SE529346C2 - Induction regulator for use in alternating current transmission network, provides gap with magnetic layer that exhibits controllable relative permeability - Google Patents
Induction regulator for use in alternating current transmission network, provides gap with magnetic layer that exhibits controllable relative permeabilityInfo
- Publication number
- SE529346C2 SE529346C2 SE0502716A SE0502716A SE529346C2 SE 529346 C2 SE529346 C2 SE 529346C2 SE 0502716 A SE0502716 A SE 0502716A SE 0502716 A SE0502716 A SE 0502716A SE 529346 C2 SE529346 C2 SE 529346C2
- Authority
- SE
- Sweden
- Prior art keywords
- temperature
- magnetic flux
- volume
- magnetic
- cores
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 34
- 230000035699 permeability Effects 0.000 title claims abstract description 12
- 230000005540 biological transmission Effects 0.000 title 1
- 230000006698 induction Effects 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract 2
- 230000004907 flux Effects 0.000 claims description 20
- 239000011159 matrix material Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 7
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 6
- 239000000696 magnetic material Substances 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 5
- 150000002910 rare earth metals Chemical class 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- 229910052691 Erbium Inorganic materials 0.000 claims description 3
- 229910052693 Europium Inorganic materials 0.000 claims description 3
- 229910052689 Holmium Inorganic materials 0.000 claims description 3
- 229910052765 Lutetium Inorganic materials 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 3
- 229910052772 Samarium Inorganic materials 0.000 claims description 3
- 229910052771 Terbium Inorganic materials 0.000 claims description 3
- 229910052775 Thulium Inorganic materials 0.000 claims description 3
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 3
- 230000001276 controlling effect Effects 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- 238000004804 winding Methods 0.000 claims description 3
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 230000005298 paramagnetic effect Effects 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F7/00—Regulating magnetic variables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F29/00—Variable transformers or inductances not covered by group H01F21/00
- H01F29/14—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
- H01F29/146—Constructional details
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Ac-Ac Conversion (AREA)
- Continuous Casting (AREA)
- Coils Or Transformers For Communication (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
25 30 35 529 346 egenskap hos gadolinium är den kraftiga permeabili- tetsändring som àstadkoms även med smà temperatur- variationer i intervallet över curiepunkten. Exem- pelvis kan relativa permeabiliteten ändras i stor- leksordningen fràn 1000 till l genom en temperatur- ändring fràn 20°C till 40°C. The property of gadolinium is the sharp permeability change that is achieved even with small temperature variations in the range above the curie point. For example, the relative permeability can be changed in the order of magnitude from 1000 to 1 by a temperature change from 20 ° C to 40 ° C.
Uppfinningen skall nu närmare beskrivas i anslutning till bifogade ritningsfigurer, där Figur l visar schematisk motstàende kärnor med polrader i en anordning enligt uppfin- ningen, Figur 2 visar en schematisk anordning enligt figur 1 men i ett annat reglerläge, Figur 3 visar en volym enligt uppfinningen uppdelad i matris med matriselement.The invention will now be described in more detail in connection with the accompanying drawing figures, in which Figure 1 shows schematically opposite cores with polar rows in a device according to the invention, Figure 2 shows a schematic device according to Figure 1 but in a different control position, Figure 3 shows a volume according to the invention divided into matrix with matrix elements.
Figur 4 visar i diagramform den ferromagne- tiska curiepunkten respektive Neelpunkten hos nägra sällsynta jordartsmetaller som funktion av absoluta temperaturen.Figure 4 shows in diagrammatic form the ferromagnetic curie point and Neelp point, respectively, of some rare earth metals as a function of absolute temperature.
I figur 1 är 101 och 201 magnetiska kärnor i ett magnetiskt trefassystem med motstàende polrader l02r, lO2s, lO2t respektive 202r, 202s, 202t. I fi- guren visas bara ett snitt av polraderna. Runt re- spektive pol är icke visade pollindningar anordna- de.In Figure 1, 101 and 201 are magnetic cores in a three-phase magnetic system with opposite polar rows 102r, 102s, 102t and 202r, 202s, 202t, respectively. The figure shows only a section of the polar rows. Pole windings (not shown) are arranged around the respective pole.
De motstàende polraderna är fast anordnade i förhållande till varandra och en volym 103 är an- ordnad mellan de motstàende polraderna. lO3 innefattar ett reglerbart magnetisk flödesomrà- de.The opposite pole rows are fixedly arranged in relation to each other and a volume 103 is arranged between the opposite pole rows. 10 3 includes an adjustable magnetic flux range.
Volymen 10 15 20 25 30 35 529 346 I figur 3 visas hur volymen 103 är utformad som en matris bestàende av matriselement 104. Varje matriselement bestàr av ett magnetiskt material och dess temperatur är individuellt reglerbar, genom i elementet anordnade kanaler 105 för ett värmeväxlan- de medium. Genom att styra matriselementens 104 tem- peratur pàverkas magnetflödet genom volymen till storlek och/eller riktning.Volume 10 15 20 25 30 35 529 346 Figure 3 shows how the volume 103 is designed as a matrix consisting of matrix elements 104. Each matrix element consists of a magnetic material and its temperature is individually controllable, through channels 105 for a heat exchange arranged in the element. of medium. By controlling the temperature of the matrix elements 104, the magnetic flux is influenced by the volume to size and / or direction.
Detta àstadkoms genom att enligt uppfinning- en utgörs det magnetiska materialet i matriselemen- ten av ett material vars curiepunkt ligger inom an- ordningens temperaturarbetsomràde och uppvisar para- magnetiska egenskaper inom nämnda temperaturomràde.This is achieved in that according to the invention the magnetic material in the matrix elements consists of a material whose curie point lies within the temperature working range of the device and exhibits paramagnetic properties within said temperature range.
Enligt en utföringsform är medlen för tempe- raturreglering anordnade att variera temperaturen hos delsegmenten mellan 20°C och l50°C, vis mellan 30°C och 70°C.According to one embodiment, the means for temperature control are arranged to vary the temperature of the sub-segments between 20 ° C and 150 ° C, respectively between 30 ° C and 70 ° C.
Enligt en utföringsform innehàller alltsà vilket grundämne uppvisar den egenskapen att relativa per- företrädes- matriselementen grundämnet Gd (gadolinium), meabiliteten är mycket starkt temperaturberoende.According to one embodiment, therefore, which element has the property that relative perforation matrix elements contain the element Gd (gadolinium), the meaability is very strongly temperature dependent.
Om t ex temperaturen regleras mellan 20 och 40°C sà kan den relativa permeabiliteten ändras fràn 1000 till l.If, for example, the temperature is regulated between 20 and 40 ° C, the relative permeability can be changed from 1000 to 1.
Enligt en utföringsform är matriselementen innehållande Gd (gadolinium) verkar kristallgittrets struktur och/eller dopade dopade med ämne som pà- med ämne som påverkar magnetisk koppling intrinsiskt i materialet, för påverkan av temperaturen för dess magnetiska fasövergàng. Ämnen för dopning är lämp- ligen nàgot eller nägra av ämnena tillhörande grup- pens sällsynta jordartsmetaller, sàsom La, Ce, Pr, Nd, Pm, Tb, Dy, Ho, Er, Tm, Yb, Lu.According to one embodiment, the matrix elements containing Gd (gadolinium) act as the structure of the crystal lattice and / or doped doped with substance as on- with substance affecting magnetic coupling intrinsically in the material, to influence the temperature of its magnetic phase transition. Substances for doping are suitably one or more of the substances belonging to the group's rare earth metals, such as La, Ce, Pr, Nd, Pm, Tb, Dy, Ho, Er, Tm, Yb, Lu.
Genom individuell reglering av relativa Sm, Eu, permeabiliteten inom volymens matriselement kan en förskjutning av det magnetiska flödet àstadkommas i 10 15 20 25 30 35 529 346 förhållande till motstàende polers centrumlinje.By individually controlling the relative Sm, Eu, permeability within the matrix elements of the volume, a shift of the magnetic flux can be achieved in relation to the center line of opposite poles.
Det åstadkomna regleromràdet illustreras i figur l och 2.The achieved control area is illustrated in Figures 1 and 2.
I figur l är matriselementen markerade med A i volymen bibringade en låg temperatur vilket medför att relativa permeabiliteten hos materialet i detta område blir hög vilket medför att i volymen i detta område blir magnetisk ledande. Magnetiska flödet mellan polraderna l02r, lO2s och l02t och 202s och l02t koncentre- ras således till dessa områden, motstàende polrader 202r, vilket i figur l illustreras med täta flödeslinjer. Å andra sidan bibringas matriselementen markerade med B i volymen en hög temperatur, vilket medför att relativa permeabiliteten hos materialet i detta område blir låg vilket medför att volymen i detta område inte blir magnetiskt ledande. tiska flödet i detta område blir därför mycket làgt, deslinjer.In Figure 1, the matrix elements marked with A in the volume are given a low temperature, which means that the relative permeability of the material in this area becomes high, which means that in the volume in this area it becomes magnetically conductive. The magnetic flux between the polar lines l02r, l02s and l02t and 202s and l02t is thus concentrated in these areas, opposite polar lines 202r, which is illustrated in Figure 1 by dense flow lines. On the other hand, the matrix elements marked with B in the volume are provided with a high temperature, which means that the relative permeability of the material in this area becomes low, which means that the volume in this area does not become magnetically conductive. The flow in this area will therefore be very low.
Magne- vilket i figur l illustreras med glesa flö- I figur 2 är matriselementen markerade med vilket medför att volymen i detta område blir magnetiskt C i volymen bibringade en låg temperatur, ledande.In Figure 2, the matrix elements are marked with which the volume in this range becomes magnetic C in the volume imparted to a low temperature, conductive.
Matriselementen markerade med D i volymen är bibringade en hög temperatur, vilket medför att volymen i detta område blir lågt eller icke magne- tiskt ledande. lan polraderna l02r, Magnetiska flödet styrs härmed mel- lO2s och l02t i stället till 202t och 202r.The matrix elements marked with D in the volume are imparted to a high temperature, which means that the volume in this area becomes low or non-magnetically conductive. lan polarrades l02r, The magnetic flux is hereby controlled between l02s and l02t instead of 202t and 202r.
Det inses att man härmed åstadkommer en motstående poler 202s, fasvridning i det elektriska systemet.It will be appreciated that this provides an opposing pole 202s, phase shift in the electrical system.
Likaså är det möjligt att t ex bibringa alla matriselement i volymen en hög temperatur, varvid det magnetiska flödet mellan motstående po- ler blir mycket lågt eller upphör liksom det likväl 10 15 20 25 30 35 529 346 är möjligt att bibringa alla segment i volymen en lág temperatur.It is also possible, for example, to impart a high temperature to all matrix elements in the volume, whereby the magnetic flux between opposing poles becomes very low or ceases, just as it is nevertheless possible to impart all segments in the volume to a high temperature. low temperature.
I figur 1 och 2 visas tvâ lägen vad gäller den fasvridande funktionen som kan uppnås men det inses att genom uppfinningen är det_möjligt att godtyckligt individuellt reglera temperaturen hos respektive matrissegment och därmed àstadkomma öns- kad ledning av magnetflödet mellan de bàda kärnorna med dess poler och detta utan mekanisk förskjutning av polraderna sinsemellan.Figures 1 and 2 show two positions in terms of the phase-shifting function that can be achieved, but it is understood that by the invention it is possible to arbitrarily individually regulate the temperature of each matrix segment and thereby achieve the desired conduction of the magnetic flux between the two cores with its poles and this without mechanical displacement of the polar rows between them.
I figur 4 visas i diagramform den magnetis- ka curietemperaturen hos nägra sällsynta jordarts- (°K) axeln och pà X-axeln är grundämnen tillhörande metaller. Absoluta temperaturen visas pà Y- sällsynta jordartsmetaller angivna efter antalet 4f Dessa grundämnen är La, Ce, Pr, Nd, Pm, Gd, Tb, Dv, Ho, Er, Tm, Yb och Lu. betecknad med NP visar Neeltemperatur och kurvan elektroner.Figure 4 shows in diagrammatic form the magnetic curie temperature of some rare earth (° K) axis and on the X axis elements are associated with metals. The absolute temperature is shown on Y-rare earth metals given by the number 4f These elements are La, Ce, Pr, Nd, Pm, Gd, Tb, Dv, Ho, Er, Tm, Yb and Lu. denoted by NP shows Neel temperature and the curve electrons.
Sm, Eu, Kurvan betecknad FCP den ferromagnetiska curietemperaturen hos dessa material. Av diagrammet framgår bl a att Gadolinium är det ämne som har högst curietempera- tur av dessa ämnen, d v s kring rumstemperatur.Sm, Eu, The curve FCP denotes the ferromagnetic curie temperature of these materials. The diagram shows, among other things, that Gadolinium is the substance that has the highest curie temperature of these substances, ie around room temperature.
Uppfinningen är ovan beskriven som ett tre- fasigt system men uppfinningen är även tillämpbar vid sàväl enfasigt som andra flerfasiga växelströms- system.The invention is described above as a three-phase system, but the invention is also applicable to both single-phase and other multiphase alternating current systems.
I beskrivningen ovan har uppfinningen exem- pelgjorts vid reglering av en elektromagnetisk and- ordning där ett magnetiskt flöde styrs mellan kärnor försedda med poler försedda med pollindningar.In the description above, the invention has been exemplified in regulating an electromagnetic breathing apparatus in which a magnetic flux is controlled between cores provided with poles provided with pole windings.
Det är även möjligt att genom uppfinningen styra magnetflödet i en godtycklig magnetisk krets.It is also possible by the invention to control the magnetic flux in an arbitrary magnetic circuit.
I det fall anordningen är avsedd att operera vid annan temperatur, t ex vid supraledande tillämp- ningar, kan man välja lämpligt material till matris- 529 346 elementen med bland annat ledning av data i diagram- met.In case the device is intended to operate at a different temperature, for example in superconducting applications, it is possible to select a suitable material for the matrix elements with, among other things, guidance of data in the diagram.
Claims (12)
Priority Applications (13)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE0502716A SE529346C2 (en) | 2005-11-29 | 2005-11-29 | Induction regulator for use in alternating current transmission network, provides gap with magnetic layer that exhibits controllable relative permeability |
| PCT/SE2006/050353 WO2007037754A1 (en) | 2005-09-29 | 2006-09-27 | An induction regulator for power flow control in an ac transmission network |
| PCT/SE2006/050352 WO2007037753A1 (en) | 2005-09-29 | 2006-09-27 | An induction regulator for power flow control in an ac transmission network and a method of controlling such network |
| EP06799815A EP1938434A1 (en) | 2005-09-29 | 2006-09-27 | An induction regulator for power flow control in an ac transmission network and a method of controlling such network |
| EP06799816A EP1938435A1 (en) | 2005-09-29 | 2006-09-27 | An induction regulator for power flow control in an ac transmission network |
| CN2006800361658A CN101278249B (en) | 2005-09-29 | 2006-09-27 | Method and apparatus for controlling magnetic flux |
| US11/992,897 US20100231182A1 (en) | 2005-09-29 | 2006-09-27 | Induction regulator for power flow control in an ac transmission network and a method of controlling such network |
| US11/992,833 US20100213906A1 (en) | 2005-09-29 | 2006-09-27 | Induction Regulator for Power Flow Control in an AC Transmission Network |
| CN200680036098XA CN101278456B (en) | 2005-09-29 | 2006-09-27 | Induction regulator for controlling power load flow used in alternating current transmission network |
| US11/992,832 US8154369B2 (en) | 2005-09-29 | 2006-09-27 | Method and device for controlling of a magnetic flux |
| CN2006800361982A CN101278457B (en) | 2005-09-29 | 2006-09-27 | Induction regulator for controlling energy flow used in alternating current transmission network, and method for controlling the network |
| EP06848718A EP1946198A4 (en) | 2005-09-29 | 2006-09-27 | DEVICE AND METHOD FOR CONTROLLING A MAGNETIC FLOW |
| PCT/SE2006/050354 WO2007073316A1 (en) | 2005-09-29 | 2006-09-27 | A method and device for controlling of a magnetic flux |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE0502716A SE529346C2 (en) | 2005-11-29 | 2005-11-29 | Induction regulator for use in alternating current transmission network, provides gap with magnetic layer that exhibits controllable relative permeability |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| SE0502716L SE0502716L (en) | 2007-05-30 |
| SE529346C2 true SE529346C2 (en) | 2007-07-10 |
Family
ID=38175548
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| SE0502716A SE529346C2 (en) | 2005-09-29 | 2005-11-29 | Induction regulator for use in alternating current transmission network, provides gap with magnetic layer that exhibits controllable relative permeability |
Country Status (1)
| Country | Link |
|---|---|
| SE (1) | SE529346C2 (en) |
-
2005
- 2005-11-29 SE SE0502716A patent/SE529346C2/en not_active IP Right Cessation
Also Published As
| Publication number | Publication date |
|---|---|
| SE0502716L (en) | 2007-05-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPS60240111A (en) | Transformer | |
| CN103701380A (en) | Wide-range adaptive CT (Current Transformer) energy harvesting method using regulated-flux and enhanced-permeability iron core | |
| CN106997805B (en) | For reducing the circuit arrangement of the unidirectional flux components in the soft magnetic core of transformer | |
| CN104700978A (en) | Magnetic field generation control device and method | |
| US2992738A (en) | Permanent magnet separator | |
| SE529346C2 (en) | Induction regulator for use in alternating current transmission network, provides gap with magnetic layer that exhibits controllable relative permeability | |
| US8154369B2 (en) | Method and device for controlling of a magnetic flux | |
| CN205945491U (en) | Overload protector | |
| Bahl et al. | Design, optimization and operation of a high power thermomagnetic harvester | |
| Zhang et al. | Hybrid multifunctional saturated-core fault current limiter | |
| CN104658747B (en) | Saturation resistor with simple structure | |
| Toader et al. | Device for automatic control of the Petersen coil | |
| JP7105770B2 (en) | Apparatus and method for converting thermal energy into electrical energy | |
| CN110018706A (en) | A kind of electromagnetic field generator | |
| CN101278249A (en) | Method and apparatus for controlling magnetic flux | |
| SE529345C2 (en) | Induction regulator for use in alternating current transmission network, provides gap with magnetic layer that exhibits controllable relative permeability | |
| Yuan et al. | A novel hybrid magnetic material based on three-phase saturated core fault current limiter | |
| Onishi et al. | A proposal of fast self-acting and recovering magnetic shield type superconducting fault current limiter and the analyses of their characteristics | |
| Saotome | Negative hypothesis of equivalence between dynamic magnetic loss and eddy current loss in ferrite grains | |
| JP2659453B2 (en) | Superconducting magnet device | |
| CN107966614A (en) | A kind of circuit and its application | |
| Ueno et al. | Vector magnetic properties of Fe-based amorphous sheets under alternating flux condition | |
| US3932802A (en) | Controlled power transferring device and method utilizing a reactance controlled by development of opposing magnetic fluxes | |
| NNAMDI et al. | ENHANCING WIRELESS CONTROL SYSTEM FOR DC MOTOR SPEED IN 4.0 INDUSTRIALIZATION: INSULATED GATE BIPOLAR TRANSISTOR (IGBT) | |
| Zhang et al. | PT-Symmetric Multi-load Magnetic-Field Coupled Wireless Power Transfer System |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| NUG | Patent has lapsed |