lag ternperatur justeras varmeoverfOringen i vartnevaxlaren sa att luften som pumpas genom avgasledningen erhaller en fdrhojd temperatur. Om sensorn visar att den avgasbehandlande temperaturen liar en for hog temperatur justeras varmeoverforingen i varmevaxlaren sa att luften som purnpa.s genom avgasledningen erballer en lagre temperatur. The arrangement may comprise a control unit which is adapted to control the first flocculation element and / or the second river element and thus the heat transfer in the heat exchanger cla retarder is activated so that the gas which is led to the exhaust gas treatment component has a temperature within a range in which the exhaust gas treatment component has an optimal exhaust treatment capacity. With such control, the exhaust gas treatment component can maintain an optimal operating temperature throughout the time the retarder is activated and the vehicle is engine braked. It thus also has an optimum temperature for treating exhaust gases as soon as the engine braking process is completed and exhaust gases again begin to flow through the exhaust gas treatment component. In this case, the occurrence of a heating period is eliminated with inadequate exhaust gas purification after a rotor braking process has been completed. According to an embodiment of the present invention, the control unit is adapted to perform the control of the heat transfer in the heat exchanger with the aid of information from at least one sensor which senses a parameter which is related to the temperature of the exhaust gas treatment component. In this way, a feedback is obtained in a simple manner to ensure that the exhaust gas treatment component has an acceptable temperature. If the said sensor shows that the exhaust gas treatment temperature is at a predetermined temperature, the heat transfer in the heat exchanger is adjusted so that the air pumped through the exhaust line obtains an elevated temperature. If the sensor shows that the exhaust gas treatment temperature is at too high a temperature, the heat transfer in the heat exchanger is adjusted so that the air pumped through the exhaust line reaches a lower temperature.
Enligt en utforingsform av foreliggande uppfinning at styrenheten anpassad att mottaga information frail en sensor som avkanner gastemperaturen inuti avgasledningen i en position i anslutning till den avgasbehandlande komponenten. Det är i regel inte lampligt att applicera en sensor inuti en avgashandlandet komponent for att direkt av- kanna temperaturen hos den avgasbehandlande komponenten. Avgasbehandlande komponenter har ett aktivt ytskikt som är i kontakt med den genomstrommande gasen. Det aktiva ytskiktet erhaller darmed relativt snabbt vasentligen samma temperatur som gasen. Alt mata gastemperaturen i anslutning till den avgasbehandlande komponenten är okomplicerat och en god indikation pa den avgasbehandlande komponentens tempe- ratur. ikven andra sensorer kan utnyttjas for att styra uppvarmningen av luften i virmevaxlaren. Sadana sensorer kan, exempelvis, avkanna luftflodet i avgasledningen och det vatskeformiga rnediets temperatur och flode i bromssystetnet. According to an embodiment of the present invention, the control unit is adapted to receive information from a sensor which senses the gas temperature inside the exhaust line in a position adjacent to the exhaust gas treatment component. It is generally not advisable to apply a sensor inside an exhaust gas handling component to directly sense the temperature of the exhaust gas treatment component. Exhaust gas treatment components have an active surface layer that is in contact with the flowing gas. The active surface layer thus relatively quickly obtains substantially the same temperature as the gas. All feeding the gas temperature in connection with the exhaust gas treatment component is uncomplicated and a good indication of the temperature of the exhaust gas treatment component. other sensors can also be used to control the heating of the air in the heat exchanger. Such sensors can, for example, detect the air flow in the exhaust line and the temperature and flow of the liquid-shaped fluid in the brake system.
Enligt en annan utfdringsfollil av fOreliggande uppfinning innefattar bromssystemet en andra varmevaxlare dar det vatskeformiga mediet kyls. I ett konventionellt bromssystem kyls det vatskeformiga mediet i en varmevaxlare med hjalp av kylvatska fran forbranningsmotoms kylsystem. Det är aven i data fall lampligt att anvanda en sadan varmevaxlare fOr kylning av det vatskeformiga mediet i ett andra steg efter att det kylts i ett ftirsta steg i den fOrsta varmevaxlaren. Eftersom del vatskeformiga mediet i detta fall avert kyls i tva varmevaxlare erhalls ett reducerat kylbehov i den andra varrnevaxlaren och darmed belastningen pa forbranningsmotoms kylsystem som norrnalt utsatts for stora pafrestningar da den ska kyla bort den stora rnangd varmeenergi som kan alstras under en langvarig bromsprocess med en hydraulisk retarder. 4 537 46 Enligt en utfOringsforrn av uppfinningen innefattar arrangemanget ett WHR system som är anpassat att uppta varmeenergi fran gasema i avgasledningen i en position nedstrains den avgasbehandlande komponenten. Darmed kan den varmeenergi som luften erhaller i den forsta varinevaxlaren atervinnas och ateranvandas eller lagras som elekt- risk energi. Den lagrade elektriska energin kan anvandas vid ett senare til1f11e for drift av fordonet eller drift av komponenter has fordonet. Med hjdlp av ett WHR system kart den avgasbehandlande komponenten tillhandahalla en uppvarmning pa ett mycket energiekonomiskt salt. According to another embodiment of the present invention, the brake system comprises a second heat exchanger where the liquid medium is cooled. In a conventional braking system, the liquid medium is cooled in a heat exchanger with the help of cooling water from the cooling system of the internal combustion engine. It is also feasible in data cases to use such a heat exchanger for cooling the liquid medium in a second step after it has been cooled in a first step in the first heat exchanger. Since some of the liquid medium in this case is cooled in two heat exchangers, a reduced cooling demand is obtained in the second heat exchanger and thus the load on the internal combustion engine cooling system which is normally exposed to large loads as it cools away the large amount of heat energy. hydraulic retarder. According to an embodiment of the invention, the arrangement comprises a WHR system which is adapted to absorb heat energy from the gases in the exhaust line in a position downstream of the exhaust gas treatment component. Thus, the heat energy that the air receives in the first varine exchanger can be recovered and reused or stored as electrical energy. The stored electrical energy can be used at a later stage for operation of the vehicle or operation of components having the vehicle. Using a WHR system, the exhaust gas treatment component provides a heating on a very energy efficient salt.
Enligt en annan utfOringsform av fdreliggande uppfinning at den avgasbehandlande komponenten en SCR katalysator. For att en SCR katalysator ska kunna reducera kvdveoxider i avgaser kravs att en urealosning sprutas in och forangas i avgasledningen i en position uppstroms SCR katalysatom. Med hjalp av arrangernanget enligt uppfinningen kan en SCR katalysator upprattballa en temperatur som motsvarar en Onskad driftstemperatur under retarderbromsprocess. Avgasema kan armed omedelbart forses med urealosning och erhAlla en optimal reducering av kvaveoxider i SCR katalysatom efter att retarderbromsprocessen upphort. Den avgasbehandlande komponenten behover inte vara en SCR katalysator utan den kan vara en vasentligen godtycklig avgasbehandlande komponent i en avgasledning som erfordrar en viss temperatur for att fungera pa ett optimalt sat. Sadana andra avgasbehandlande komponenter kan vara en oxidationskatalysator eller en ammoniakslipkatalysator. According to another embodiment of the present invention, the exhaust gas treating component is an SCR catalyst. In order for an SCR catalyst to be able to reduce nitrogen oxides in exhaust gases, it is required that a urea solution is injected and evaporated in the exhaust line in a position upstream of the SCR catalyst. With the aid of the arrangement according to the invention, an SCR catalyst can maintain a temperature corresponding to an undesired operating temperature during the retarder braking process. The exhaust gases can be armed immediately with urea release and obtain an optimal reduction of nitrogen oxides in the SCR catalyst after the retarder braking process has ceased. The exhaust gas treatment component need not be an SCR catalyst but may be an essentially arbitrary exhaust gas treatment component in an exhaust line which requires a certain temperature to function optimally. Such other exhaust gas treatment components may be an oxidation catalyst or an ammonia abrasive catalyst.
Enligt en annan utforingsform av foreliggande uppfinning innefattar bromssystemet flodeskomponenter som at anpassade att leda kylt vaskeformigt medium till varme- vaxlaren och kyla avgaser som leds genom varmevaxlaren under driftstillfallen da re- tardem inte är aktiverad. Avgasbehandlande komponenter haver i regel en relativt hog avgastemperatur fOr att fungera pa ett optirnalt satt. Blir avgasemas temperatur alai& hog avtar i regel de avgasbehandlande komponentcrnas verkningsgrad samtidigt som aktiva ytskikt has de avgasbehandlande komponentema riskerar att skadas av alltfor beta avgaser. I detta fall kan varmevaxlaren och det vdtskeformiga mediet anvdndas for att kyla avgaserna vid driftstillfallen sant avgasema är for heta. I och med det kan en optimal rening av avgasema erhallas i en avgasbehandlande komponent awn vid driftstillfallen med mycket hog avgastemperaturer. De avgasbehandlande komponenternas livsldngd reduceras claimed inte holler av skador som kan uppkomma i kontakt med mycket beta avgaser. 537 46 Enligt en annan utforingsfomt av foreliggande uppfinning innefattar avgasledningen ett partikelfilter som är anordnat uppstroms SCR katalysatom och att namnda forsta varmevaxlare är anordnad i avgasledningen i en position mellan partikelfiltret och SCR katalysatom. Avgaser fran dieselmotorer innehaller sotpartiklar. Avgasledningar for dieselmotorer innefattar av den anledningen ett partikeltilter som fangar upp sotpartik- lar i avgasema. Partikelfi tact behover dock regenereras med regelbundna interval!. Regenereringsprocessen innebdr att avgasema ges en sh hog temperatur att sotpartiklarna fOrbranns i partikelfiltret. Detta kan ske genom en kraftig belastning av forbrdnningsmotorn eller genom insprutning av oforbrdnt bransle i avgasledningen. Vid en regenereringsprocess är de lampligt att kyla avgaserna i varmevaxlaren med hj alp av det vatskeformiga medi et. Darrned kan en SCR katalysator erhalla en lagre temperatur an den temperatur som rhder i partikelfiltret under regenereringsprocessen. SCR katalysatom kan ddrmed uppratthalla en optimal reducering av kvaveoxider under regenereringsprocessen. Kylningen av avgasema i den fOrsta vartnevaxlaren forhindrar att SCR katalysatorns aktiva ytskikt kommer i kontakt med alltfor heta avgaser. According to another embodiment of the present invention, the braking system comprises river components which are adapted to lead cooled wash-like medium to the heat exchanger and cooling exhaust gases which are passed through the heat exchanger during operating conditions when the detector is not activated. Exhaust gas treatment components generally have a relatively high exhaust gas temperature to operate in an optical manner. If the temperature of the exhaust gases becomes high and high, the efficiency of the exhaust gas treatment components generally decreases, at the same time as active surface layers have the exhaust gas treatment components at risk of being damaged by excessive exhaust gases. In this case the heat exchanger and the liquid medium can be used to cool the exhaust gases in the event of operation if the exhaust gases are too hot. As a result, an optimal purification of the exhaust gases can be obtained in an exhaust gas treatment component awn in the event of operation with very high exhaust gas temperatures. The service life of the exhaust gas treatment components is not claimed to be due to damage that can occur in contact with very beta exhaust gases. According to another embodiment of the present invention, the exhaust line comprises a particulate filter arranged upstream of the SCR catalyst and said first heat exchanger being arranged in the exhaust line at a position between the particulate filter and the SCR catalyst. Exhaust gases from diesel engines contain soot particles. Exhaust lines for diesel engines therefore include a particulate tilter that catches soot particles in the exhaust gases. However, particulate matter needs to be regenerated at regular intervals !. The regeneration process means that the exhaust gases are given a high temperature so that the soot particles are burned in the particle filter. This can be done by a heavy load on the internal combustion engine or by injecting unburned fuel into the exhaust line. In a regeneration process, they are suitable for cooling the exhaust gases in the heat exchanger with the aid of the liquid medium. In addition, an SCR catalyst can obtain a lower temperature than the temperature prevailing in the particulate filter during the regeneration process. The SCR catalyst can thus maintain an optimal reduction of nitrogen oxides during the regeneration process. The cooling of the exhaust gases in the first heat exchanger prevents the active surface layer of the SCR catalyst from coming into contact with excessively hot exhaust gases.
KORT BESKRIVNING AV RITNINGARNA I det fOljande bcskrivs, shsom exernpel, foredragna utforingsformer av uppftnningen med hdnvisning till bifogade ritningar, ph vilka Fig. 1 visar ea an-angemang enligt en forsta utferingsform av foreliggande uppfinning och Fig. 2 visar ett arrangemang enligt en andra utforingsforrn av foreliggande uppfin- ning. BRIEF DESCRIPTION OF THE DRAWINGS In the following, as exemplified, preferred embodiments of the invention will be described with reference to the accompanying drawings, in which Fig. 1 shows an arrangement according to a first embodiment of the present invention and Fig. 2 shows an arrangement according to a second embodiment. of the present invention.
DETALTERAD BESKRIVNING AV FOREDRAGNA UTFORINGSFORMER AV LTPPFINNINGEN Fig. 1 visar en fOrbranningsmotor 1 som är anpassat att driva ett fordon. Forbran- ningsmotom I kan, exempelvis, vara avsedd som drivmotor for ett tungt fordon. Forbranningsmotorn I är forsedd med en avgasledning 2. Endast en del av avgasledningen 2 visas. Avgasledningen 2 kan initialt vara fersedd med en icke visad turbin hos ett turboaggrcgat for att komprimera inloppsluft som leds till forbrdnningsmotom och en icke visad retarledning for dtercirkulation av avgaser. Avgasledningen 2 innefattar ett parti ddr den är uppdelad i tvh parallella ledningar 2a, 2b. En ventil 3 är arrangerad 6 537 46 en position ay avgasledningen 2 dar den delas upp i de parallella ledningama 2a, 2b. Med hjalp ay ventilen som har är exernplifierad i form ay ett spjall 3 kan gasflodet avgasledningen 2 ledas till en ay de tva parallella ledningarna 2a, 2b. Det är aven rnojligt att fordela gasflOdet pa ett varierbart satt mellan de tva parallella ledningama 2a, 2b. De parallella ledningama 2a, 2b gar Ater samman i en position uppstroms ett antal aygasrenande komponenter 4-7. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE LTP INVENTION Fig. 1 shows an internal combustion engine 1 adapted to drive a vehicle. The internal combustion engine I can, for example, be intended as a drive engine for a heavy vehicle. The internal combustion engine I is equipped with an exhaust line 2. Only a part of the exhaust line 2 is shown. The exhaust line 2 may initially be provided with a turbine (not shown) of a turbocharger to compress inlet air which is led to the combustion engine and a return line (not shown) for the recirculation of exhaust gases. The exhaust line 2 comprises a portion ddr it is divided into two parallel lines 2a, 2b. A valve 3 is arranged at a position ay the exhaust line 2 where it is divided into the parallel lines 2a, 2b. With the aid of the valve which has is specified in the form of a damper 3, the gas flow exhaust line 2 can be led to one of the two parallel lines 2a, 2b. It is also possible to distribute the gas flow in a variable manner between the two parallel lines 2a, 2b. The parallel conduits 2a, 2b join together again in a position upstream of a number of eye gas purifying components 4-7.
De aygasrenande komponentema är i detta fall en oxidationskatalysator 4, ett partikelfilter 5, en SCR-katalysator 6 och en ammoniakslipkatalysator 7. I oxidationskatalysa- torn 4 oxideras en del av kvavemonoxiden i avgasema till kvavedioxid. Darmed kan vasentligen lika andelar ay kyavedioxid och kyAyemonoxid skapas i aygasema. Aygaserna ska heist innehalla lika mycket kyavemonoxid och kyavedioxid da de nar den nedstroms anordnade SCR-katalysator 6 for att en optimal reducering av kvaveoxider ska kunna erhallas. Aygasema leds efter oxidationskatalysatom 4 till partikelfiltret dar sotpartiklar fastnar och forbranns. En icke yisad insprutningsanordning är anpassad att spruta in en urealosning i avgasledningen i en position uppstroms SCR-katalysatom 6. Urealosningen forangas ay de yarma avgasema sA att ammoniak bildas i avgasema. Avgasema mhste ha en relativt hog temperatur fOr att ammoniaken ska forangas. Ammoniaken och kvaveoxiderna i avgasema reagerar med varandra dA'. de nar SCR kataly- satom sa att kvavgas och yattenanga bildas. For att kvaveoxidema ska reduceras pa ett effektivt sat i en SCR katalysator maste de ha en temperatur av atminstone 200°C. Avgastemperatur bar dock inte vara for hog da SCR katalysatoms Yerkningsgyad sjunker yid alitfor hoga temperaturer samtidigt som risken okar att de aktiva skikten i SCR katalysatom 6 skadas. Eyentuell kvarvarande ammortiak i avgasema elimineras i am- moniakstipkatalysatom 7 som at anordnad nedstroms SCR-katalysatom 6. The aygas purifying components in this case are an oxidation catalyst 4, a particle filter 5, an SCR catalyst 6 and an ammonia abrasive catalyst 7. In the oxidation catalyst 4 a part of the nitrogen monoxide in the exhaust gases is oxidized to nitrogen dioxide. Thus, substantially equal proportions of kyva dioxide and kyAy monoxide can be created in the aygases. The ayga gases must contain the same amount of Kyva monoxide and Kyva dioxide as they reach the SCR catalyst 6 arranged downstream in order to obtain an optimal reduction of nitrogen oxides. The aygases are passed after the oxidation catalyst 4 to the particle filter where soot particles get stuck and are burned. An uninfected injection device is adapted to inject a urea solution into the exhaust line in a position upstream of the SCR catalyst 6. The urea solution is evaporated at the hot exhaust gases so that ammonia is formed in the exhaust gases. The exhaust gases must have a relatively high temperature for the ammonia to evaporate. The ammonia and nitrogen oxides in the exhaust gases react with each other dA '. they when the SCR catalyst atom said that gas gas and yattenanga are formed. In order for the nitrogen oxides to be effectively reduced in an SCR catalyst, they must have a temperature of at least 200 ° C. However, the exhaust gas temperature should not be too high as the SCR of the SCR catalyst drops below all too high temperatures while increasing the risk of damaging the active layers of the SCR catalyst 6. Any residual ammonia in the exhaust gases is eliminated in the ammonia tip catalyst 7 as arranged downstream of the SCR catalyst 6.
Aygasledningen 2 innefattar, i en position nedstroms de avgasrenande komponentema 4-7, ett WHR-system 8 (Waste Heat Recovery System) for Ateryinning ay yarmeenergi ur gasema i avgasledningen 2. WHR-systemet 8 innefattar en siuten ledningskrets tried ett cirkulerande medium som hat en for detta andarnal lampliga fOrangnings och kondenseringstemperaturer vid de tryck som skapas i ledningskretscn under drift. Me-diet kan vara vatten. Mediet cirkuleras i ledningskretsen med hj alp ay en pump 8a. WHR-systemet 8 innefattar en varmeyaxlare i form av en forangare 8b som at anordnad i avgasledningen 2. Mcdiet i forangarcn 8b yarms av gasema i avgasledningen 2 till en temperatur yid vilket det forangas. WHR-systemet innefattar en expander i form ay en turbin 8c dar mediet expanderar. Turbinen 8c tillhandahaller claimed en rotat- 7 537 46 ionsrorelse som kan driva en generator 8d som aistrar elektrisk energi som lagras i ett batten i 8e. Altemativt kan turbinens 8c rotationsrorelse overforas, via en mekanisk transmission, till en drivrorelse av fordonets driviina. WHR-systemet innefattar en kondensor 8f dar mediet kylas ned till en temperatur vid vilken det kondenserar. The aygas line 2 comprises, in a position downstream of the exhaust gas purifying components 4-7, a WHR system 8 (Waste Heat Recovery System) for Ateryinning ay heat energy from the gases in the exhaust line 2. The WHR system 8 comprises a sieve line circuit tried a circulating medium which has an exceptionally suitable evaporating and condensing temperature for the pressures created in the line circuit during operation. Me-diet can be water. The medium is circulated in the line circuit with the aid of a pump 8a. The WHR system 8 comprises a heat shaft in the form of an evaporator 8b which is arranged in the exhaust line 2. The medium in the evaporator 8b is heated by the gases in the exhaust line 2 to a temperature at which it is evaporated. The WHR system includes an expander in the form of a turbine 8c where the medium expands. The turbine 8c provides a claimed rotational motion which can drive a generator 8d which generates electrical energy stored in a bath in the 8e. Alternatively, the rotational motion of the turbine 8c can be transmitted, via a mechanical transmission, to a drive motion of the drive line of the vehicle. The WHR system includes a condenser 8f where the medium is cooled to a temperature at which it condenses.
WHR-systemet 8 kan sjalvfallet aven innefatta ytterligare komponenter sasom, exem- pelvis, en recuperator och en varmningsanordning for att sakerstalla att alit medium har forangats innan det leds till turbinen 8c. Alternativt kan ett WHR-system anvandas som innefattar en termoelektrisk generator. The WHR system 8 can of course also comprise additional components such as, for example, a recuperator and a heating device to ensure that all medium has been evaporated before it is led to the turbine 8c. Alternatively, a WHR system may be used which includes a thermoelectric generator.
Forbranningsmotom 1 är anpassat att driva fordonet via en drivlina. Drivlinan innefat- tar bl.a. en roterbar axel 9 och en drivaxel som uppbar ett par drivhjul 10. Fordonet an fOrsedd med ett hydrodynamiskt bromssystem 11 som innefattar en retarder 11a. Retardem 11 a bestar av en statordel som är stational- och en rotordel som roterar med den roterbara axeln 9 i drivlinan. Den roterbara axeln 9 kan vara en axel som är anordnad i eller i anslutning till en vaxellada i fordonet. Statordelen och rotordelen formar till- sammans ett toroidformat utrymme. Da retardem lla aktiveras leds ett vatskeformigt medium i fotni av en retarderolja genom retardems 11 toroidformade utrymme. Statordelen och rotordelen är forsedda med skovlar i det toroidformade utrymmet som tillsammans med retarderoljan tillhandahaller en bromsprocess av rotordelen i forhal- lande till statordelen och clamed drivlinan och fordonet. Retarder°ljan erhaller en kraftig uppvarmning dá det leds genom det toroidformade utrymmet under en retarderbromsprocess. The internal combustion engine 1 is adapted to drive the vehicle via a driveline. The driveline includes i.a. a rotatable axle 9 and a drive axle carrying a pair of drive wheels 10. The vehicle is provided with a hydrodynamic braking system 11 comprising a retarder 11a. The retarder 11a consists of a stator part which is stationary and a rotor part which rotates with the rotatable shaft 9 in the driveline. The rotatable axle 9 can be an axle which is arranged in or adjacent to a gearbox in the vehicle. The stator part and the rotor part together form a toroidal space. When the retarder 11a is activated, a liquid-shaped medium in the foot is led by a retarder oil through the toroidal space of the retarder 11. The stator part and the rotor part are provided with vanes in the toroidal space which together with the retarder oil provide a braking process of the rotor part in relation to the stator part and clamed the driveline and the vehicle. The retarder line receives a strong heating as it is passed through the toroidal space during a retarder braking process.
Brornssystemet 11 innefattar en behallare 1 lb for retarderoija. Retarderoljan leds fran behallaren llb till retardem 11 a via en inloppsiedning 11c. Inloppsledningen lic är forsedd med en ventil 1 id med vilken retardern 11a aktiveras. Nar ventilen lid hr oppen olja sugs fran behallaren 1 lb till retarderns lla toroidformade utrymme och den är armed aktiverad. Nan ventilen 1 1 d är stangd leds ingen olja till retardem 11 och den är dammed inte aktiverad. Nar retardem lla an aktiverad leds olja ut fran det toroid- formade utrymmet, via en utloppsledning lie, till en forsta vatinevaxlare Ilf. Den forsta varmevaxlaren 1 if dr anordnad i den andra parallella ledningen 2b av avgasledningen 2. Den vanna oljan fran retardem I la kyls i ett fcirsta steg i den fdrsta varmevaxlaren 11a av gaser som strommar genom den andra parallella ledningen 2b hos avgasledningen 2. Oljan leds darefter till en andra vannevaxlare 11g ddr oljan kyls i ett andra steg av kylvatska S0111 cirkulerar i ett kylsystem som kyler forbranningsmotorn 1. Oljan nan darefter behallaren 1 lb i ett nedkylt tillstand. Oljan kan darefter Ater an- 8 537 46 vandas i retardem ila sâ ldnge som ventilen lid halls oppen. En styrenhet 12 dr anpassad att styra ventilen 11i och darmed aktiveringen av retardem 11 a. Bromssystemet 11 innehaller en ffirsta bypassledning 11h och en ventil 11i med vilken en del av oljan kan ledas forbi den ffirsta varmevaxlaren 11 f. Styrenheten 12 dr aven anpassad att styra ventilen lii och darmed oljeflodet genom den forsta varmevaxlaren lif Styrenheten 12 mottar information fran ett brornsreglage 13 som anyands av en fOrare ffir aktivering av retardem ha. Styrenheten 12 reglera gastlodet genom de parallella ledningama 2a, 2b med hjalp av spjallet 3. Under driftstilifallen da retardern lla inte dr aktiverad dr spjallet 3 i regel en forsta position i vilket det helt lot-sinter en inlopps- oppning till den andra parallella ledningen 2b. Hela avgasflOdet leds i detta fall genom den fOrsta parallella ledningen 2a. Under drifttillfallen d5. retardem lla dr aktiverad, staller styrenheten 12 spjallet 3 i en andra position, vilket visas med streekade linjer Fig. 1. I detta fall leds hela gasfiddet leds genom den andra parallella ledningen 2b och den forsta varmevaxlaren 11f. DA retardem dr aktiverad pumpar ferbranningsmotorn 1 kall luft genom avgasledningen 2. Luften varmas av den varma oljan fran retardem 1 1 a i den forsta varmevaxlaren 1 If. Luften som varmts i den ffirsta varmevaxlaren llf leds darefter genom de avgasbehandlande komponentema 4-7. Med hjalp av den varmda luften Ran de avgasbehandlande komponenterna 4-7 ffirhindras att kylas ned da retar- dem lla Ar aktiverad. En sensor 14 avkanner gastemperaturen i en position vdsentlig- en omedelbart uppstroms de avgasbehandlande komponentema 4-7. The well system 11 includes a 1 lb container for retarderoija. The retarder oil is led from the container 11b to the retarder 11a via an inlet line 11c. The inlet line 11c is provided with a valve 1 id with which the retarder 11a is activated. When the valve suffers from this open oil, 1 lb is sucked from the container into the entire toroidal space of the retarder and it is armed activated. When the valve 1 1 d is closed, no oil is led to the retarder 11 and it is therefore not activated. When the retarder is activated, oil is led out of the toroidal space, via an outlet line lie, to a first vatine exchanger Ilf. The first heat exchanger 1 if arranged in the second parallel line 2b of the exhaust line 2. The used oil from the retarder 11a is cooled in a first step in the first heat exchanger 11a by gases flowing through the second parallel line 2b of the exhaust line 2. The oil is led then to a second water exchanger 11g ddr the oil is cooled in a second stage of coolant SO111 circulates in a cooling system which cools the internal combustion engine 1. The oil nan then the container 1 lb in a cooled state. The oil can then be re-used in retardation as long as the valve is kept open. A control unit 12 dr adapted to control the valve 11i and thus the activation of the retarder 11 a. The brake system 11 contains a first bypass line 11h and a valve 11i with which part of the oil can be led past the first heat exchanger 11 f. the valve lii and thus the oil flow through the first heat exchanger lif The control unit 12 receives information from a well control 13 which anyands of a driver for activation of the retardem ha. The control unit 12 controls the gas solder through the parallel lines 2a, 2b with the aid of the damper 3. During the operating situations when the retarder is not activated, the damper 3 is usually a first position in which it completely sinks an inlet opening to the second parallel line 2b. . In this case, the entire exhaust flow is led through the first parallel line 2a. During operating cases d5. Retarded 11a there is activated, the control unit 12 places the damper 3 in a second position, which is shown in broken lines Fig. 1. In this case, the entire gas feed is led through the second parallel line 2b and the first heat exchanger 11f. DA retardem dr activated pumps the combustion engine 1 cold air through the exhaust line 2. The air is heated by the hot oil from retardem 1 1 a in the first heat exchanger 1 If. The air heated in the first heat exchanger 11 is then passed through the exhaust gas treatment components 4-7. With the help of the heated air, the exhaust gas treatment components 4-7 are prevented from cooling down when the retarder is activated. A sensor 14 senses the gas temperature in a position substantially immediately upstream of the exhaust gas treatment components 4-7.
Under driftstillfallen dA fordonet anlander till en 15.ng nedffirsbacke aktiverar ffiraren retardem via bromsreglaget 13. Alternativt kan retardern aktiveras automatisk. DA styrenheten 12 mottar derma information oppnar den ventilen 11d. Darmed sugs retar- derolja fran behallaren 11b, via inloppsledningen 11c, till retardem 1 la. Fffidet av retarderolja genom retardern 11 a resulterar i att fordonet bromsas. Tillforseln av bransle tin forbranningsmotom 1 upphor samtidigt som retardem 1 ha aktiveras och ffirbranningsmotom 1 pumpar luft genom avgasledningen 2. Styrenheten 12 mottar informat- ion fran sensom 14 avseende gastemperaturen i avgasledningen 2 i anslutning till de avgasbehandlande komponentema 4-7. Si snart som gastemperaturen sjunker under ett nedre troskelvdrde staller styrenheten 12 spjallet 3 i den andra positionen 85 att luften i avgasledningen 2 leds genom den andra parallella ledningen 2b. Luften yams av retarderoljan i varmevaxlaren llf. Sensom 14 avkanner kittens temperatur innan den leds genom de avgasbehandlande komponentema 4-7. Styrenheten 12 mottar vdsentli- gen kontinuerligt information frail sensom 14 avseende luftens temperatur. Indikerar 9 537 46 sensorn 14 att luften har en for lag temperatur styr styrenheten 12 ventilen lii sà att oljeflodet genom den forsta varmevaxlaren llf okar. Indikerar sensorn 14 att luften har en for hog temperatur styr styrenheten 12 ventilen lii sa att oljeflodet genom den forsta varmevaxlaren 1 If minskar. Med en sadan styming kan de avgasbehandlande komponentema 4-7 och i synnerhet SCR katalysatom 6 upprdtthalla en temperatur Mom ett intervall dar SCR katalysatom 6 tillhandahaller en optimal oxidering av Icy& veoxider. Den varnia luften som larnnar de avgasbehandlande kornponentema 4-7 leds genom farangaren 8b dar det forangar mediet som cirkulerar i WHR systetnet 8. Den varmeenergi som luften tillfars, via den forsta varmevaxlaren 11 f, kan clamed awn tas till vara och ornvandlas till elektrisk energi eller mekanisk energi i WHR systemet 8. During operating cases when the vehicle arrives at a 15th downhill slope, the driver activates the retarder via the brake control 13. Alternatively, the retarder can be activated automatically. When the control unit 12 receives this information, it opens the valve 11d. Thereby, retarder oil is sucked from the container 11b, via the inlet line 11c, to the retarder 11a. The flow of retarder oil through the retarder 11a results in the vehicle being braked. The supply of the fuel combustion engine 1 ceases at the same time as the retarder 1 ha is activated and the combustion engine 1 pumps air through the exhaust line 2. The control unit 12 receives information from the sensor 14 regarding the gas temperature in the exhaust line 2 in connection with the exhaust gas treatment components 4-7. As soon as the gas temperature drops below a lower threshold value, the control unit 12 places the damper 3 in the second position 85 so that the air in the exhaust line 2 is led through the second parallel line 2b. The air yams of the retarder oil in the heat exchanger llf. Sensor 14 senses the temperature of the kit before it is passed through the exhaust gas treatment components 4-7. The control unit 12 essentially continuously receives information from the sensor 14 regarding the air temperature. The sensor 14 indicates that the air has a too low temperature, the control unit 12 controls the valve lii so that the oil flow through the first heat exchanger 11f increases. If the sensor 14 indicates that the air has a too high temperature, the control unit 12 controls the valve lii so that the oil flow through the first heat exchanger 1 If decreases. With such a control, the exhaust gas treatment components 4-7 and in particular the SCR catalyst 6 can maintain a temperature at a range where the SCR catalyst 6 provides an optimal oxidation of Icy & ve oxides. The varnished air which feeds the exhaust gas treatment grain components 4-7 is led through the farangar 8b where it evaporates the medium circulating in the WHR system 8. The heat energy supplied to the air, via the first heat exchanger 11 f, can be clamed awn and converted into electrical energy. or mechanical energy in the WHR system 8.
WHR systemet 8 kan sdledes dven generera elelctrisk energi eller mekanisk energi vid tillfAlien som fordonet motorbromsas. The WHR system 8 can thus also generate electrical energy or mechanical energy at the time the vehicle is engine braked.
Nar fordonet bar nhtt backens slut stanger styrenheten 12 ventilen lid sá att flodet av olja till retardem 11a upphor. Insprutningen av brdnsle i forbranningsmotorn startar och avgaser strommar dter genom avgasledningen 2. Styrenheten 12 staller spjallet 3 i den forsta positionen sâ att hela avgasflodet leds genom den I-61-sta parallella ledningen 2a. Insprutningen av urealosning startar och SCR katalysatom 6 kan omedelbart uppta oxideringen av avgaserna pa ett optimalt sdtt eftersom den uppratthedlit sin optimala driftsten-iperatur under hela den tid som retardern var aktiverad. Darmed elimineras den period med bristrallig oxidering av kvaveoxider som kan vara fdljden om SCR katalysatom kyls ned under en retarderbromsprocess. Forutom derma forbattrade avgasrenande fOrmaga tillbandahaller retarderoljan en kylning i ett fOrsta steg i den forsta varmevaxlaren 11 f. Darmed kan den andra varmevaxlaren llg ges en lagre kapacitet. When the vehicle is near the end of the hill, the control unit 12 closes the valve so that the flow of oil to the retarder 11a ceases. The injection of fuel into the internal combustion engine starts and exhaust gases flow through the exhaust line 2. The control unit 12 places the throttle 3 in the first position so that the entire exhaust flow is led through the I-61st parallel line 2a. The injection of urea solution starts and the SCR catalyst 6 can immediately pick up the oxidation of the exhaust gases in an optimal way because it has maintained its optimum operating temperature throughout the time the retarder was activated. This eliminates the period of brittle oxidation of nitrogen oxides that may result if the SCR catalyst is cooled during a retarder braking process. In addition to these improved exhaust gas cleaning equipment, the retarder oil retains a cooling in a first stage in the first heat exchanger 11 f. Thus, the second heat exchanger 11g can be given a lower capacity.
Den kan goras mindre och utgora en mindre belastning pa det ordinarie kylsystemet for kylning av forbranningsmotom 1 (Id retardem aktiveras. Altemativt kan retardem erhalla en fOrhojd bromseffekt. It can be made smaller and put a lesser load on the ordinary cooling system for cooling the internal combustion engine 1 (Id retardem is activated. Alternatively, retardem can obtain an increased braking effect.
Fig. 2 visar en alternativ utferingsform. Arrangemanget enligt derma utforingsform innefattar vasentligen alla komponenter som arrangemanget i Fig. I och ett antal ytter- ligare komponenter. Det har darvid samma fOrmaga som arrangemanget 1 Fig. 1 att varma luften i avgasledningen 2 och upprathalla temperaturen hos den nedstroms anordnade SCR katalysatom vid tillfallen som retardem 1 1 a är aktiverad sA att SCR katalysatom omedelbart kan rena avgasema efter att brornsningsprocessen avslutats. Den har aven ett WHR system 8 som har famAga at ta tillvara varmeenergin i den varmda 537 46 luften i en position nedstroms de avgasbehandlande komponenterna vid tillfallen da retardem lla är aktiverad. Fig. 2 shows an alternative embodiment. The arrangement according to this embodiment essentially comprises all components as the arrangement in Fig. I and a number of further components. It has the same capacity as the arrangement 1 Fig. 1 to heat the air in the exhaust line 2 and maintain the temperature of the downstream SCR catalyst in the event that the retarder 1 1a is activated so that the SCR catalyst can clean the exhaust gases immediately after the burning process is completed. It also has a WHR system 8 which is used to utilize the heat energy in the heated air in a position downstream of the exhaust gas treatment components when the retarder is activated.
I derma alternativa utforingsform är de parallella ledningarna 2a, 2b emellertid arran- gerade i en position rnellan partikelfiltret 5 cob SCR katalysatorn 6. Bromssystemet 11 innefattar i detta fall en andra bypassledning I lj som stacker sig mellan inloppsledningcn 1 l c och utloppsledningen lie. Bromssystemet 11 inncfattar en trevagsventil Ilk som kan inta tre olika lagen. Ett forsta lage da den är stangd, ett andra lage dá den leder kyld retarderolja frail tanken 1 lb till retardern lla och ett tredje lage da den leder kyld rctarderolja frail tanken llb till bypassledningen 11j. Bypassledningen 11j inne- fattar en pump 11m. En styrenhet 12 är anpassad att stalla trevagsventilen Ilk i de respektive lagena vid olika drifttillstand och att styra aktiveringen av pumpen llm. In this alternative embodiment, however, the parallel lines 2a, 2b are arranged in a position between the particle filter 5 and the SCR catalyst 6. In this case the brake system 11 comprises a second bypass line 11c which extends between the inlet line 11c and the outlet line 11e. The brake system 11 includes a three-way valve Ilk which can take three different layers. A first layer when it is closed, a second layer when it leads cooled retarder oil frail tank 1 lb to the retarder lla and a third layer when it leads cooled rctarder oil frail tank llb to the bypass line 11j. The bypass line 11j includes a pump 11m. A control unit 12 is adapted to place the three-way valve Ilk in the respective layers at different operating conditions and to control the activation of the pump 11m.
Under drift av forbranningsrnotom 1 behover partikelfiltret 5 regenereras med regel- bundna intervall. For att Ora detta kan forbranningsmotom 1 aktiveras sá att avgas- temperaturen hejs till en sa hOg niva att sotpartiklama som fastnat i partikelfiltret 5 tbrbranns. Altemativt kan offirbrant bransle sprutas in i avgasema for att hoja avgastemperaturen. SCR katalysatorn 6 erhaller en reducerad verkningsgrad vid rnycket hoga temperaturer. SCR katalysatoms 6 aktiva skikt kan aven skadas av alltfbr beta avgaser med fOljd att SCR katalysatorns 6 livslangd reduceras. Styrenheten 12 mottar information som indikerar da partikelfiltret ska regenereras. Styrenheten 12 mottar vasentligen kontinuerligt information fran sensom 14 avseende avgasernas temperatur avgasledningen i anslutning till SCR katalysatorn 6. Da avgasemas temperatur stiger Over ett Owe troskelvdrde staller styrenheten ventilen ilk 1 det tredje laget varefter pumpen llm startas. Kyld retarderolja transporteras nu fran behallaren 1lb, via ut- loppsledningen lie till den forsta varmevaxlaren 1 lf. Styrenheten 12 justerar spjallets 3 position sa att avgasema i avgaseldningen 2 leds genom den andra parallella ledningen 2b. Avgaserna kyls av oljan i den forsta varmevaxlaren llf. Styrenheten 12 mottar vasentligen kontinuerligt information fran sensom 14 avseende avgasemas temperatur i anslutning till SCR katalysatorn 6. Styrenheten 12 styr ventilen lii och darrned olje- flodet genom den forsta varmevaxlaren llfsa att avgasema som leds in i SCR katalysatom vasentligen aldrig erhaller en hagre temperatur an det ovre troskelvardet. Dar-tried kan SCR katalysatorn aven tillhandahalla en optimal reducering av kvaveoxider aven under driftstillfallen dà partikelfiltret 5 regenereras. Styrenheten 12 kan aven un- der driftstillfallen da forbranningsmotorn är hart belastad och da avgasema erhaller en hogre tempera= an det ovre troskelvardet leda kyld retarderolja till varmevaxlaren 1 if 11 537 46 och styra ventilen I Ii s att avgasemas temperatur reduceras till en rtiva' under troskelvardet. During operation of the combustion engine 1, the particulate filter 5 needs to be regenerated at regular intervals. To do this, the combustion engine 1 can be activated so that the exhaust gas temperature is raised to such a high level that the soot particles stuck in the particle filter 5 are burned. Alternatively, off-fuel fuel can be injected into the exhaust gases to raise the exhaust gas temperature. The SCR catalyst 6 obtains a reduced efficiency at extremely high temperatures. The active layer of the SCR catalyst 6 can also be damaged by excessively exhaust gases as a result of which the service life of the SCR catalyst 6 is reduced. The control unit 12 receives information indicating when the particle filter is to be regenerated. The control unit 12 essentially continuously receives information from the sensor 14 regarding the exhaust gas temperature in connection with the SCR catalyst 6. As the exhaust gas temperature rises. Chilled retarder oil is now transported from the tank 1lb, via the outlet line lie to the first heat exchanger 1 lf. The control unit 12 adjusts the position of the damper 3 so that the exhaust gases in the exhaust flame 2 are led through the second parallel line 2b. The exhaust gases are cooled by the oil in the first heat exchanger llf. The control unit 12 essentially continuously receives information from the sensor 14 regarding the temperature of the exhaust gases in connection with the SCR catalyst 6. The control unit 12 controls the valve 11 and then the oil flow through the first heat exchanger so that the exhaust gases introduced into the SCR catalyst substantially never reach a better temperature. upper threshold. Thus, the SCR catalyst can also provide an optimal reduction of nitrogen oxides even during the operating cases when the particle filter 5 is regenerated. The control unit 12 can also, during operating conditions when the internal combustion engine is heavily loaded and when the exhaust gases receive a higher temperature = the upper threshold value, lead cooled retarder oil to the heat exchanger 1 if 11 537 46 and control the valve I Ii so that the exhaust gas temperature is reduced to the threshold guard.
Uppfinningen ar pa intet satt begransad till den O. ritningen beskrivna utforingsformen utan ka.n varieras fritt inom patentkravens ramar. Den avgasbehandlande komponente-n behover inte vara en SCR katalysator utan den kan vara en godtycklig av avgasbehandlande kornponent som erfordrar en relativt hog temperatur for att tillhandahalla en optimal behandling av avgaser. 12 The invention is in no way limited to the embodiment described in the drawing, but can be varied freely within the scope of the claims. The exhaust gas treating component need not be an SCR catalyst but may be any of the exhaust gas treating grain component which requires a relatively high temperature to provide optimal exhaust gas treatment. 12
Claims (12)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1351079A SE537465C2 (en) | 2013-09-19 | 2013-09-19 | Arrangements for counteracting the cooling of an exhaust gas treatment component in a vehicle |
PCT/SE2014/050978 WO2015041584A1 (en) | 2013-09-19 | 2014-08-27 | Arrangement to prevent cooling of an exhaust gas treatment component in a vehicle |
DE112014003726.5T DE112014003726T5 (en) | 2013-09-19 | 2014-08-27 | An arrangement for preventing the cooling of an exhaust treatment component in a vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1351079A SE537465C2 (en) | 2013-09-19 | 2013-09-19 | Arrangements for counteracting the cooling of an exhaust gas treatment component in a vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
SE1351079A1 SE1351079A1 (en) | 2015-03-20 |
SE537465C2 true SE537465C2 (en) | 2015-05-12 |
Family
ID=52689147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE1351079A SE537465C2 (en) | 2013-09-19 | 2013-09-19 | Arrangements for counteracting the cooling of an exhaust gas treatment component in a vehicle |
Country Status (3)
Country | Link |
---|---|
DE (1) | DE112014003726T5 (en) |
SE (1) | SE537465C2 (en) |
WO (1) | WO2015041584A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10562505B2 (en) | 2017-12-11 | 2020-02-18 | Cnh Industrial America Llc | Hydraulic warm-up system running off parking brake |
SE541700C2 (en) * | 2018-01-24 | 2019-11-26 | Scania Cv Ab | An arrangement and a method for controlling of a WHR system |
CN113958392B (en) * | 2021-11-02 | 2023-01-03 | 浙江海洋大学 | Exhaust purification integrated device for boats and ships |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3031059A1 (en) * | 1980-08-16 | 1982-03-18 | Klöckner-Humboldt-Deutz AG, 5000 Köln | INTERNAL COMBUSTION ENGINE WITH A RETARDER |
ITMI20032556A1 (en) * | 2003-12-22 | 2005-06-23 | Iveco Spa | METHOD FOR RECOVERY OF BRAKING ENERGY IN A HYBRID PLANT AND HYBRID MOTOR SYSTEM |
SE529158C2 (en) * | 2005-02-23 | 2007-05-15 | Scania Cv Abp | Methods and apparatus for supplying additive for exhaust gas purification and conduction |
DE102006012847A1 (en) * | 2006-03-21 | 2007-09-27 | Daimlerchrysler Ag | Internal combustion engine`s cooling circuit heating method for e.g. passenger car, involves automatically connecting retarder with engine using drive for supplying heat energy in warm-up phase of engine based on operating parameters |
JP2010077901A (en) * | 2008-09-26 | 2010-04-08 | Sanden Corp | Waste heat recovery device for vehicle |
EP2443328B1 (en) * | 2009-06-18 | 2015-08-12 | Volvo Lastvagnar AB | Cooling circuit for a vehicle and vehicle comprising a cooling circuit |
JP5579040B2 (en) * | 2010-12-10 | 2014-08-27 | Udトラックス株式会社 | Exhaust heat insulation device |
-
2013
- 2013-09-19 SE SE1351079A patent/SE537465C2/en not_active IP Right Cessation
-
2014
- 2014-08-27 DE DE112014003726.5T patent/DE112014003726T5/en not_active Withdrawn
- 2014-08-27 WO PCT/SE2014/050978 patent/WO2015041584A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
DE112014003726T5 (en) | 2016-05-25 |
WO2015041584A1 (en) | 2015-03-26 |
SE1351079A1 (en) | 2015-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5804879B2 (en) | Waste heat utilization equipment | |
CN108131185B (en) | Method and system for exhaust heat recovery | |
RU2678926C2 (en) | Method (versions) of cooling vehicle engine and vehicle cabin heating system | |
CA2956147C (en) | A system and method for storing thermal energy as auxiliary power in a vehicle | |
JP5761358B2 (en) | Rankine cycle | |
JP5523634B2 (en) | Apparatus and method for converting thermal energy into mechanical energy | |
US10385751B2 (en) | Exhaust gas waste heat recovery system | |
JP6223955B2 (en) | Solar power generation system | |
US10487708B2 (en) | Reductant tank as a heat storage device | |
CN107939546B (en) | Method of flowing coolant through exhaust heat recovery system after engine shutdown | |
SE537465C2 (en) | Arrangements for counteracting the cooling of an exhaust gas treatment component in a vehicle | |
WO2013046932A1 (en) | Engine-waste-heat utilization device | |
JP2015218626A (en) | Heat energy recovery device and control method | |
JP2007327359A (en) | Waste heat power generation device and method for operating same | |
JP5894756B2 (en) | Rankine cycle system | |
CN103375313B (en) | Diesel fuel supply circuit | |
JP2013076374A (en) | Rankine cycle and heat exchanger used for the same | |
SE538389C2 (en) | Exhaust | |
SE538889C2 (en) | Arrangement for the recovery of heat energy from exhaust gases from a supercharged internal combustion engine | |
US20170009632A1 (en) | Apparatus for transferring recovered power of waste heat recovery unit | |
US20170167595A1 (en) | Rear axle lubrication oil temperature control using exhaust heat recovery and a thermal battery | |
SE1450441A1 (en) | Arrangement in a vehicle | |
JP2013076372A (en) | Waste heat utilization device | |
SE540350C2 (en) | A WHR system for a vehicle comprising a combustion engine and a hydraulic retarder | |
JP7204593B2 (en) | Method of operating Rankine cycle system and waste heat recovery device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NUG | Patent has lapsed |