SE513392C2 - Method and device for contactless detection via modulation of electromagnetic signal by measuring magnitude controlled mechanical resonance - Google Patents
Method and device for contactless detection via modulation of electromagnetic signal by measuring magnitude controlled mechanical resonanceInfo
- Publication number
- SE513392C2 SE513392C2 SE9801892A SE9801892A SE513392C2 SE 513392 C2 SE513392 C2 SE 513392C2 SE 9801892 A SE9801892 A SE 9801892A SE 9801892 A SE9801892 A SE 9801892A SE 513392 C2 SE513392 C2 SE 513392C2
- Authority
- SE
- Sweden
- Prior art keywords
- oscillating
- oscillation
- microwave signal
- mechanical
- measured quantity
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C23/00—Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
- B60C23/02—Signalling devices actuated by tyre pressure
- B60C23/04—Signalling devices actuated by tyre pressure mounted on the wheel or tyre
- B60C23/0408—Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
- B60C23/0422—Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
- B60C23/0433—Radio signals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C23/00—Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
- B60C23/02—Signalling devices actuated by tyre pressure
- B60C23/04—Signalling devices actuated by tyre pressure mounted on the wheel or tyre
- B60C23/0408—Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Measuring Fluid Pressure (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
Abstract
Description
15 20 25 30 513 392 2 “vibrating string” princip. Genom ett trivialt mekaniskt arrangemang omsätts det tryck vilket önskas mätas in en motsvarande mekanisk spänning i en sträng vil- ken exciteras vid sin resonansfrekvens. Mätning av denna resonansfrekvens sker lokalt inom trycksensoms hus genom t.ex. induktiv teknik. 15 20 25 30 513 392 2 “vibrating string” principle. Through a trivial mechanical arrangement, the pressure which it is desired to measure is converted into a corresponding mechanical stress in a string which is excited at its resonant frequency. Measurement of this resonant frequency takes place locally within the pressure sensor housing by e.g. inductive technology.
Genom en kombination av mekanisk HF modulering och den redan kända "vib- rating string” trycksensor-principen kan en ny trycksensor för teledetektering konstrueras, nämligen (Fig 1) bestående av: ett tryckkännande element (t.ex. en membranbälg) kopplat till ett mekaniskt re- sonanselement vars frekvens därigenom styres (t.ex. en gitarrsträng) en mekanisk excitationssignal för excitering av den mekaniska resonanssväng- ningen (t.ex vibrationer frän vägbana och motorfordon i applikationen däck- tryckssensor) en radio-sändare/mottagare med amplituddemodulator och efterföljande signal- omvandling frän AM till tryck.By a combination of mechanical HF modulation and the already known "vibration rating string" pressure sensor principle, a new pressure sensor for remote detection can be constructed, namely (Fig. 1) consisting of: a pressure sensing element (eg a diaphragm bellows) connected to a mechanical resonant element whose frequency is thereby controlled (eg a guitar string) a mechanical excitation signal for excitation of the mechanical resonant oscillation (eg vibrations from roadway and motor vehicle in the tire pressure sensor application) a radio transmitter / receiver with amplitude demodulator and subsequent signal conversion from AM to pressure.
Ett identiskt förfarande kan nu också användas för mätning av vridmoment (Fig 2). En strängelement anbringas mellan två punkter längs en huvudspännings- linje på den axel vars vridmoment önskas mätas. Strängen anbringas fritt över axelytan så att den kan bringas i resonansoscillation - t.ex. genom naturligt före- kommande vibrationer 1 axeln eller genom en anslagsexcitering genom axelns rotation.An identical method can now also be used for measuring torque (Fig. 2). A string element is applied between two points along a main voltage line on the shaft whose torque is desired to be measured. The string is applied freely over the shaft surface so that it can be brought into resonant oscillation - e.g. by naturally occurring vibrations in the shaft or by an impact excitation by the rotation of the shaft.
Strängen ges en mekanisk förspänning så att dess resonansfrekvens kan styras upp eller ner beroende på drag- eller tryckspänningar längs vald töjningslinje.The string is given a mechanical bias so that its resonant frequency can be controlled up or down depending on tensile or compressive stresses along the selected elongation line.
Genom att anbrlnga flera strängar på samma axel i olika töjningsriktningar och avstämda till olika frekvensband (genom att ge dem olika längd, förspänningsni- 20 25 30 513 392 3 vå, massbelastning, etc) kan axelns fullständiga mekaniska spänningstillstånd avkännas beröringsfritt och på ett ansenligt avstånd.By applying your strings to the same shaft in different elongation directions and tuned to different frequency bands (by giving them different lengths, bias levels, mass loads, etc.), the complete mechanical stress state of the shaft can be sensed without contact and at a considerable distance. .
Genom att utnyttja ett elem_ent vars mekaniska form ändras med dess tempera- tur och genom att, enligt ovan beskrivna förfarande, koppla detta för styming av en mekanisk resonansfrekvens kan en telemetrisk temperatursensor också framställas enligt den här beskrivna nya principen.By utilizing an element whose mechanical shape changes with its temperature and by, according to the method described above, coupling this for controlling a mechanical resonant frequency, a telemetric temperature sensor can also be manufactured according to the new principle described here.
Mätning och övervakning av mekaniska vibrationer är ett betydande teknikom- ràde. Här erbjuder den nya radiotekniken en mångfald möjligheter. Ett vibreran- de objekt kan direkt bestrålas med elektromagnetiska signaler och den av den mekaniska rörelsen introducerade modulationen analyseras. Altemativt kan tex. antennformiga trådelement anbringas på en vibrerande struktur i särskilt intres- santa mätpunkter.Measurement and monitoring of mechanical vibrations is a significant area of technology. Here, the new radio technology offers a variety of possibilities. A vibrating object can be directly irradiated with electromagnetic signals and the modulation introduced by the mechanical movement is analyzed. Alternatively, e.g. antenna-shaped wire elements are applied to a vibrating structure at particularly interesting measuring points.
En akustisk signal vilken försätter ett enkelt membran i svängning medger, enligt den nya principen, i sig själv en mikrofonfunktion.An acoustic signal which sets a simple diaphragm in oscillation allows, according to the new principle, in itself a microphone function.
För stränginstrument, igen med exemplet gitarr, erbjuds ett nytt förfarande för omvandling frän mekanisk/akustisk till elektrisk signal för vidare behandling och distribution i ljudanläggningssystem.For stringed instruments, again with the guitar example, a new method is offered for conversion from mechanical / acoustic to electrical signal for further processing and distribution in sound system systems.
För bl.a. applikationema vridmoment- och däcktrycksmätning kan ytterligare en effekt utnyttjas i syfte att förhöja detekteringssäkerheten och för att erhålla ytter- ligare Infomation såsom varvtal och vinkelförlopp. När den oscillerande sträng- en sensom också bringas att rotera ändras därmed dess antennaspekt relativt detekteringssystemets sändar/mottagarantenner vilket resulterar i en överlagrad mod ulering av totalstyrkan iden elektromagnetiska signalen från den oscilleran- de strängen. Detta innebär att spektrallinjen från strängen i HF signalens ampli- tuddemodulerade spektra, vars frekvensposition motsvarar ett visst däcktryck eller vridmoment, nu varierari styrka avhängighet till sensorns rotation. Därige- 513 392 4 nom erhålles också information om t.ex. däckets varvtal och vinkelförlopp. Den- na Information kan t.ex. utnyttjas för att särskilja de fràn det egna fordonet kommande däcksignaler (vilka normalt alla är rotationsmässigt synkroniserade) från signaler härrörande från andra fordon i det egna fordonets närhet och ut- rustade med samma mätsystem för däcktrycksmätning.For i.a. In the torque and tire pressure measurement applications, an additional effect can be used in order to increase the detection reliability and to obtain additional information such as speed and angular course. When the oscillating string sensor is also caused to rotate, its antenna aspect changes relative to the transmitting / receiving antennas of the detection system, which results in a superimposed modulation of the total strength of the electromagnetic signal from the oscillating string. This means that the spectral line from the string in the amplitude-modulated spectra of the HF signal, whose frequency position corresponds to a certain tire pressure or torque, now varies in strength depending on the rotation of the sensor. Thereby 513 392 4 information is also obtained about e.g. tire speed and angular course. This Information can e.g. is used to distinguish the tire signals coming from the own vehicle (which are normally all rotationally synchronized) from signals originating from other vehicles in the vicinity of the own vehicle and equipped with the same measuring system for tire pressure measurement.
Ytterligare exploatering och analys av den här beskrivna nya principen och dess utnyttjande i ett mätsystem är naturligtvis möjlig och anses därför som omfattad av denna uppfinning. ilFurther exploitation and analysis of the new principle described here and its utilization in a measurement system is of course possible and is therefore considered to be covered by this invention. il
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9801892A SE513392C2 (en) | 1998-05-26 | 1998-05-26 | Method and device for contactless detection via modulation of electromagnetic signal by measuring magnitude controlled mechanical resonance |
PCT/SE1999/001000 WO2001073389A1 (en) | 1998-05-26 | 1999-06-08 | Sensor for non-contacting detection via modulation of electromagnetic signal through by measurement entity controlled mechanical resonance |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9801892A SE513392C2 (en) | 1998-05-26 | 1998-05-26 | Method and device for contactless detection via modulation of electromagnetic signal by measuring magnitude controlled mechanical resonance |
PCT/SE1999/001000 WO2001073389A1 (en) | 1998-05-26 | 1999-06-08 | Sensor for non-contacting detection via modulation of electromagnetic signal through by measurement entity controlled mechanical resonance |
Publications (3)
Publication Number | Publication Date |
---|---|
SE9801892D0 SE9801892D0 (en) | 1998-05-26 |
SE9801892L SE9801892L (en) | 1999-11-27 |
SE513392C2 true SE513392C2 (en) | 2000-09-04 |
Family
ID=26663316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE9801892A SE513392C2 (en) | 1998-05-26 | 1998-05-26 | Method and device for contactless detection via modulation of electromagnetic signal by measuring magnitude controlled mechanical resonance |
Country Status (2)
Country | Link |
---|---|
SE (1) | SE513392C2 (en) |
WO (1) | WO2001073389A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7397421B2 (en) | 2004-04-22 | 2008-07-08 | Smith Gregory C | Method for detecting acoustic emission using a microwave Doppler radar detector |
SE532175C2 (en) | 2008-02-13 | 2009-11-10 | Sondero Ab | Device for improved response when measuring vibration frequency of a vibrating object |
GB0821587D0 (en) | 2008-11-26 | 2008-12-31 | Rolls Royce Plc | Torque measurement |
GB0821588D0 (en) | 2008-11-26 | 2008-12-31 | Rolls Royce Plc | Strain measurement of rotating components |
GB0821592D0 (en) | 2008-11-26 | 2008-12-31 | Rolls Royce Plc | Strain measurement of rotating components |
US9234815B2 (en) | 2011-09-01 | 2016-01-12 | Volvo Lastvagnar Ab | Torque measuring system and a method thereof |
RU2014113161A (en) | 2011-09-06 | 2015-10-20 | Вольво Ластвагнар Аб | DEVICE AND METHOD FOR ADAPTING A CRUISE CONTROL SYSTEM ON A VEHICLE |
US20230093357A1 (en) * | 2021-09-21 | 2023-03-23 | Abb Schweiz Ag | Systems and methods of estimating torque, rotational speed, and overhung shaft forces using a machine learning model |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3914992A (en) * | 1974-08-12 | 1975-10-28 | Us Interior | Load measuring gage |
US3960009A (en) * | 1975-05-02 | 1976-06-01 | Roepke Wallace W | Rockbolt safety gage |
US4521684A (en) | 1982-02-22 | 1985-06-04 | The Foxboro Company | Optical measurement system with light-driven vibrating sensor element |
US4977784A (en) * | 1989-05-08 | 1990-12-18 | Sri International | Axle spindle load and torque sensing apparatus and method for sensing load and torque |
JPH0910902A (en) * | 1995-06-26 | 1997-01-14 | Nisshin Steel Co Ltd | Device for detecting rotation of roll |
US5747680A (en) * | 1996-04-10 | 1998-05-05 | Sundstrand Corporation | Multiple parameter sensor and method of operation thereof |
-
1998
- 1998-05-26 SE SE9801892A patent/SE513392C2/en unknown
-
1999
- 1999-06-08 WO PCT/SE1999/001000 patent/WO2001073389A1/en active Search and Examination
Also Published As
Publication number | Publication date |
---|---|
SE9801892D0 (en) | 1998-05-26 |
WO2001073389A8 (en) | 2002-02-07 |
WO2001073389A1 (en) | 2001-10-04 |
SE9801892L (en) | 1999-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pohl et al. | The" intelligent tire" utilizing passive SAW sensors measurement of tire friction | |
US5585571A (en) | Method and apparatus for measuring strain | |
EP1897076B1 (en) | Rfid to store saw calibration coefficients | |
US20150013461A1 (en) | Device and method for measuring physical parameters using saw sensors | |
EP2150790B1 (en) | Mechanical packaging of surface acoustic wave device for sensing applications | |
US20150011428A1 (en) | Array of Sensors with Surface Modifications | |
US6260415B1 (en) | System and method for material testing, material suitable for such testing and method for producing such material | |
Kalinin | Wireless physical SAW sensors for automotive applications | |
Liao et al. | Wireless monitoring of cable tension of cable-stayed bridges using PVDF piezoelectric films | |
SE513392C2 (en) | Method and device for contactless detection via modulation of electromagnetic signal by measuring magnitude controlled mechanical resonance | |
Wang et al. | Wireless transmission for health monitoring of large structures | |
CN116718102A (en) | Far-field passive wireless strain sensor and system for metal pipeline strain detection | |
Lin et al. | A study of wireless torque sensing based on SAW sensors | |
Reindl | Wireless passive sensors: Basic principles and performances | |
Buff | SAW sensors for direct and remote measurement | |
Merkulov et al. | SAW-based wireless measurements of the fast-varying deformations in rotating vibrating objects | |
EP1281056B1 (en) | Sensor for non-contacting detection via modulation of electromagnetic signal through by measurement entity controlled mechanical resonance | |
Kim et al. | Wireless health monitoring of cracks in structures with MEMS-IDT sensors | |
CN108988601B (en) | Spherical motor, and spherical motor position detection device and method | |
Reindl | Unwired SAW sensors systems | |
Cheng et al. | A multi-resolution wireless force sensing system based upon a passive SAW device | |
Hollinger et al. | Wireless surface-acoustic-wave-based humidity sensor | |
Varadan | Wireless microsensors for health monitoring of aircraft structures | |
Varadan et al. | Conformal and embedded IDT microsensors for health monitoring of structures | |
Xu et al. | Sensing Systems in Intelligent Tires |