SE537265C2 - Control system and method for controlling vehicles when detecting obstacles - Google Patents

Control system and method for controlling vehicles when detecting obstacles Download PDF

Info

Publication number
SE537265C2
SE537265C2 SE1350335A SE1350335A SE537265C2 SE 537265 C2 SE537265 C2 SE 537265C2 SE 1350335 A SE1350335 A SE 1350335A SE 1350335 A SE1350335 A SE 1350335A SE 537265 C2 SE537265 C2 SE 537265C2
Authority
SE
Sweden
Prior art keywords
vehicle
obstacle
trajectory
obstacles
information
Prior art date
Application number
SE1350335A
Other languages
Swedish (sv)
Other versions
SE1350335A1 (en
Inventor
Jon Andersson
Joseph Ah-King
Tom Nyström
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1350335A priority Critical patent/SE537265C2/en
Priority to DE112014001069.3T priority patent/DE112014001069T5/en
Priority to PCT/SE2014/050290 priority patent/WO2014148978A1/en
Publication of SE1350335A1 publication Critical patent/SE1350335A1/en
Publication of SE537265C2 publication Critical patent/SE537265C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/24Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted
    • B62D1/28Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted non-mechanical, e.g. following a line or other known markers
    • B62D1/283Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted non-mechanical, e.g. following a line or other known markers for unmanned vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • B62D15/0265Automatic obstacle avoidance by steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0011Planning or execution of driving tasks involving control alternatives for a single driving scenario, e.g. planning several paths to avoid obstacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/646Following a predefined trajectory, e.g. a line marked on the floor or a flight path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/69Coordinated control of the position or course of two or more vehicles
    • G05D1/692Coordinated control of the position or course of two or more vehicles involving a plurality of disparate vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/201Dimensions of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/35Road bumpiness, e.g. potholes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2101/00Details of software or hardware architectures used for the control of position
    • G05D2101/10Details of software or hardware architectures used for the control of position using artificial intelligence [AI] techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

537 26 Sammandrad Uppfinningen hanfor sig till ett reglersystem (10) for att reglera ett autonomt fordon (2) med dtminstone ett forsta hjulpar (6A, 6B, 7A, 7B) i samband med hinder, varvid systemet (10) innefattar en processorenhet (11) som är anpassad att ta emot en hindersignal (pi med information om ett hinder (9) i fordonets (2) vag, varvid informationen innefattar atminstone karakteristik fOr hindret (9) samt hindrets position; processorenheten (11) är vidare anpassad att analysera informationen om hindret enligt regler far grensling av hindret relaterat till fordonets (2) markfrigang; och if all resultatet av analysen visar att hindret kan grenslas av fordonet (2), sã är processorenheten (11) anpassad att: bestamma en forsta trajektoria (19) for fordonet (2) baserat dtminstone pa fordonets (2) position, hindrets position och uppgifter om fordonets (2) markfrigang, sâ att fordonet (2) grenslar hindret; generera en trajektoriasignal cp3 som indikerar namnda forsta trajektoria (19); sanda trajektoriasignalen cp3 till en styrenhet (12) i fordonet, varvid fordonet (2) regleras efter den f6rsta trajektorian (19). Uppfinningen hanfOr sig amen till en metod for att reglera ett autonomt fordon (2) i samband med hinder. The invention relates to a control system (10) for controlling an autonomous vehicle (2) with at least one first pair of wheels (6A, 6B, 7A, 7B) in connection with obstacles, the system (10) comprising a processor unit (11 ) adapted to receive an obstacle signal (pi with information about an obstacle (9) in the vehicle (2)'s vag, the information including at least characteristics of the obstacle (9) and the position of the obstacle; the processor unit (11) is further adapted to analyze the information if the obstacle is regulated according to the rules related to the ground clearance of the vehicle (2), and if all the results of the analysis show that the obstacle can be overcome by the vehicle (2), then the processor unit (11) is adapted to: determine a first trajectory (19) for the vehicle (2) based at least on the position of the vehicle (2), the position of the obstacle and information on the ground clearance of the vehicle (2), so that the vehicle (2) crosses the obstacle, generating a trajectory signal cp3 indicating said first trajectory (19); the true trajectory signal cp3 to a control unit (12) in the vehicle, the vehicle (2) being regulated according to the first trajectory (19). The invention relates to a method for regulating an autonomous vehicle (2) in connection with obstacles.

Description

537 26 Reglersystem samt metod for reglering av fordon vid detektion av hinder Uppfinningens omrade Foreliggande uppf inning avser teknik fOr att detektera hinder framfar ett autonomt fordon, samt att reglera fordonet fOr att undvika hindret. 537 26 Control system and method for regulating vehicles when detecting obstacles The field of the invention The present invention relates to technology for detecting obstacles driving an autonomous vehicle, and for regulating the vehicle to avoid the obstacle.

Bakgrund till uppfinningen Ett fordon som kan framfOras utan fOrare pa marken kallas ett fOrarlOst markgaende fordon (Eng. Unmanned ground vehicle; UGV). Det finns tva. typer 10 av forarlosa markgdende fordon, de som fjarrstyrs och de som är autonoma. Background of the Invention A vehicle that can be driven without a driver on the ground is called an unmanned ground vehicle (UGV). There are two. types 10 of driverless ground-moving vehicles, those that are remotely controlled and those that are autonomous.

Ett fjarrstyrt UGV är ett fordon som regleras av en mansklig operator via en kommunikationslank. Alla atgdrder bestams av operatOren baserat pa antingen direkt visuell observation eller med anvandning av sensorer sasom digitala videokameror. Ett enkelt exempel pa en fjarrstyrd UGV är en fjarrstyrd leksaksbil. A remote-controlled UGV is a vehicle that is regulated by a human operator via a communication link. All actions are determined by the operator based on either direct visual observation or the use of sensors such as digital video cameras. A simple example of a remote-controlled UGV is a remote-controlled toy car.

Det finns en stor variation av fjarrstyrda fordon som anvands idag. Ofta anvands dessa fordon i farliga situationer och miljoer som är oldmpliga for manniskor att vistas i, till exempel for att desarmera bomber och vid farliga kemiska utsldpp. Fjarrstyrda forarlOsa fordon anvands ocksâ i samband med overvakningsuppdrag och liknande. There is a wide variety of remote controlled vehicles in use today. These vehicles are often used in dangerous situations and environments that are unsuitable for people to live in, for example to disarm bombs and in the event of dangerous chemical spills. Remote-controlled driverless vehicles are also used in connection with monitoring assignments and the like.

Med ett autonomt fordon avses har ett fordon som ãr kapabelt att navigera och manOvrera utan mansklig styrning. Fordonet anvander sensorer fOr att skaffa sig forstaelse for omgivningen. Sensordata anvands sedan av regleralgoritmer for att bestamma vad som är ndsta steg for fordonet att ta med hansyn till ett overordnat mai fOr fordonet, exempelvis att hamta och lamna gods vid olika positioner. Mera specifikt maste ett autonomt fordon kunna avlasa omgivningen tillrackligt bra fOr att kunna genomfora den uppgift som den blivit tilldelad, exempelvis "flytta stenblocken fran plats A till plats B via gruvgangen C". Det autonoma fordonet behover planera och folja en vag till den valda destinationen under det att den detekterar och undviker hinder pa vagen. Dessutom maste det autonoma fordonet genomfOra sin uppgift sá fort som mOjligt utan att bega. misstag. Autonoma fordon 1 537 26 har bland annat utvecklats for att kunna anvdndas i farliga miljoer, exempelvis inom fOrsvars- och krigsindustrin och inom gruvindustrin, bade ovanjord och underjord. Om mdnniskor eller vanliga, manuellt styrda fordon ndrmar sig de autonoma fordonens arbetsomrade orsakar de normalt ett avbrott i arbete pa grund av sakerhetsskal. NI& arbetsomradet ater är fritt kan de autonoma fordonen beordras att ateruppta arbetet. By an autonomous vehicle is meant a vehicle that is capable of navigating and maneuvering without human control. The vehicle uses sensors to gain an understanding of the surroundings. Sensor data is then used by control algorithms to determine what is the next step for the vehicle to take into account a superior may for the vehicle, for example to pick up and drop off goods at different positions. More specifically, an autonomous vehicle must be able to read the surroundings well enough to be able to carry out the task to which it has been assigned, for example "move the boulders from place A to place B via the mine passage C". The autonomous vehicle needs to plan and follow a road to the selected destination while detecting and avoiding obstacles on the road. In addition, the autonomous vehicle must carry out its task as quickly as possible without committing. mistake. Autonomous vehicles 1,537 26 have been developed to be used in dangerous environments, for example in the defense and war industry and in the mining industry, both above ground and underground. If people or ordinary, manually controlled vehicles change the working range of the autonomous vehicles, they normally cause a break in work due to safety concerns. NI & the work area is free again, the autonomous vehicles can be ordered to resume work.

Det autonoma fordonet anvander information avseende vdgen, omgivningen och andra aspekter som paverkar framfarten for att automatiskt reglera gaspadraget, bromsningen och styrningen. En noggrann bedOmning och identifiering av den planerade framfarten är nadvandig fOr att bedOma om en vag âr farbar och âr nOdvdndig for att pa ett framgangsrikt salt kunna ersalta en manniskas bedOmning när det gdller att framfora fordonet. VagfOrhallanden kan vara komplexa och vid kOrning av ett vanligt fOrarstyrt fordon gOr fOraren hundratals observationer per minut och justerar driften av fordonet baserat pa de uppfattade vagforhallandena fOr att exempelvis finna en framkomlig vag forbi objekt som kan finnas pa vdgen. For att kunna ersdtta den manskliga uppfattningsformagan med ett autonomt system innebdr det bland annat att pa ett exakt satt kunna uppfatta objekt for att effektivt kunna reglera fordonet sa att man styr forbi dessa objekt. The autonomous vehicle uses information regarding the road, the surroundings and other aspects that affect the progress to automatically regulate the throttle, braking and steering. An accurate assessment and identification of the planned progress is necessary to assess whether a vehicle is passable and necessary in order to be able to salt a person's assessment on a successful salt when it comes to driving the vehicle. Road conditions can be complex and when driving a normal driver-controlled vehicle, the driver makes hundreds of observations per minute and adjusts the operation of the vehicle based on the perceived road conditions to, for example, find a passable road past objects that may be on the road. In order to be able to replace the human perception with an autonomous system, this means, among other things, being able to perceive objects in an exact way in order to be able to effectively regulate the vehicle so that one steers past these objects.

De tekniska metoder som anvands for att identifiera ett objekt i anslutning till fordonet innefattar bland annat att anvdnda en eller flera kameror och radar fOr att skapa bilder av omgivningen. Aven laserteknik anvands, bade avscannande lasrar och fasta lasrar, for att detektera objekt och mdta avstand. Dessa bendmns ofta LIDAR (Light Detection and Ranging) eller LADAR (Laser Detection and Ranging). Dessutom är fordonet forsett med olika sensorer bland annat for att avkanna hastighet och accelerationer i olika riktningar. Positioneringssystem och annan tradlos teknologi kan dessutom anvandas for att bestamma om fordonet till exempel narmar sig en korsning, en avsmalning av vagen, och/eller andra fordon. The technical methods used to identify an object in connection with the vehicle include using one or more cameras and radar to create images of the surroundings. Laser technology is also used, both scanning lasers and fixed lasers, to detect objects and measure distance. These bends are often LIDAR (Light Detection and Ranging) or LADAR (Laser Detection and Ranging). In addition, the vehicle is equipped with various sensors, among other things to detect speed and accelerations in different directions. Positioning systems and other wireless technology can also be used to determine if the vehicle is approaching, for example, an intersection, a narrowing of the road, and / or other vehicles.

Autonoma fordon anvands idag som lastbdrare inom exempelvis gruvindustrin — bade i dagbrott och underjordiska gruvor. Ett fordonshaveri i en flaskhals sasom 2 537 26 en transportled eller i en gruvort stoppar i manga fall genast hela produktionskedjan med betydande inkomstbortfall som foljd. En vanlig anledning till fordonshaveri i terrangmiljo är punktering orsakad av skarpa kanter pa knytnavsstora stenar som i gruvindustrin benamns "kattskallar". FOraren i ett manuellstyrt fordon har uppgiften att se och inte kOra pa dessa kattskallar med nagot av fordonets hjul. For ett autonomt fordon är det en stor utmaning att detektera dessa objekt eftersom de ax relativt sma och har ett utseende som inte skiljer sig mycket fran underlaget i gruvor. 10 US-6151539-A beskriver ett system for autonoma fordon och en metod for hur man kontrollerar dessa. Systemet bestar av en rad sensorer som ska se till att fordonet ska halla sin vag och se till att fordonet undviker kollision med olika hinder. Autonomous vehicles are used today as load carriers in, for example, the mining industry - both in opencast mines and underground mines. A vehicle breakdown in a bottleneck such as a transport route or in a mining town in many cases immediately stops the entire production chain with significant loss of income as a result. A common reason for vehicle breakdowns in terrain environments is punctures caused by sharp edges on fist-sized stones which in the mining industry are called "cat skulls". The driver of a manually controlled vehicle has the task of seeing and not driving these cat skulls with any of the vehicle's wheels. For an autonomous vehicle, it is a great challenge to detect these objects because they are relatively small and have an appearance that does not differ much from the substrate in mines. US-6151539-A describes a system for autonomous vehicles and a method for controlling them. The system consists of a series of sensors that will ensure that the vehicle keeps its vague and ensure that the vehicle avoids collision with various obstacles.

US-2008189036-Al beskriver ett system fOr autonoma fordon som ska upptacka 15 hinder med en kamera. Systemet anvander sig av en kamera for att g6ra en 3Dhinderkarta av omgivningen. Denna karta skickas sedan till en modul som anvander kartan i en algoritm fOr att undvika de upptackta hindrena. US-2008189036-A1 describes a system for autonomous vehicles which is to detect 15 obstacles with a camera. The system uses a camera to make a 3D obstacle map of the surroundings. This map is then sent to a module that uses the map in an algorithm to avoid the detected obstacles.

US-20090088916-Al beskriver ett system fOr autonoma fordon som automatiskt ska kunna planera sin vag och samtidigt undvika att kollidera med olika typer av hinder. Systemet anvander sig av matematiska algoritmer for att rakna ut den korrekta vagen och hur den ska undvika hinder. Systemet anvander sig av olika sensorer, bland annat laser, for att ta in nOdvandig information och data. US-20090088916-Al describes a system for autonomous vehicles that should be able to automatically plan its vagueness and at the same time avoid colliding with different types of obstacles. The system uses mathematical algorithms to unravel the correct scale and how to avoid obstacles. The system uses various sensors, including lasers, to capture necessary information and data.

De ovan beskrivna systemen beskriver hur fordonet ska undvika ett objekt genom att kOra runt ett objekt. Autonoma fordon anvands ofta i omgivningar, exempelvis tranga gruvgangar, som inte har sä stort utrymme fOr att gOra stOrre avvikningar fran en bestamd trajektoria. The systems described above describe how the vehicle should avoid an object by scurrying around an object. Autonomous vehicles are often used in environments, such as narrow mine tunnels, which do not have as much space to make major deviations from a specific trajectory.

Det är saledes ett syfte med uppfinningen att tillhandahalla ett system for att detektera hinder i fordonets fardvag och reglera fordonet sâ att fordonet undviker att kOra pa hind ret med sâ liten kostnad som mOjligt, och i synnerhet ett system 3 537 26 som reglerar fordonet sá att fordonet avviker fran en planerad trajektoria sã lite som mojligt. It is thus an object of the invention to provide a system for detecting obstacles in the vehicle's carriageway and regulating the vehicle so that the vehicle avoids driving on the obstacle at as low a cost as possible, and in particular a system 3 537 26 which regulates the vehicle so that the vehicle deviates from a planned trajectory as little as possible.

Sammanfattning av uppfinningen Enligt en aspekt uppnas syftet med uppfinningen genom ett system fOr att reglera ett autonomt fordon med dtminstone ett fOrsta hjulpar i samband med hinder enligt det fOrsta oberoende kravet. Systemet innefattar en processorenhet som är anpassad att ta emot en hindersignal cp1 med information om ett hinder i fordonets vag, varvid informationen innefattar dtminstone karakteristik for hindret samt hindrets position. Genom att analysera denna information enligt regler for grensling av hindret relaterat till fordonets markfrigang kan man ta redan pa if all det är mojligt att grensla hindret. lfall det är mojligt, sâ bestams en fOrsta trajektoria som fordonet ska folja for att kunna gransla hindret, och fordonet regleras sâ att det fOljer den fOrsta trajektorian och darmed grenslar hindret. Summary of the invention According to one aspect, the object of the invention is achieved by a system for regulating an autonomous vehicle with at least one first pair of wheels in connection with obstacles according to the first independent claim. The system comprises a processor unit which is adapted to receive an obstacle signal cp1 with information about an obstacle in the vehicle's vag, the information comprising at least characteristics of the obstacle and the position of the obstacle. By analyzing this information in accordance with the rules for crossing the obstacle related to the vehicle's ground clearance, it is already possible to determine whether it is possible to cross the obstacle. If possible, a first trajectory is determined which the vehicle must follow in order to be able to inspect the obstacle, and the vehicle is regulated so that it follows the first trajectory and thus traverses the obstacle.

Med grensling menas att avsiktligt kOra Over ett hinder utan att nagot av fordonets hjul eller fordonets undersida traffar hindret. Fordonet behover dâ inte kora runt hindret, utan kan Ora en mindre avvikning frdn en nuvarande trajektoria som fordonet foljer. Pa sá satt sparas tid och aven bransle. lfall fordonet kor i en trdng passage kan det aven vara sâ att det inte âr mojligt att kora runt hindret fOr att det finns hindrande vaggar. Genom att grensla hindret kan man dá fortfarande undvika att ' Med fordonets markfrigang menas det kortaste avstandet mellan markplanet och den lagsta fasta punkten pa fordonet. Detta avstand kan variera mellan hjulen, och Ovrigt under fordonet. By branching is meant intentionally driving over an obstacle without any of the vehicle's wheels or the underside of the vehicle hitting the obstacle. The vehicle then does not have to drive around the obstacle, but can make a small deviation from a current trajectory that the vehicle follows. In this way, time and industry are also saved. If the vehicle is driving in a narrow passage, it may also be possible to drive around the obstacle because there are obstructing cradles. By crossing the obstacle, it is still possible to avoid that 'The ground clearance of the vehicle means the shortest distance between the ground plane and the lowest fixed point on the vehicle. This distance can vary between the wheels, and Other under the vehicle.

Enligt en annan aspekt uppnas syftet med uppfinningen med en metod for att reglera ett autonomt fordon med atminstone ett hjulpar i samband med hinder. According to another aspect, the object of the invention is achieved with a method for regulating an autonomous vehicle with at least one pair of wheels in connection with obstacles.

Foredragna utforingsformer definieras av de beroende patentkraven. 4 537 26 Kort ritninasbeskrivninq Figur 1 visar ett trafiksystem innefattande ett flertal autonoma fordon. Figur 2 visar ett autonomt fordon som avkanner en framtida vag. Figur 3 visar ett system enligt en utforingsform av uppfinningen. Preferred embodiments are defined by the dependent claims. 4 537 26 Brief description of the drawings Figure 1 shows a traffic system comprising a plurality of autonomous vehicles. Figure 2 shows an autonomous vehicle scanning a future vague. Figure 3 shows a system according to an embodiment of the invention.

Figur 4A-4B visar tvâ exempel pa utrymmet mellan fordonet och markplanet. Figures 4A-4B show two examples of the space between the vehicle and the ground level.

Figur 5 visar nya trajektorier for fordonet i forhallande till den nuvarande trajektorian. Figure 5 shows new trajectories for the vehicle in relation to the current trajectory.

Figur 6 visar ett flodesschema for en metod enligt uppfinningen. Figure 6 shows a flow chart of a method according to the invention.

Detaljerad beskrivninq av foredraqna utforinqsformer av uppfinningen Figur 1 visar schematiskt ett trafiksystem innefattande tre autonoma fordon 2 som tar sig fram langs en vag. Pilarna i de autonoma fordonen 2 visar deras respektive kOrriktning. De autonoma fordonen 2 kan kommunicera med en ledningscentral 1 via exempelvis V21-kommunikation (Vehicle-to-Infrastructure) 3 och/eller med varandra via exempelvis V2V-kommunikation (Vehicle-to-Vehicle) 4. Denna kommunikation är trddlos och kan exempelvis ske via ett WLAN-protokoll (Wireless Local Area Network) IEEE 802.11, exempelvis IEEE 802.11p. Aven andra tradlOsa kommunikationssatt är dock tankbara. Ledningscentralen 1 organiserar de autonoma fordonen 2 och ger dem uppdrag att utfora. Nal- ett autonomt fordon 2 fat ett uppdrag, kan fordonet 2 sjalvstandigt se till att uppdraget utfors. Ett uppdrag kan exempelvis besta av en instruktion att hamta gods vid en godsuthamtningsplats A. Fordonet 2 har da ha kapacitet att bestamma sin nuvarande position, bestdmma en vag fran den nuvarande positionen till godsuthamtningsplatsen A, samt ta sig dit. Under vagen maste 25 fordonet 2 aven ha kapacitet att vdja for hinder samt hantera andra autonoma fordon 2 som kanske har ett viktigare uppdrag och maste ges foretrdde. I ett forarstyrt fordon kan fOraren lokalisera dessa hinder och kOra runt dem. Nar det galler ett autonomt fordon 2 blir uppgiften betydligt svarare. Reglersystemet 10 som kommer att beskrivas i det fOljande avser att losa denna uppgift. Detailed Description of Preferred Embodiments of the Invention Figure 1 schematically shows a traffic system comprising three autonomous vehicles 2 traveling along a road. The arrows in the autonomous vehicles 2 show their respective direction of travel. The autonomous vehicles 2 can communicate with a control center 1 via, for example, V21 communication (Vehicle-to-Infrastructure) 3 and / or with each other via, for example, V2V communication (Vehicle-to-Vehicle) 4. This communication is wireless and can take place, for example. via an IEEE 802.11 wireless local area network (WLAN) protocol, such as IEEE 802.11p. However, other wireless communications are also conceivable. The command center 1 organizes the autonomous vehicles 2 and gives them assignments to perform. If an autonomous vehicle 2 receives an assignment, the vehicle 2 can independently ensure that the assignment is performed. An assignment may, for example, consist of an instruction to pick up goods at a goods collection point A. The vehicle 2 then has the capacity to determine its current position, determine a route from the current position to the goods collection point A, and get there. During the journey, the vehicle 2 must also have the capacity to compensate for obstacles and handle other autonomous vehicles 2 which may have a more important task and must be given preference. In a driver-controlled vehicle, the driver can locate these obstacles and drive around them. When it comes to an autonomous vehicle 2, the task becomes much more answerable. The control system 10 which will be described in the following is intended to solve this task.

I figur 2 visas ett autonomt fordon 2 som ãr fOrsett med ett reglersystem 10 (Figur 3). Fordonet 2 har tva hjulpar 6A, 6B och 7A, 7B varvid varje hjulpar 6A, 6B och 537 26 7A, 7B innefattar tvâ hjul vardera. Fordonet 2 är vidare forsett med dtminstone en detektorenhet 5 som är anpassad att avkanna den kommande vagbanan 8 for fordonet 2, och att detektera hinder 9 i fordonets 2 fdrdvag. Detektorenheten 5 är anpassad att generera en hindersignal (pi som indikerar hinder 9 i den kommande vagbanan 8. Ett hinder 9 i form av en kantig sten 9 illustreras har i vagbanan 8 och kommer att avkannas av detektorenheten 5. Detektorenheten 5 innefattar enligt en utfaringsform nagot eller nagra av en kameradetektor, en laserdetektor eller en radardetektor. I figur 3 illustreras hur vagbanan 8 avkanns med detektorenheten 5 aver en bredd b av vagbanan. Bredden b motsvarar har 10 dtminstone bredden pa. fordonet 2 mellan yttermatten pa dacken 6A, 6B. Vagbanan 8 avkanns foretrddesvis ett avstand I framfar fordonet 2, exempelvis 230 m, sâ att fordonet 2 hinner vaja far ett eventuellt hinder 9. Detektorenheten 5 är enligt en utforingsform anpassad att bestamma avstandet dl till hindret 9 och/eller hindrets 9 position, samt bestamma information om hindret 9. lnformationen kan innefatta karakteristik som exempelvis hindrets 9 storlek, d.v.s. utstrackning i horisontalplanet, dess bredd och dess hojd. Detta kan utforas med konventionella detekterings- och analysmetoder. Avstandet dl till hindret 9 och hindrets 9 position kan exempelvis relateras till fordonets 2 position i ett lokalt referenssystem, alternativt i ett globalt referenssystem i exempelvis GNSS- koordinater (Global Navigation Satellite System). For att kunna ge fordonets 2 position i ett globalt referenssystem kan fordonet 2 vara forsett med exempelvis en GNSS-mottagare. GNSS är ett samlingsnamn for en grupp varldstackande navigeringssystem som utnyttjar signaler fran en konstellation av satelliter och pseudosatelliter for att mojliggora positionsinmatning for en mottagare. Det amerikanska GPS-systemet är det mest kanda GNSS-systemet, men darutover finns bland annat det ryska GLONASS och det framtida europeiska Galileo. Fordonets 2 position kan ocksâ bestarnmas genom att overvaka signalstyrkan fran flera accesspunkter far trddlosa natverk (WiFi) i narheten. Man kan aven bestamma fordonets 2 position genom att anvanda en karta over omgivningen och hdlla reda pa var fordonet 2 befinner sig pa kartan genom information om hur langt fordonet 2 har fardats och hur fordonet 2 vrider sig. 6 537 26 Figur 3 visare ett blockschema for reglersystemet 10 som anvands fOr att reglera det autonoma fordonet 2 i samband med hinder. Reglersystemet 10 innefattar en processorenhet 11 som är anpassad att ta emot hindersignalen 91 fran detektorenheten 5 med information om ett hinder 9 i fordonets 2 vag. Figure 2 shows an autonomous vehicle 2 equipped with a control system 10 (Figure 3). The vehicle 2 has two pairs of wheels 6A, 6B and 7A, 7B, each pair of wheels 6A, 6B and 537 26 7A, 7B comprising two wheels each. The vehicle 2 is further provided with at least one detector unit 5 which is adapted to detect the coming lane 8 for the vehicle 2, and to detect obstacles 9 in the vehicle lane 2. The detector unit 5 is adapted to generate an obstacle signal (pi indicating obstacle 9 in the coming lane 8. An obstacle 9 in the form of an angular stone 9 is illustrated has in the lane 8 and will be sensed by the detector unit 5. According to one embodiment, the detector unit 5 comprises something or some of a camera detector, a laser detector or a radar detector Figure 3 illustrates how the lane 8 is sensed with the detector unit 5 over a width b of the lane. 8, a distance is preferably sensed in front of the vehicle 2, for example 230 m, so that the vehicle 2 has time to sway over a possible obstacle 9. According to an embodiment, the detector unit 5 is adapted to determine the distance d1 to the obstacle 9 and / or the position of the obstacle 9, and to determine information if the obstacle 9. the information may include characteristics such as the size of the obstacle 9, ie the extent in the horizontal plane, its width and the ss hojd. This can be done with conventional detection and analysis methods. The distance dl to the obstacle 9 and the position of the obstacle 9 can for example be related to the position of the vehicle 2 in a local reference system, alternatively in a global reference system in for example GNSS coordinates (Global Navigation Satellite System). In order to be able to give the position of the vehicle 2 in a global reference system, the vehicle 2 can be provided with, for example, a GNSS receiver. GNSS is a collective name for a group of worldwide navigation systems that utilize signals from a constellation of satellites and pseudo-satellites to enable position input for a receiver. The American GPS system is the most well-known GNSS system, but in addition there are the Russian GLONASS and the future European Galileo. The position of the vehicle 2 can also be determined by monitoring the signal strength from several access points to nearby wireless networks (WiFi). You can also determine the position of the vehicle 2 by using a map of the surroundings and keep track of where the vehicle 2 is on the map through information about how far the vehicle 2 has traveled and how the vehicle 2 turns. Figure 3 shows a block diagram of the control system 10 used to control the autonomous vehicle 2 in connection with obstacles. The control system 10 comprises a processor unit 11 which is adapted to receive the obstacle signal 91 from the detector unit 5 with information about an obstacle 9 in the vehicle 2's vag.

Informationen innefattar dtminstone karakteristik fOr hindret 9 samt hindrets 9 position. Enligt en utfOringsform ãr processorenheten 11 anpassad att ta emot ett flertal hindersignaler (p1 fran en eller flera detektorenheter 5, med information om samma hinder 9, och kombinera informationen fran flertalet hindersignaler (p1 for att fâ fram mer och sdkrare information om hindret 9. Processorenheten 11 är anpassad att analysera informationen om hindret 9 enligt regler for grensling av hindret 9 relaterat till fordonets 2 markfrigang. Reglerna innefattar enligt en utforingsform dtminstone nagot av gransvarden for storlek pd hinder 9 som fordonet 2 kan grensla och/eller hindermatchning for att identifiera fOrut kanda hinder. Gransvardena fOr storlek pa. hinder 9 kan exempelvis innefatta ett eller flera gransvarden fOr hindrets 9 bredd samt ett eller flera gransvarden fOr hindrets 9 hOjd. Gransvardet eller gransvardena for hindrets 9 bredd är anpassade efter det kortaste avstandet mellan hjulen i ett hjulpar 6A, 6B eller 7A, 7B. Gransvardet eller gransvardena for hindrets 9 hojd är anpassade efter fordonets 2 markfrigang, som innefattar det kortaste avstandet mellan fordonets 2 markplan 20 24 och den lagsta fasta punkten pa. fordonet 2. Med hindrets 9 bredd menas har en stOrsta utstrackning av hindret 9 som är parallell med en linje som definierar det kortaste avstandet mellan hjulen i ett hjulpar 6A, 6B eller 7A, 7B. Genom att jamfOra hindrets 9 bredd med det kortaste avstandet mellan hjulen i ett hjulpar 6A, 6B, 7A, 7B, samt hindrets 9 1160 med fordonets 2 markfrigang, kan man bestamma ifall hindret 9 är av en sadan storlek att fordonet 2 kan grensla hindret 9 utan att kora pa hindret 9. lfall resultatet av analysen visar att hindret 9 kan grenslas av fordonet 2, sâ är processorenheten 11 anpassad att bestamma en forsta trajektoria 19 for fordonet 2 baserat dtminstone pa fordonets 2 position, hindrets 9 position och uppgifter om fordonets 2 markfrigang, sâ att fordonet 2 grenslar hindret 9. Enligt en utfOringsform är processorenheten 11 aven anpassad att ta emot en bansignal cp2 som indikerar en nuvarande trajektoria 18 fOr fordonet 2, och bestamma en fOrsta trajektoria 19 fOr fordonet 2 aven baserat pa denna 7 537 26 nuvarande trajektoria 18. Bansignalen 92 kan exempelvis ha kommit fran en enhet i fordonet 2 som är anpassad att bestamma en trajektoria fOr fordonet 2 utifran fordonets 2 nuvarande position och en slutdestination, samt exempelvis kartinformation. Altenativt kan bansignalen 92 komma som en tradlOs signal fran exempelvis ledningscentralen 1. Processorenheten 11 är vidare anpassad att generera en trajektoriasignal 93 som indikerar den fOrsta trajektorian 19, och att sanda trajektoriasignalen 93 till en styrenhet 12 i fordonet 2, varvid fordonet 2 regleras efter den forsta trajektorian 19. Hindermatchning fOr att identifiera forut kanda hinder kan exempelvis innebara att ta en eller flera bilder pa. hindret 9 med detektorenheten 5 och jamfora bilden eller bilderna med bilder pa forut kanda hinder fOr att hitta en matchning. Hall en matchning hittas, vet man direkt vad for sorts hinder det ãr, och aven dess storlek. Enligt en utfOringsform innefattar reglersystemet 10 en eller flera detektorenheter 5. The information includes at least characteristics of the obstacle 9 and the position of the obstacle 9. According to one embodiment, the processor unit 11 is adapted to receive a plurality of obstacle signals (p1 from one or more detector units 5, with information about the same obstacle 9), and combine the information from the plurality of obstacle signals (p1 to obtain more and more accurate information about the obstacle 9. The processor unit 11 is adapted to analyze the information about the obstacle 9 according to rules for crossing the obstacle 9 related to the ground clearance of the vehicle 2. According to one embodiment, the rules include at least some of the checkpoints for size of obstacle 9 that the vehicle 2 can cross and / or obstacle matching to identify Barriers 9 for the size of obstacle 9 may, for example, comprise one or more branches for the width of the obstacle 9 and one or more branches for the height of the obstacle 9. The branch or the branches for the width of the obstacle 9 are adapted to the shortest distance between the wheels in a pair of wheels 6A. 6B or 7A, 7B are adapted to the ground clearance of the vehicle 2, which includes the shortest distance between the ground plane 24 of the vehicle 2 and the lowest fixed point pa. vehicle 2. By the width of the obstacle 9 is meant has a largest extent of the obstacle 9 which is parallel to a line defining the shortest distance between the wheels in a pair of wheels 6A, 6B or 7A, 7B. By comparing the width of the obstacle 9 with the shortest distance between the wheels in a pair of wheels 6A, 6B, 7A, 7B, and the obstacle 9 1160 with the ground clearance of the vehicle 2, it can be determined whether the obstacle 9 is of such a size that the vehicle 2 can cross the obstacle 9 without running on the obstacle 9. If the result of the analysis shows that the obstacle 9 can be crossed by the vehicle 2, then the processor unit 11 is adapted to determine a first trajectory 19 for the vehicle 2 based at least on the position of the vehicle 2, the position of the obstacle 9 and information about the vehicle 2 ground clearance, so that the vehicle 2 straddles the obstacle 9. According to one embodiment, the processor unit 11 is also adapted to receive a path signal cp2 indicating a current trajectory 18 for the vehicle 2, and to determine a first trajectory 19 for the vehicle 2 also based on this 7 537 26 current trajectory 18. The path signal 92 may, for example, have come from a unit in the vehicle 2 which is adapted to determine a trajectory for the vehicle 2 from the current of the vehicle 2. position and a final destination, as well as, for example, map information. Alternatively, the path signal 92 may come as a wireless signal from, for example, the control center 1. The processor unit 11 is further adapted to generate a trajectory signal 93 indicating the first trajectory 19, and to transmit the trajectory signal 93 to a control unit 12 in the vehicle 2, the vehicle 2 being regulated accordingly. first trajectory 19. Obstacle matching To identify previously known obstacles may, for example, involve taking one or more pictures. the obstacle 9 with the detector unit 5 and compare the image or images with images of previously known obstacles to find a match. If a match is found, you immediately know what kind of obstacle it is, and also its size. According to one embodiment, the control system 10 comprises one or more detector units 5.

Enligt en utfOringsform innefattar reglersystemet 10 en mottagningsenhet 13 fOr tradlos kommunikation. Mottagningsenheten 13 är anpassad att ta emot tradlos kommunikation mellan fordon 4 och/eller mellan fordon och infrastruktur 3, som innefattar information om hinder 9 i fordonets 2 vag. lnformationen kan exempelvis innefatta hindrets 9 position i GPS-koordinater, samt hindrets 9 storlek. Mottagningsenheten 13 ar anpassad att generera en hindersignal 91 som indikerar informationen om hinder 9 i fordonets 2 fardvag 8. Mottagningsenheten 13 alternativt processorenheten 11 kan dâ vara anpassad att matcha hindrets 9 position med fordonets 2 kommande fardvag, fOr att identifiera if all hindret 9 bef inner sig i fordonets 2 kommande fardvag 8. Pa sâ satt kan reglersystemet ta del av information fran andra fordon 2, vagsidesenheter och/eller ledningscentral 1 gallande redan detekterade hinder 9. According to one embodiment, the control system 10 comprises a receiving unit 13 for wireless communication. The receiving unit 13 is adapted to receive wireless communication between vehicle 4 and / or between vehicle and infrastructure 3, which includes information about obstacles 9 in the vehicle 2's vag. The information may, for example, include the position of the obstacle 9 in GPS coordinates, as well as the size of the obstacle 9. The receiving unit 13 is adapted to generate an obstacle signal 91 which indicates the information about the obstacle 9 in the vehicle 2's lane 8. The receiving unit 13 or the processor unit 11 may then be adapted to match the position of the obstacle 9 with the vehicle 2's coming lane, to identify if all the obstacle 9 is inside. in the oncoming vehicle 2 of the vehicle 2. In this way, the control system can take part in information from other vehicles 2, roadside units and / or control center 1 galling already detected obstacles 9.

Figurerna 4A och 4B illustrerar fordonets 2 markfrigang samt hjulen 6A, 6B i ett hjulpar. Hjulen 6A, 6B fOrbinds med en hjulaxel 14 i Figur 4A. I figuren benamns 30 det minsta avstandet mellan insidorna pa. hjulen 6A och 6B med w. Markfrigangen benamns h, alltsa det minsta avstandet mellan fordonets 2 markplan 24 och den lagsta punkten pa fordonet 2. Den lagsta punkten är har den sidan av hjulaxeln 14 8 537 26 som ãr vand mot markplanet 24. I detta exempel behover reglersystemet 10 bara ta hansyn till en markfrigang h som begransas av avstanden w och h. I figur 4B finns det Oven en axel 17 som begrdnsar markfrigangen. AxeIn 17 är fOrbunden med tva hjulaxlar 15, 16 som i sin tur är kopplade till respektive hjul 6A och 6B. Figures 4A and 4B illustrate the ground clearance of the vehicle 2 and the wheels 6A, 6B in a pair of wheels. Wheels 6A, 6B are connected to a wheel axle 14 in Figure 4A. In the figure, the smallest distance between the insides is denoted pa. wheels 6A and 6B with w. The ground clearance is called h, ie the smallest distance between the vehicle 2 ground plane 24 and the lowest point on the vehicle 2. The lowest point is has the side of the wheel axle 14 8 537 26 which is water towards the ground plane 24. In this For example, the control system 10 only needs to take into account a ground clearance h which is limited by the distances w and h. In Figure 4B there is also a shaft 17 which limits the ground clearance. AxeIn 17 is connected to two wheel axles 15, 16 which in turn are connected to the respective wheels 6A and 6B.

Avstandet mellan den lagsta punkten pa. axeln 17 och markplanet 24 benamns h1. Avstandet mellan insidan pa ett hjul 6A i hjulparet 6A, 6B till axeln 17 bendmns w1, axelns bredd bendmns w2 och avstandet mellan axeln 17 och insidan pa det andra hjulet 6B bendmns w3. I detta exempel behover reglersystemet 10 ta hansyn till olika markfrigangar h och h1, samt avstanden w1, 10 w2 och w3. The distance between the lowest point pa. the axis 17 and the ground plane 24 are named h1. The distance between the inside of a wheel 6A in the pair of wheels 6A, 6B to the axle 17 bends w1, the width of the axle bends w2 and the distance between the axle 17 and the inside of the other wheel 6B bends w3. In this example, the control system 10 needs to take into account different ground clearances h and h1, as well as the distances w1, 10 w2 and w3.

I figur 5 visas ett exempel pa hur en forsta trajektoria 19 bestdms i forhdllande till en nuvarande trajektoria 18. I detta fall har ett hinder 9 detekterats och en hindersignal cp1 skickats till processorenheten 11. Hindret 9 Or av en sadan storlek att fordonet 2 kan grensla det, alltsa kora over det sa att hindret 9 hamnar i utrymmet under fordonet 2 mellan hjulen 6A och 6B och hjulen 7A och 7B i hjulparen utan att fordonet 2 stater i hindret 9. Hjulparen 6A, 6B och 7A, 7B är forbundna med vardera en hjulaxel 14, 23. Hjulaxlarna 14, 23 är har illustrativt forbundna med en axel 22. Hjulupphangningen kan vara utformad pa andra salt och exemplen som visas i denna beskrivning âr endast till fOr att illustrera principen for uppfinningen. Fordonet 2 fOljer en redan utstakad vag enligt en nuvarande trajektoria 18. Denna nuvarande trajektoria 18 innefattar exempelvis positioner som fordonet 2 ska kOra langs med. Utrymmet under fordonet 2 mellan hjulen 6A och 6B och hjulen 7A och 7B i hjulparen, som begransas av markfrigangen och avstandet mellan insidan av hjulen 6A och 6B och hjulen 7A och 7B, fOrhaller sig till fordonet 2, och alltsâ till trajektorian som fordonet 2 foljer. Det Or alltsã kant inom vilket eller vilka avstandsintervall hindret 9 som fordonet 2 kan grensla maste ligga sett fran fordonets 2 trajektoria fOr att fordonet 2 ska kunna grensla det. Genom att bestamma hindrets 9 position i fOrhallande till fordonets 2 nuvarande trajektoria 18, kan processorenheten 11 berdkna ifall fordonet 2 kan grensla hindret 9 nar den foljer sin nuvarande trajektoria 18. Den nya fersta trajektorian 19 kommer dâ att felja den nuvarande trajektorian 18. Hall 9 537 26 det inte är mOjligt, sá bestams en ny fOrsta trajektoria 19 som har fOrflyttats i horisontalplanet sá att hindret 9 hamnar inom ett avstandsintervall fran den nya forsta trajektorian 19 i vilket avstandsintervall hindret 9 kan grenslas av fordonet 2. I figur 5 visas den nya forsta trajektorian 19 som har flyttats ett avstand w4 i sidled, har i x-led, fran den nuvarande trajektorian 18 fOr att kunna grensla hindret 9. Avstandsintervallet kan exempelvis ligga inom w4 ± 0.5 meter. FOretrddesvis bestams en fOrsta trajektoria 19 sa att hindret 9 grenslas av hjulen 6A, 6B och 7A, 7B mellan !Dada hjulparen. Enligt en annan utforingsform är processorenheten 11 anpassad att bestamma en eller flera trajektorior 20, 21 fOr utrymmet under fordonet 2 mellan hjulen 6A, 6B, 7A, 7B i hjulparen som begransas av markfrigangen och avstandet mellan insidan av hjulen 6A, 6B, 7A, 7B, sã att nagon av trajektorierna 20, 21 placeras Over hindret 9 sâ att fordonet 2 grenslar hindret 9. Processorenheten 11 är fOretradesvis anpassad att kontrollera sâ att fordonet 2 inte kommer att stOta i nagra vaggar eller andra fOremal nal- den nya fOrsta trajektorian 19 berdknas. For att g6ra detta kan processorenheten 11 ta hjalp av kartinformation, detektorer som avkanner omgivningen etc. I Figur 5 är trajektorierna 19, 20, 21 som är nya i forhdllande till den nuvarande trajektorian 18 markerade med streckade linjer. Figure 5 shows an example of how a first trajectory 19 is determined in relation to a current trajectory 18. In this case an obstacle 9 has been detected and an obstacle signal cp1 has been sent to the processor unit 11. The obstacle 9 is of such a size that the vehicle 2 can stray that is to say, the obstacle 9 ends up in the space under the vehicle 2 between the wheels 6A and 6B and the wheels 7A and 7B in the pair of wheels without the vehicle 2 being in the obstacle 9. The wheel pairs 6A, 6B and 7A, 7B are connected to each one wheel axles 14, 23. The wheel axles 14, 23 are illustratively connected to a shaft 22. The wheel suspension may be formed on other salt and the examples shown in this description are only to illustrate the principle of the invention. The vehicle 2 follows an already demarcated wagon according to a current trajectory 18. This current trajectory 18 comprises, for example, positions along which the vehicle 2 is to travel. The space under the vehicle 2 between the wheels 6A and 6B and the wheels 7A and 7B in the pair of wheels, which is limited by the ground clearance and the distance between the inside of the wheels 6A and 6B and the wheels 7A and 7B, relates to the vehicle 2, and thus to the trajectory followed by the vehicle 2 . The edge within which distance interval (s) the obstacle 9 that the vehicle 2 can cross must be seen from the trajectory of the vehicle 2 in order for the vehicle 2 to be able to cross it. By determining the position of the obstacle 9 in relation to the current trajectory 18 of the vehicle 2, the processor unit 11 can calculate whether the vehicle 2 can cross the obstacle 9 when it follows its current trajectory 18. The new first trajectory 19 will then follow the current trajectory 18. Hall 9 537 26 it is not possible to determine a new first trajectory 19 which has been moved in the horizontal plane so that the obstacle 9 ends up within a distance interval from the new first trajectory 19 in which distance interval the obstacle 9 can be delimited by the vehicle 2. Figure 5 shows the new The first trajectory 19, which has been moved a distance w4 laterally, has in the x-direction, from the current trajectory 18, in order to be able to traverse the obstacle 9. The distance interval can, for example, be within w4 ± 0.5 meters. Preferably, a first trajectory 19 is determined so that the obstacle 9 is bounded by the wheels 6A, 6B and 7A, 7B between the two pairs of wheels. According to another embodiment, the processor unit 11 is adapted to determine one or more trajectories 20, 21 for the space under the vehicle 2 between the wheels 6A, 6B, 7A, 7B in the pair of wheels bounded by the ground clearance and the distance between the inside of the wheels 6A, 6B, 7A, 7B , so that one of the trajectories 20, 21 is placed over the obstacle 9 so that the vehicle 2 straddles the obstacle 9. The processor unit 11 is preferably adapted to check that the vehicle 2 will not bump into any cradles or other objects. The new first trajectory 19 is exposed . To do this, the processor unit 11 can take the help of map information, detectors that scan the environment, etc. In Figure 5, the trajectories 19, 20, 21 which are new in relation to the current trajectory 18 are marked with dashed lines.

Processorenheten 11 kan exempelvis innefattas av en dator i fordonet 2, sdsom en styrenhet (ECU - Electronic Control Unit). Reglersystemet 10 innefattar foretrddesvis processorkapacitet samt minne 23 for att utfOra de hari beskrivna metoderna. Reglersystemet 10 är anpassat att kommunicera med olika enheter och system i fordonet 2 via ett eller flera olika natverk i fordonet 2, sasom ett trablost natverk, via CAN (Controller Area Network), LIN (Local Interconnect Network) eller Flexray etc. The processor unit 11 can for instance be comprised of a computer in the vehicle 2, as well as a control unit (ECU - Electronic Control Unit). The control system 10 preferably includes processor capacity as well as memory 23 for performing the methods described herein. The control system 10 is adapted to communicate with different units and systems in the vehicle 2 via one or more different networks in the vehicle 2, such as a wireless network, via CAN (Controller Area Network), LIN (Local Interconnect Network) or Flexray etc.

Uppfinningen hanfOr sig aven till en metod for att reglera ett autonomt fordon 2 med atminstone ett hjulpar 6A, 6B, 7A, 7B i samband med hinder 9. Metoden illustreras i flOdesschemat i Figur 6 och innefattar i ett fOrsta steg att: (Al) ta emot information am dtminstone ett hinder i fordonets 2 vag, varvid informationen innefattar atminstone karakteristik fOr hindret samt hindrets 9 position. Detta steg 537 26 kan innefatta att ta emot trddlos kommunikation mellan fordon 4, eller mellan fordon 4 och infrastruktur 3, som innefattar information om hinder i fordonets 2 fdrdvdg. I ett andra steg (A2) analyseras informationen om hindret enligt regler for grensling av hindret relaterat till fordonets 2 markfrigang. Markfrigang innefattar 5 det kortaste avstandet mellan fordonets 2 markplan 24 och den Idgsta fasta punkten pa. fordonet 2. The invention also relates to a method for controlling an autonomous vehicle 2 with at least one pair of wheels 6A, 6B, 7A, 7B in connection with obstacles 9. The method is illustrated in the flow chart in Figure 6 and comprises in a first step to: (Al) take against information am at least one obstacle in the vag of the vehicle 2, the information comprising at least characteristics of the obstacle and the position of the obstacle 9. This step 537 26 may comprise receiving wireless communication between vehicle 4, or between vehicle 4 and infrastructure 3, which includes information about obstacles in the vehicle's vehicle. In a second step (A2), the information about the obstacle is analyzed according to rules for branching the obstacle related to the vehicle's 2 ground clearance. Ground clearance includes the shortest distance between the ground plane 24 of the vehicle 2 and the Idgsta fixed point pa. the vehicle 2.

Reglerna for grensling av hindret innefattar enligt en utforingsform dtminstone nagot av bestamningar pa storlek av hinder 9 som fordonet 2 kan grensla eller hindermatchning for att identifiera forut kanda hinder. Fler exempel pa regler fOr grensling har beskrivits i samband med beskrivningen av reglersystemet 10. lfall resultatet av analysen visar att hindret 9 kan grenslas av fordonet 2 (A3) sã innefattar metoden att: (A4) bestamma en fOrsta trajektoria 19 fOr fordonet 2 baserat atminstone pa fordonets 2 position, hindrets 9 position och uppgifter om fordonets 2 markfrigang, sã att fordonet 2 grenslar hindret. Enligt en utfOringsform innefattar steg A4 aven att ta emot en nuvarande trajektoria 18 for fordonet 2, samt bestamma en forsta trajektoria 19 for fordonet 2 aven baserat pa denna nuvarande trajektoria 18. I ett steg A5 sands den forsta trajektorian 19 till ett styrsystem i fordonet 2; varefter fordonet 2 regleras enligt den forsta trajektorian 19 i ett steg A6. lfall hindret 9 inte kan grenslas av fordonet 2, bestams enligt en utforingsform i ett steg A7 en ny trajektoria sa att fordonet 2 kan kora runt hindret 9 flied hela sin bredd. Ddrefter skickas den nya trajektorian till styrsystemet i fordonet 2 i steget A5, varefter fordonet 2 regleras darefter (A6). Metoden gar sedan tillbaka till steg Al fOr att ta emot information om hinder 9 i fordonets 2 vag. According to one embodiment, the rules for crossing the obstacle comprise at least some determinations of the size of obstacles 9 which the vehicle 2 can cross or obstacle matching in order to identify known obstacles. More examples of rules for branching have been described in connection with the description of the control system 10. If the result of the analysis shows that the obstacle 9 can be bounded by the vehicle 2 (A3) then the method includes: (A4) determining a first trajectory 19 for the vehicle 2 based at least on the position of the vehicle 2, the position of the obstacle 9 and information on the ground clearance of the vehicle 2, so that the vehicle 2 crosses the obstacle. According to one embodiment, step A4 also comprises receiving a current trajectory 18 for the vehicle 2, and determining a first trajectory 19 for the vehicle 2 also based on this current trajectory 18. In a step A5 the first trajectory 19 is sent to a control system in the vehicle 2 ; after which the vehicle 2 is regulated according to the first trajectory 19 in a step A6. If the obstacle 9 cannot be bounded by the vehicle 2, according to an embodiment in a step A7 a new trajectory is determined so that the vehicle 2 can run around the obstacle 9 with its entire width. Then the new trajectory is sent to the control system in the vehicle 2 in step A5, after which the vehicle 2 is then regulated (A6). The method then returns to step A1 to receive information about obstacle 9 in the vehicle 2's vag.

Uppfinningen hanfOr sig aven till ett datorprogram P vid ett autonomt fordon, där datorprogrammet P innefattar programkod for att fOrma. reglersystemet 10 att utfora stegen enligt metoden. 1 Figur 3 visas datorprogrammet P som en del av minnet 23. Datorprogrammet P ãr alltsâ lagrat pa. minnet 23. Minnet 23 är anslutet 30 till processorenheten 11, och när datorprogrammet P exekveras av processorenheten 11, sâ utfOrs atminstone delar av metoderna som har beskrivits hart Uppfinningen innefattar vidare en datorprogramprodukt innefattande en 11 537 26 programkod lagrad pa ett av en dator lasbart medium fOr att utfora metodstegen som beskrivits hari, nar programkoden kOrs pa. reglersystemet 10. The invention also relates to a computer program P in an autonomous vehicle, wherein the computer program P comprises program code for shaping. the control system 10 to perform the steps according to the method. Figure 3 shows the computer program P as part of the memory 23. The computer program P is thus stored on. the memory 23. The memory 23 is connected to the processor unit 11, and when the computer program P is executed by the processor unit 11, at least parts of the methods described herein are performed. The invention further comprises a computer program product comprising a program code stored on a computer readable medium. To perform the method steps described here, when the program code runs on. the regulatory system 10.

FOreliggande uppf inning är inte begransad till ovan beskrivna fOredragna utforingsformer. Olika alternativ, modifieringar och ekvivalenter kan anvandas. The present invention is not limited to the preferred embodiments described above. Various alternatives, modifications and equivalents can be used.

UtfOringsformerna ovan skall darfor inte betraktas som begransande uppfinningens skyddsomfang vilket definieras av de bifogade patentkraven. 12 The above embodiments are, therefore, not to be construed as limiting the scope of the invention as defined by the appended claims. 12

Claims (14)

537 26 Patentkrav537 26 Patent claims 1. Reglersystem (10) for aft reglera eft autonomt fordon (2) med atminstone eft forsta hjulpar (6A, 6B, 7A, 7B) i samband med hinder (9), varvid systemet (10) innefattar en processorenhet (11) som är anpassad aft ta emot en hindersignal (p1 med information om ett hinder (9) i fordonets (2) vag, varvid informationen innefattar atminstone karakteristik for hindret (9) samt hindrets (9) position, kannetecknad av aft processorenheten (11) vidare är anpassad aft - analysera informationen om hindret (9) enligt regler for grensling av hindret relaterat till fordonets (2) markfrigang samt relaterat till en storsta utstrackning av hindret som är parallell med en linje som definierar det kortaste avstandet mellan hjulen i namnda forsta hjulparet (6A, 6B, 7A, 7B); och ifall resultatet av analysen visar aft hindret (9) kan grenslas av fordonet (2), sa är processorenheten (11) anpassad aft: - bestamma en forsta trajektoria (19) for fordonet (2) baserat atminstone pa fordonets (2) nuvarande position, hindrets (9) position och uppgifter om fordonets (2) markfrigang, sa aft fordonet (2) grenslar hindret (9); - generera en trajektoriasignal cp3 som indikerar namnda trajektoria (19); - sanda trajektoriasignalen cp3 till en styrenhet (12) i fordonet, varvid fordonet (2) regleras efter den f6rsta trajektorian (19).Control system (10) for aft control according to autonomous vehicle (2) with at least according to first pair of wheels (6A, 6B, 7A, 7B) in connection with obstacles (9), the system (10) comprising a processor unit (11) which is adapted to receive an obstacle signal (p1 with information about an obstacle (9) in the vehicle's (2) vag, the information including at least characteristics of the obstacle (9) and the position of the obstacle (9), can be further adapted by the processor unit (11) aft - analyze the information about the obstacle (9) according to the rules for crossing the obstacle related to the ground clearance of the vehicle (2) and related to a maximum extent of the obstacle parallel to a line defining the shortest distance between the wheels in said first wheel pair (6A, 6B, 7A, 7B), and if the result of the analysis shows that the obstacle (9) can be crossed by the vehicle (2), then the processor unit (11) is adapted by: - determining a first trajectory (19) for the vehicle (2) based at least at the current position of the vehicle (2) , the position of the obstacle (9) and information on the ground clearance of the vehicle (2), so that the vehicle (2) crosses the obstacle (9); - generating a trajectory signal cp3 indicating said trajectory (19); the true trajectory signal cp3 to a control unit (12) in the vehicle, the vehicle (2) being regulated according to the first trajectory (19). 2. Reglersystem (10) enligt krav 1, som innefattar en mottagningsenhet (13) f6r tradlos kommunikation, som är anpassad aft ta emot tradlos kommunikation mellan fordon (4) och/eller mellan fordon och infrastruktur (3), som innefattar information om hinder i fordonets (2) vag, varvid mottagningsenheten (13) är anpassad aft generera en hindersignal cp1 som indikerar namnda information om hinder i fordonets (2) vag.Control system (10) according to claim 1, comprising a reception unit (13) for wireless communication, which is adapted to receive wireless communication between vehicles (4) and / or between vehicles and infrastructure (3), which comprises information on obstacles in the vehicle (2)'s vag, the receiving unit (13) being adapted to generate an obstacle signal cp1 indicating said obstacle information in the vehicle (2)'s vag. 3. Reglersystem enligt nagot av fOregaende krav, som innefattar en eller flera detektorenheter (5) innefattande nagot eller nagra av en kameradetektor, en 13 537 26 laserdetektor eller en radardetektor, varvid namnda en eller flera detektorenheter (5) är anpassade all detektera hinder (9) i fordonets (2) fardvag, samt all generera en hindersignal 91 som indikerar hinder (9) i fordonets (2) fardvag.A control system according to any one of the preceding claims, comprising one or more detector units (5) comprising any or some of a camera detector, a laser detector or a radar detector, said one or more detector units (5) being adapted to detect all obstacles ( 9) in the vehicle (2) lane, and all generate an obstacle signal 91 indicating obstacle (9) in the vehicle (2) lane. 4. Reglersystem (10) enligt nagot av foregaende krav, varvid namnda regler far grensling av hindret (9) innefattar atminstone nagot av gransvarden far storlek av hinder (9) som fordonet (10) kan grensla eller hindermatchning far att identifiera f6rut kanda hinder.A control system (10) according to any one of the preceding claims, wherein said rules may border the obstacle (9) at least some of the border guards may be the size of obstacles (9) which the vehicle (10) may cross or obstacle matching may identify prior to known obstacles. 5. Reglersystem (10) enligt krav 2 och nagot av foregaende krav, varvid namnda markfrigang innefattar det kortaste avstandet mellan fordonets (2) markplan (24) och en lagsta fasta punkt pa fordonet (2).A control system (10) according to claim 2 and any one of the preceding claims, wherein said ground clearance comprises the shortest distance between the ground plane (24) of the vehicle (2) and a lowest fixed point on the vehicle (2). 6. Reglersystem (10) enligt nagot av foregaende krav, varvid processorenheten (11) är anpassad all ta emot en bansignal cp2 som indikerar en nuvarande trajektoria (18) for fordonet (2), samt all bestamma en forsta trajektoria (19) for fordonet (2) aven baserat pa denna nuvarande trajektoria (18).Control system (10) according to any one of the preceding claims, wherein the processor unit (11) is adapted to all receive a path signal cp2 indicating a current trajectory (18) for the vehicle (2), and all to determine a first trajectory (19) for the vehicle (2) also based on this current trajectory (18). 7. Metod for all reglera ett autonomt fordon (2) med atminstone ett hjulpar (6A, 6B, 7A, 7B) i samband med hinder, som innefattar att: - ta emot information om atminstone ett hinder (9) i fordonets (2) vag, varvid informationen innefattar atminstone karakteristik for hindret (9) samt hind rets (9) position; - analysera informationen om hindret (9) enligt regler for grensling av hindret relaterat till fordonets (2) markfrigang samt relaterat till en storsta utstrackning av hindret som är parallell med en linje som definierar det kortaste avstandet mellan hjulen i namnda forsta hjulparet (6A, 6B, 7A, 7B); och ifall resultatet av analysen visar all hindret (9) kan grenslas av fordonet (2), sa är processorenheten (11) anpassad aft: - bestamma en f6rsta trajektoria (19) for fordonet (2) baserat atminstone pa fordonets (2) nuvarande position, hindrets (9) position och uppgifter om fordonets (2) markfrigang, sa all fordonet (2) grenslar hindret (9); 14 537 26 - sanda den forsta trajektorian (19) till ett styrsystem i fordonet (2); - reglera fordonet (2) enligt den forsta trajektorian (19).Method for all controlling an autonomous vehicle (2) with at least one pair of wheels (6A, 6B, 7A, 7B) in connection with obstacles, which comprises: - receiving information about at least one obstacle (9) in the vehicle (2) vague, the information including at least the characteristics of the obstacle (9) and the position of the obstacle (9); - analyze the information about the obstacle (9) according to the rules for straddling the obstacle related to the ground clearance of the vehicle (2) and related to a maximum extent of the obstacle that is parallel to a line defining the shortest distance between the wheels in said first pair of wheels (6A, 6B , 7A, 7B); and if the result of the analysis shows that all the obstacle (9) can be crossed by the vehicle (2), then the processor unit (11) is adapted by: - determining a first trajectory (19) for the vehicle (2) based at least on the current position of the vehicle (2) , the position of the obstacle (9) and information about the ground clearance of the vehicle (2), so that all the vehicle (2) straddles the obstacle (9); 14 537 26 - sand the first trajectory (19) to a control system in the vehicle (2); - regulate the vehicle (2) according to the first trajectory (19). 8. Metod enligt krav 7, varvid namnda steg all ta emot information om hinder (9) innefattar att ta emot tradlos kommunikation mellan fordon (4) och/eller mellan fordon och infrastruktur (3), som innefattar information om hinder i fordonets (2) fardvag.A method according to claim 7, wherein said step comprises receiving information about obstacles (9) comprising receiving wireless communication between vehicles (4) and / or between vehicles and infrastructure (3), which includes information about obstacles in the vehicle (2). ) fardvag. 9. Metod enligt nagot av kraven 7 eller 8, varvid namnda steg all ta emot information om hinder (9) innefattar att detektera hinder (9) i fordonets (2) fardvag.A method according to any one of claims 7 or 8, wherein said step of receiving all information about obstacles (9) comprises detecting obstacles (9) in the vehicle (2) of the vehicle. 10. Metod enligt nagot av kraven 7 till 9, varvid namnda regler f6r grensling av hindret (9) innefattar atminstone nagot av gransvarden for storlek av hinder (9) som fordonet (2) kan grensla eller hindermatchning for att identifiera fOrut kanda hinder.A method according to any one of claims 7 to 9, wherein said rules for crossing the obstacle (9) comprise at least some of the checkpoints for the size of obstacles (9) that the vehicle (2) can cross or obstacle matching to identify known obstacles. 11. Metod enligt nagot av kraven 7 till 10, varvid namnda markfrigang innefattar det kortaste avstandet mellan fordonets (2) markplan (24) och den lagsta fasta punkten pa fordonet (2).A method according to any one of claims 7 to 10, wherein said ground clearance comprises the shortest distance between the ground plane (24) of the vehicle (2) and the lowest fixed point on the vehicle (2). 12. Metod enligt nagot av kraven 7 till 11, som innefattar steget all ta emot en nuvarande trajektoria for fordonet (2), och bestamma en f6rsta trajektoria (19) for fordonet (2) ocksa baserat pa denna nuvarande trajektorian.A method according to any one of claims 7 to 11, comprising the step of receiving a current trajectory for the vehicle (2), and determining a first trajectory (19) for the vehicle (2) also based on this current trajectory. 13. Datorprogram (P) vid ett autonomt fordon, dar namnda datorprogram (P) innefattar programkod for att forma ett reglersystem (10) all utfOra stegen enligt nagot av kraven 7 till 12.Computer program (P) in an autonomous vehicle, wherein said computer program (P) comprises program code for forming a control system (10) to perform all the steps according to any one of claims 7 to 12. 14. Datorprogramprodukt innefattande en programkod lagrad pa ett av en dator lasbart medium for att utfora metodstegen enligt nagot av kraven 7 till 12, 537 26 nar namnda programkod !Ors pa ett reglersystem (10). 537 26 1/4 1 222A computer program product comprising a program code stored on a computer readable medium for performing the method steps according to any one of claims 7 to 12, 537 when said program code is executed on a control system (10). 537 26 1/4 1 222
SE1350335A 2013-03-19 2013-03-19 Control system and method for controlling vehicles when detecting obstacles SE537265C2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SE1350335A SE537265C2 (en) 2013-03-19 2013-03-19 Control system and method for controlling vehicles when detecting obstacles
DE112014001069.3T DE112014001069T5 (en) 2013-03-19 2014-03-11 Control system and method for controlling a vehicle in connection with the detection of an obstacle
PCT/SE2014/050290 WO2014148978A1 (en) 2013-03-19 2014-03-11 Control system and method for control of a vehicle in connection with detection of an obstacle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1350335A SE537265C2 (en) 2013-03-19 2013-03-19 Control system and method for controlling vehicles when detecting obstacles

Publications (2)

Publication Number Publication Date
SE1350335A1 SE1350335A1 (en) 2014-09-20
SE537265C2 true SE537265C2 (en) 2015-03-17

Family

ID=51580504

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1350335A SE537265C2 (en) 2013-03-19 2013-03-19 Control system and method for controlling vehicles when detecting obstacles

Country Status (3)

Country Link
DE (1) DE112014001069T5 (en)
SE (1) SE537265C2 (en)
WO (1) WO2014148978A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017003279A1 (en) 2016-04-21 2017-10-26 Scania Cv Ab METHOD AND SYSTEM FOR CONTROLLING THE DRIVING OF A VEHICLE ON A ROAD ALONG
FR3101721A1 (en) * 2019-10-07 2021-04-09 Psa Automobiles Sa VEHICLE INCLUDING A NAVIGATION DEVICE TAKING INTO ACCOUNT THE GROUND CLEARANCE OF THE VEHICLE

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3034213B1 (en) 2015-03-24 2018-06-01 Insa De Rennes METHOD FOR IMPROVED CORRECTION OF A TRACK IN A DEVICE FOR AIDING THE MOVEMENT OF PEOPLE
US10203696B2 (en) * 2016-07-26 2019-02-12 Waymo Llc Determining drivability of objects for autonomous vehicles
CN109923018B (en) * 2016-11-11 2022-05-10 本田技研工业株式会社 Vehicle control system, vehicle control method, and storage medium
US10417508B2 (en) * 2017-07-19 2019-09-17 Aptiv Technologies Limited Object height determination for automated vehicle steering control system
US11945524B2 (en) * 2021-03-24 2024-04-02 Deere & Company Work vehicle undercarriage clearance system and method
EP4325318A1 (en) * 2022-08-17 2024-02-21 Sandvik Mining and Construction Oy Obstacle detection for a mining vehicle
EP4325319A1 (en) * 2022-08-17 2024-02-21 Sandvik Mining and Construction Oy Obstacle avoidance trajectory for a mining vehicle
CN116811914B (en) * 2023-06-29 2024-07-19 重庆亿连信息科技有限公司 Unmanned vehicle-mounted obstacle sensing system and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050863B2 (en) * 2006-03-16 2011-11-01 Gray & Company, Inc. Navigation and control system for autonomous vehicles
US8947531B2 (en) * 2006-06-19 2015-02-03 Oshkosh Corporation Vehicle diagnostics based on information communicated between vehicles
US8755997B2 (en) * 2008-07-30 2014-06-17 Honeywell International Inc. Laser ranging process for road and obstacle detection in navigating an autonomous vehicle
DE102009024083A1 (en) * 2009-06-05 2010-12-09 Valeo Schalter Und Sensoren Gmbh Method for carrying out an at least semi-autonomous parking operation of a vehicle and parking assistance system for a vehicle
DE102011077333A1 (en) * 2011-06-10 2012-12-27 Robert Bosch Gmbh Driver assistance system with object detection
DE102011115353A1 (en) * 2011-08-24 2012-04-19 Daimler Ag Ground clearance assisting device for e.g. commercial vehicle, has evaluation unit generating control signal based on determined obstacle width and height, and supplying generated signal to steering unit for changing yaw angle of vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017003279A1 (en) 2016-04-21 2017-10-26 Scania Cv Ab METHOD AND SYSTEM FOR CONTROLLING THE DRIVING OF A VEHICLE ON A ROAD ALONG
FR3101721A1 (en) * 2019-10-07 2021-04-09 Psa Automobiles Sa VEHICLE INCLUDING A NAVIGATION DEVICE TAKING INTO ACCOUNT THE GROUND CLEARANCE OF THE VEHICLE

Also Published As

Publication number Publication date
DE112014001069T5 (en) 2015-11-12
SE1350335A1 (en) 2014-09-20
WO2014148978A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
SE537265C2 (en) Control system and method for controlling vehicles when detecting obstacles
EP3887762B1 (en) Lane mapping and navigation
US11414130B2 (en) Methods and systems for lane changes using a multi-corridor representation of local route regions
EP4273836A2 (en) Systems and methods for predicting blind spot incursions
US9558408B2 (en) Traffic signal prediction
US9175966B2 (en) Remote vehicle monitoring
SE537184C2 (en) Method and system for controlling autonomous vehicles
JP2022553491A (en) Systems and methods for vehicle navigation
CN114286925A (en) System and method for identifying potential communication barriers
US20150106010A1 (en) Aerial data for vehicle navigation
CN105302152A (en) Automotive Drone Deployment System
SE537674C2 (en) Control system for autonomous vehicles, and a method for the control system
US10871777B2 (en) Autonomous vehicle sensor compensation by monitoring acceleration
US11851083B2 (en) Methods and system for constructing data representation for use in assisting autonomous vehicles navigate intersections
WO2022150836A1 (en) Methods and systems for monitoring vehicle motion with driver safety alerts
EP4222035A1 (en) Methods and systems for performing outlet inference by an autonomous vehicle to determine feasible paths through an intersection
CN116745187B (en) Method and system for predicting the trajectory of an uncertain road user by semantic segmentation of the boundary of a travelable region
WO2022165498A1 (en) Methods and system for generating a lane-level map for an area of interest for navigation of an autonomous vehicle
EP4326589A1 (en) Methods and systems for inferring unpainted stop lines for autonomous vehicles
CN118176140A (en) Lane-biasing motor vehicle for autonomous driving through curved road
WO2014148988A1 (en) Control system and method for control of a vehicle in connection with detection of an obstacle
JP7392622B2 (en) Unmanned aircraft control method, server, and unmanned aircraft
US20240270282A1 (en) Autonomous Driving Validation System
US20230384797A1 (en) System and method for inbound and outbound autonomous vehicle operations
EP4249342A1 (en) Control subsystem and method to define the response of an autonomous vehicle to an unknown object