SE518151C2 - Multilayer coated cutting tool - Google Patents
Multilayer coated cutting toolInfo
- Publication number
- SE518151C2 SE518151C2 SE9704630A SE9704630A SE518151C2 SE 518151 C2 SE518151 C2 SE 518151C2 SE 9704630 A SE9704630 A SE 9704630A SE 9704630 A SE9704630 A SE 9704630A SE 518151 C2 SE518151 C2 SE 518151C2
- Authority
- SE
- Sweden
- Prior art keywords
- mlx
- coating
- cutting tool
- al2o3
- lambda
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/044—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/081—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/042—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/40—Coatings including alternating layers following a pattern, a periodic or defined repetition
- C23C28/42—Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
lO 15 20 25 30 35 518151 JJ.. beläggningen såsom mikrostruktur/kornstorlek, hårdhet, spännings- tillstånd, kohesion och vidhäftning till det underliggande sub- stratet varierar beroende på den speciella PVD-metoden. En för- bättring i slitstyrkan eller eggintegriteten hos ett PVD-belagt skärverktyg som används i en speciell bearbetningsoperation kan sålunda genomföras genom optimering av en eller flera av ovan- nämnda egenskaper. The coating such as microstructure / grain size, hardness, stress state, cohesion and adhesion to the underlying substrate varies depending on the particular PVD method. An improvement in the wear resistance or edge integrity of a PVD-coated cutting tool used in a special machining operation can thus be implemented by optimizing one or more of the above-mentioned properties.
Dessutom har nyutvecklingar av de existerande PVD-teknikerna genom d v s införande av obalanserade magnetroner i reaktiv sput- tering (S. Kadlec, J.In addition, new developments of the existing PVD techniques through the introduction of unbalanced magnetrons in reactive sputtering (S. Kadlec, J.
A8(3), (1990), 1318.) rerad båge i katodisk bàgbeläggning (H. Curtins in Surface and 76/77, (1995), 632 and K. Akari et al in Sur- face and Coatings Technology, 43/44, (1990), 312.) bättre kontroll av beläggningsprocessen och en ytterligare för- Musil and W.-D. Munz in J. Vac. Sci. Techn. eller införande av en styrd och/eller filt- Coatings Technology, resulterat i en bättring av de inre egenskaperna för beläggningsmaterialet.A8 (3), (1990), 1318.) cored arc in cathodic arc coating (H. Curtins in Surface and 76/77, (1995), 632 and K. Akari et al in Surface and Coatings Technology, 43/44 , (1990), 312.) better control of the coating process and an additional pre- Musil and W.-D. Munz and J. Vac. Sci. Techn. or introduction of a controlled and / or felt-Coating Technology, resulting in an improvement in the internal properties of the coating material.
Med uppfinningen av den PVD bipolära pulsade DMS-tekniken vilken visas i DD 252 205 och DE 195 18 779, öppnades ett brett intervall av möjligheter för beläggning (Dubbel Magnetron Sputtering) med isolerande skikt såsom Al2O3 och dessutom har denna metod gjort det möjligt att utfälla kristallina Al2O3-skikt vid substrattempe- raturer i området 500 till 800 OC. Al2O3 existerar i flera olika faser såsom a(alfa), K(kappa) och X(chi) kallad "a-serien" med hcp (hexagonal tätpackad) 0(teta), n(eta) och 5(delta) kubisk) serna i CVD-beläggningar utfällda på hårdmetall vid konventionella 1000-1050 OC, tastabila kappafasen men någon gång har även den metastabila teta- stapling av syreatomerna, och i y(gamma), kallad "y-serien" med fcc (ytcentrerat stapling av syreatomerna. De oftast uppträdande Algb-fa- CVD-temperaturer, är den stabila alfa- och den me- fasen observerats. Enligt DE 195 18 779, är DMS-sputtering-tekni- ken kapabel att fälla ut och producera högkvalitativa, väl vidhäf- tande, kristallina a-Alflh-tunnfilmer vid substrattemperaturer mindre än 800 OC. "a-Al20§' gamma(y)fas från "y-serien" av Al2O3-polymorfer. Jämfört med tidi- skiktet kan delvis även innehålla gare kända plasmaassisterade beläggningstekniker såsom PACVD som beskrivits i DE 42 09 975 har den nya, pulsade DMS-sputtering-be- läggningsmetoden den avgörande, viktiga fördelen att inga förore- klor, ningar såsom halogenatomer, t ex. är inneslutna i Alflb-be- läggningen. 10 15 20 25 30 35 40 5138151 Konventionella skärverktygsmaterial såsom hårdmetall består av åtminstone en hård metallisk förening och en bindefas, (CO), föreningen, t ex. volframkarbid (WC), ligger i området 1-5 pm. vanligtvis kobolt där kornstorleken hos den hårda Nyutvecklingar har förutsagt förbättrade verktygsegenskaper i slitstyrka, slaghållfasthet, varmhårdhet genom att använda verktygsmaterial baserade på ultrafin mikrostruktur med användning (L.E. McCandlish, 1 pp. 119- Liknande förutsägelser har gjorts för keramiska av nanostrukturerat WC-Co pulver som råmaterial B.H. Kear och B.K. Kim, 124, 1992). verktygsmaterial till exempel för kiselnitrid/karbid-baserad (Si3N4/SiC) ekvivalenta nanokompositer baserade på aluminiumoxid. i Nanostructured Materials VOL. nanokompositkeramik och, för Al2O3-baserad keramik, Med nanokompositnitrid/karbid och aluminiumoxid hårda belägg- ningsmaterial, förstås en multiskiktbeläggning där tjockleken av (eller karbid-) är i nanometerintervallet mellan 3 och 100 nm, företrädesvis mel- varje individuellt nitrid- och aluminiumoxidskikt lan 3 och 20 nm. Eftersom en viss periodicitet eller repetitions- period av metallnitrid/karbid och aluminiumoxidskikt i ordnings- följden föreligger, har dessa nanoskale, multiskiktbeläggningar fått det generiska namnet "supergitter" filmer. Med repetitionspe- riod menas tjockleken av två närliggande metallnitrid/karbid- och aluminiumoxidskikt. Många av de binära nitridsupergitterbelägg- ningarna med metallelement från Ti, Nb, V och Ta, på både enkel- och polykristallina substrat har visat en förbättrad hårdhet för en speciell repetitionsperiod vanligtvis i området 3-10 nm.With the invention of the PVD bipolar pulsed DMS technique which is shown in DD 252 205 and DE 195 18 779, a wide range of possibilities for coating (Double Magnetron Sputtering) was opened with insulating layers such as Al 2 O 3 and in addition this method has made it possible to precipitate crystalline Al2O3 layers at substrate temperatures in the range of 500 to 800 ° C. Al2O3 exists in several different phases such as the a (alpha), K (kappa) and X (chi) called the "a-series" with the hcp (hexagonal densely packed) 0 (theta), n (eta) and 5 (delta) cubic) sera in CVD coatings precipitated on cemented carbide at conventional 1000-1050 OC, tastable kappa phase but sometimes also has the metastable theta stacking of the oxygen atoms, and iy (gamma), called the "y-series" with fcc (surface-centered stacking of the oxygen atoms. most common Algb fa- CVD temperatures, the stable alpha and me phase are observed.According to DE 195 18 779, DMS sputtering technology is capable of precipitating and producing high quality, well adherent, crystalline α-Al 2 H thin films at substrate temperatures less than 800 ° C. "α-Al 2 O 3" gamma (y) phase from the "y series" of Al 2 O 3 polymorphs. Compared to the time layer may in part also contain more known plasma-assisted coating techniques such as PACVD as described in DE 42 09 975, the new, pulsed DMS sputtering coating method has the decisive, important advantage of no contaminants, such as halogen atoms, e.g. are enclosed in the Al fl b coating. Conventional cutting tool materials such as cemented carbide consist of at least one hard metallic compound and a binder phase, (CO), the compound, e.g. tungsten carbide (WC), is in the range 1-5 pm. usually cobalt where the grain size of the hard New developments have predicted improved tool properties in durability, impact strength, heat hardness by using tool materials based on ultrafine microstructure using (LE McCandlish, 1 pp. 119- Similar predictions have been made for ceramics of nanostructured WC-Co powder as raw material BH Kear and BK Kim, 124, 1992). tool materials for example for silicon nitride / carbide based (Si3N4 / SiC) equivalent nanocomposites based on alumina. and Nanostructured Materials VOL. nanocomposite ceramics and, for Al2O3-based ceramics, With nanocomposite nitride / carbide and alumina hard coating materials, is meant a multilayer coating where the thickness of (or carbide) is in the nanometer range between 3 and 100 nm, preferably between each individual nitride nitric and alumina 3 and 20 nm. Since there is a certain periodicity or repetition period of metal nitride / carbide and alumina layers in order, these nanoscale, multilayer coatings have been given the generic name "superlattice" films. By repetition period is meant the thickness of two adjacent metal nitride / carbide and alumina layers. Many of the binary nitride superlattice coatings with metal elements from Ti, Nb, V and Ta, on both single and polycrystalline substrates have shown an improved hardness for a particular repetition period usually in the range of 3-10 nm.
GB-A-2 048 960 beskriver en kompositkropp, för användning som en slitdel eller som ett skär i ett skärverktyg, omfattande ett substrat med ett eller flera ytskikt av hårdmaterial fritt från bindefas. Tjockleken av varje sådant ytskikt är 1 till 50 um och ett av skikten är sammansatt av ett flertal individuella skikt vardera med en tjocklek av 0.02 till 0.1 pm.GB-A-2 048 960 discloses a composite body, for use as a wear part or as a cutting insert in a cutting tool, comprising a substrate with one or more surface layers of hard material free from binder phase. The thickness of each such surface layer is 1 to 50 μm and one of the layers is composed of a plurality of individual layers each having a thickness of 0.02 to 0.1 μm.
Enligt föreliggande uppfinning föreligger ett skärverktyg för metallbearbetning såsom svarvning (gängning och avstickning), fräsning och borrning omfattande en kropp av en hård legering av hårdmetall eller kermet ovanpå vilken en slitstark, multiskiktbe- läggning har utfällts. Formen på skärverktyget omfattar vändskär såväl som skaftverktyg såsom borrar, pinnfräsar etc.. Mer speci- ellt omfattar det belagda verktyget ett substrat av sintrad hård- metall eller en kermet, företrädesvis av åtminstone en metallkar- 10 15 20 25 30 35 40 s1§151 bid i en metallbindefas, eller en keramisk kropp. Substratet kan även omfatta en snabbstålslegering. Sagda substrat kan även vara förbelagda med ett tunt enkel- eller multiskikt av TiN, TiC, TiCN eller TiAlN med en tjocklek i mikrometerintervallet enligt känd teknik. Det belagda skärverktyg enligt föreliggande uppfinning fö- reter förbättrade slitstyrke- och seghetsegenskaper jämfört med tidigare kända verktyg vid användning för bearbetning av stål el- ler gjutjärn. Sagda beläggning som är väl bunden till substratet, omfattar en laminär, multiskiktstruktur av metallnitrider (eller - karbider) och kristallin aluminiumoxid av alfa(a)- och/eller gam- ma(y)-fas, företrädesvis av metallnitrider och kristallin y-Al2O@ har en tjocklek mellan 0.5 och 20 um, företrädesvis mellan 1 och 10 pm, helst mellan 2 och 6 um. I multiskiktbeläggningsstrukturen (MLX/Al2Ofli/(MLX/Al2Ofli/(MLX/Al2Ofl¿/(MLX/Al2Oflx/ . . . . . . ..är de al- ternerande skikten MLX och Al2O3 där MLX omfattar en metallnitrid eller en metallkarbid med metallelement M och L valt (Ti), (Nb), hafnium (Hf), vanadin (V), tantal (Mo), zirkonium (Zr), krom (Cr), volfram (W) aluminium (Al), och i sagda beläggning är repetitionsperioden Ä i (se Fig. 1) från titan niob (Ta), molybden eller (MLX/Al2Ofl¿ väsentligen konstant genom hela multiskiktstrukturen och dessutom är repetitionsperioden större än 3 nm men mindre än 100 nm, repetitionsperiod avses tjockleken av skikten MLX + Al2O3, d v s av företrädesvis mindre än 50 nm, helst mindre än 25 nm. Med två närliggande nanoskikt. Föredragna exempel på strukturen för den ovan beskrivna nano-multiskiktbeläggning är t ex. för M=L, TiN/A12o3/TiN/Alzoa/TiN/AlZOB/TiN/ . . . . .. eller för LiM, TiAlN/Al2O3/TiAlN/Al2O3/TiAlN/Al2O3/TiAlN/..._.According to the present invention, there is a cutting tool for metalworking such as turning (threading and parting), milling and drilling comprising a body of a hard cemented carbide alloy or cermet on top of which a durable, multilayer coating has been deposited. The shape of the cutting tool comprises indexable inserts as well as shank tools such as drills, end mills, etc .. More specifically, the coated tool comprises a substrate of sintered cemented carbide or a cermet, preferably of at least one metal vessel 10 15 20 25 30 35 40 s1§151 bite in a metal binder phase, or a ceramic body. The substrate may also comprise a high speed steel alloy. Said substrates may also be precoated with a thin single or multilayer of TiN, TiC, TiCN or TiAlN with a thickness in the micrometer range according to the prior art. The coated cutting tool of the present invention exhibits improved wear resistance and toughness properties over prior art tools used for machining steel or cast iron. Said coating, which is well bonded to the substrate, comprises a laminar, multilayer structure of metal nitrides (or - carbides) and crystalline alumina of alpha (a) and / or gamma (y) phase, preferably of metal nitrides and crystalline γ-Al 2 O @ has a thickness between 0.5 and 20 μm, preferably between 1 and 10 μm, preferably between 2 and 6 μm. In the multilayer coating structure (MLX / Al2O fl i / (MLX / Al2O fl i / (MLX / Al2O fl¿ / (MLX / Al2O fl x /......... .. are the alternating layers MLX and Al2O3 where MLX comprises a metal nitride or a metal carbide with metal elements M and L selected (Ti), (Nb), hafnium (Hf), vanadium (V), tantalum (Mo), zirconium (Zr), chromium (Cr), tungsten (W) aluminum (Al), and in said coating if the repetition period Ä i (see Fig. 1) from titanium niobium (Ta), molybdenum or (MLX / Al2O fl¿ is substantially constant throughout the multilayer structure and in addition the repetition period is greater than 3 nm but less than 100 nm, repetition period refers to the thickness of the layers MLX + Al 2 O 3, i.e. of preferably less than 50 nm, preferably less than 25 nm With two adjacent nanolayers Preferred examples of the structure of the nano-multilayer coating described above are, for example, for M = L, TiN / Al 2 O 3 / TiN / Alzoa / TiN / AlZOB / TiN /.... .. or for LiM, TiAlN / Al2O3 / TiAlN / Al2O3 / TiAlN / Al2O3 / TiAlN /..._.
I Fig. 1 visas ett substrat 1 belagt med en laminär, multis- kikt nitrid/karbid- och aluminiumoxidbeläggning 2 med de individu- (eller karbid-) skikten MLX 3 och individuella aluminiumoxidskikten 4 och repetitionsperioden Ä 5, tjockleken av ella metallnitrid- metallnitrid/karbidskikt och aluminiumoxidskikt är väsentligen konstant genom hela multiskiktbeläggningen.Fig. 1 shows a substrate 1 coated with a laminar, multilayer nitride / carbide and alumina coating 2 with the individual (or carbide) layers MLX 3 and the individual alumina layers 4 and the repetition period Ä 5, the thickness of each metal nitride metal nitride / carbide layer and alumina layer are substantially constant throughout the multilayer coating.
De laminära beläggningarna ovan uppvisar ett kolumnärt till- växtsätt med ingen eller mycket liten porositet vid korngränserna.The laminar coatings above show a columnar growth pattern with no or very little porosity at the grain boundaries.
Beläggningarna har även en väsentlig vågighet i subskikten vilken härstammar från substratets ytfinhet.The coatings also have a significant waviness in the sublayers which is due to the surface fineness of the substrate.
För ett skärverktyg för metallbearbetning erhålls flera för- delar med föreliggande uppfinning med nanostrukturerad lamellbe- läggningar utfällda på substrat av hårda, refraktära material så- 10 15 20 51 8 S1 51 som hårdmetall, kermets och keramik. T ex. i en lamellbeläggning av (MLx/Alzogx/ (MLx/Alzøflv. . .. av beläggningen vanligtvis över individuella enkelskikt av MLX och på hårdmetall, förbättras hàrdheten Algh med en skikttjocklek på en um-skala samtidigt som den inre spänningen är mindre. Den första observationen förbättrad hårdhet i beläggningen, leder till en ökad abrasiv slitstyrka hos skäreg- gen medan den andra observationen mindre inre spänning i belägg- ningen, ger en ökad förmåga att absorbera spänningar på skäreggen under en bearbetningsoperation. Dessutom ger den uppfunna belägg- ningen skäreggarna hos verktyget en ytterst jämn yta vilket, jäm- fört med tidigare kända belagda verktyg, leder till en bättre yt- finhet även av det bearbetade arbetsstycket.For a cutting tool for metalworking, several advantages of the present invention are obtained with nanostructured lamella coatings deposited on substrates of hard, refractory materials such as cemented carbide, ceramics and ceramics. Ex. In a lamellar coating of (MLx / Alzogx / (MLx / Alzø fl v. the observation improves the hardness of the coating, leads to an increased abrasive wear resistance of the cutting edge, while the second observation less internal stress in the coating, gives an increased ability to absorb stresses on the cutting edge during a machining operation.In addition, the invented coating gives the cutting edges of the tool has an extremely smooth surface which, compared with previously known coated tools, leads to a better surface finish even of the machined workpiece.
De laminära, nanostrukturerade beläggningarna enligt förelig- gande uppfinning kan utfällas på ett substrat av hårdmetall eller kermet antingen med CVD- eller PVD-teknik, företrädesvis med den PVD bipolära pulsade dubbel magnetronsputtering (DMS) tekniken, genom att successivt bilda individuella subskikt på verktygssubstratet vid en substrattemperatur av 450-700 OC, företrädesvis 550-650 OC, genom att sätta på och stänga av se- parata magnetronsystem.The laminar, nanostructured coatings of the present invention can be deposited on a cemented carbide or cermet substrate by either CVD or PVD technology, preferably by the PVD bipolar pulsed double magnetron sputtering (DMS) technology, by successively forming individual sublayers on the tool substrate at a substrate temperature of 450-700 ° C, preferably 550-650 ° C, by turning on and off separate magnetron systems.
Claims (4)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9704630A SE518151C2 (en) | 1997-12-10 | 1997-12-10 | Multilayer coated cutting tool |
EP98962794A EP0963456A1 (en) | 1997-12-10 | 1998-12-09 | Multilayered pvd coated cutting tool |
JP53087999A JP2001513708A (en) | 1997-12-10 | 1998-12-09 | Multi-layer PVD coated cutting tool |
PCT/SE1998/002268 WO1999029920A1 (en) | 1997-12-10 | 1998-12-09 | Multilayered pvd coated cutting tool |
IL13122798A IL131227A0 (en) | 1997-12-10 | 1998-12-09 | Multilayered coated cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9704630A SE518151C2 (en) | 1997-12-10 | 1997-12-10 | Multilayer coated cutting tool |
Publications (3)
Publication Number | Publication Date |
---|---|
SE9704630D0 SE9704630D0 (en) | 1997-12-10 |
SE9704630L SE9704630L (en) | 1999-06-11 |
SE518151C2 true SE518151C2 (en) | 2002-09-03 |
Family
ID=20409357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE9704630A SE518151C2 (en) | 1997-12-10 | 1997-12-10 | Multilayer coated cutting tool |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0963456A1 (en) |
JP (1) | JP2001513708A (en) |
IL (1) | IL131227A0 (en) |
SE (1) | SE518151C2 (en) |
WO (1) | WO1999029920A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE518134C2 (en) * | 1997-12-10 | 2002-09-03 | Sandvik Ab | Multilayer coated cutting tool |
JP3031907B2 (en) * | 1998-03-16 | 2000-04-10 | 日立ツール株式会社 | Multilayer coating member |
DE10109523A1 (en) | 2001-02-28 | 2002-09-05 | Ceram Tec Ag Innovative Cerami | Component used for processing workpieces has hard material coating comprising intermediate layer between layers |
US6805944B2 (en) | 2001-03-26 | 2004-10-19 | Mitsubishi Materials Corporation | Coated cemented carbide cutting tool |
US6689450B2 (en) * | 2001-03-27 | 2004-02-10 | Seco Tools Ab | Enhanced Al2O3-Ti(C,N) multi-coating deposited at low temperature |
JP2004339533A (en) * | 2003-05-13 | 2004-12-02 | National Institute Of Advanced Industrial & Technology | Substrate with multilayer surface, and its manufacturing method |
SE528107C2 (en) * | 2004-10-04 | 2006-09-05 | Sandvik Intellectual Property | Coated carbide inserts, especially useful for high-speed machining of metallic workpieces |
SE529144C2 (en) | 2005-04-18 | 2007-05-15 | Sandvik Intellectual Property | Cut coated with composite oxide layer |
WO2007121954A1 (en) * | 2006-04-21 | 2007-11-01 | Cemecon Ag | Coated body |
US8080312B2 (en) * | 2006-06-22 | 2011-12-20 | Kennametal Inc. | CVD coating scheme including alumina and/or titanium-containing materials and method of making the same |
IL182741A (en) | 2007-04-23 | 2012-03-29 | Iscar Ltd | Coatings |
CN102534487A (en) * | 2010-12-30 | 2012-07-04 | 鸿富锦精密工业(深圳)有限公司 | Coated piece with hard coating and preparation method thereof |
CN104302804B (en) * | 2012-12-26 | 2016-10-26 | 伍尚华 | A kind of method using physical gas-phase deposition to prepare Al2O3 coating and composite coating thereof on silicon nitride cutting tool surface |
JP6242751B2 (en) | 2014-06-04 | 2017-12-06 | 株式会社神戸製鋼所 | Manufacturing method of machining tool and machining tool |
US9650712B2 (en) * | 2014-12-08 | 2017-05-16 | Kennametal Inc. | Inter-anchored multilayer refractory coatings |
US10100405B2 (en) * | 2015-04-20 | 2018-10-16 | Kennametal Inc. | CVD coated cutting insert and method of making the same |
RU2691810C2 (en) * | 2017-11-14 | 2019-06-18 | федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" | Method of producing wear-resistant coating for cutting tool |
CN116815115A (en) * | 2023-01-19 | 2023-09-29 | 湖南城市学院 | TiAlCrVSiN/TiAlCrVSiON nano multilayer composite cutter coating and preparation method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2917348C2 (en) * | 1979-04-28 | 1984-07-12 | Fried. Krupp Gmbh, 4300 Essen | Wear-resistant composite body |
US4984940A (en) * | 1989-03-17 | 1991-01-15 | Kennametal Inc. | Multilayer coated cemented carbide cutting insert |
EP0592986B1 (en) * | 1992-10-12 | 1998-07-08 | Sumitomo Electric Industries, Limited | Ultra-thin film laminate |
US5700551A (en) * | 1994-09-16 | 1997-12-23 | Sumitomo Electric Industries, Ltd. | Layered film made of ultrafine particles and a hard composite material for tools possessing the film |
DE69526301T2 (en) * | 1994-10-28 | 2002-12-05 | Sumitomo Electric Industries, Ltd. | Multi-layer material |
SE518134C2 (en) * | 1997-12-10 | 2002-09-03 | Sandvik Ab | Multilayer coated cutting tool |
-
1997
- 1997-12-10 SE SE9704630A patent/SE518151C2/en not_active IP Right Cessation
-
1998
- 1998-12-09 JP JP53087999A patent/JP2001513708A/en active Pending
- 1998-12-09 IL IL13122798A patent/IL131227A0/en unknown
- 1998-12-09 EP EP98962794A patent/EP0963456A1/en not_active Withdrawn
- 1998-12-09 WO PCT/SE1998/002268 patent/WO1999029920A1/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
IL131227A0 (en) | 2001-01-28 |
JP2001513708A (en) | 2001-09-04 |
WO1999029920A1 (en) | 1999-06-17 |
SE9704630D0 (en) | 1997-12-10 |
EP0963456A1 (en) | 1999-12-15 |
SE9704630L (en) | 1999-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6333099B1 (en) | Multilayered PVD coated cutting tool | |
EP0983393B1 (en) | Multilayered coated cutting tool | |
SE518151C2 (en) | Multilayer coated cutting tool | |
KR101515652B1 (en) | Wear resistant hard coating for a workpiece and method for producing the same | |
US8119227B2 (en) | Coated cutting tool | |
EP2152936B1 (en) | Cutting tool | |
EP1717347B1 (en) | Coated insert | |
KR101359254B1 (en) | Coated cutting tool | |
KR100348543B1 (en) | Coated Cutting Tools | |
EP1914331B1 (en) | Coated cutting tool | |
EP1939327A1 (en) | Multilayered coated cutting tool | |
US6887562B2 (en) | Surface coating of a carbide or a nitride | |
JP6486885B2 (en) | Coated cutting tools | |
SE522722C2 (en) | Cutting tool coated with titanium diboride | |
US6858333B2 (en) | Tool with wear resistant low friction coating and method of making the same | |
CN102994948A (en) | Multilayer coated wear-resistant member and method for making the same | |
SE530755C2 (en) | Coated cermet cutter and its use | |
KR20200010253A (en) | Coated cutting tool and its manufacturing method | |
EP1017871A1 (en) | Multilayered coated cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NUG | Patent has lapsed |