SE513392C2 - Method and device for contactless detection via modulation of electromagnetic signal by measuring magnitude controlled mechanical resonance - Google Patents

Method and device for contactless detection via modulation of electromagnetic signal by measuring magnitude controlled mechanical resonance

Info

Publication number
SE513392C2
SE513392C2 SE9801892A SE9801892A SE513392C2 SE 513392 C2 SE513392 C2 SE 513392C2 SE 9801892 A SE9801892 A SE 9801892A SE 9801892 A SE9801892 A SE 9801892A SE 513392 C2 SE513392 C2 SE 513392C2
Authority
SE
Sweden
Prior art keywords
oscillating
oscillation
microwave signal
mechanical
measured quantity
Prior art date
Application number
SE9801892A
Other languages
Swedish (sv)
Other versions
SE9801892D0 (en
SE9801892L (en
Inventor
Carl Tyren
Original Assignee
Carl Tyren
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Tyren filed Critical Carl Tyren
Priority to SE9801892A priority Critical patent/SE513392C2/en
Publication of SE9801892D0 publication Critical patent/SE9801892D0/en
Priority to PCT/SE1999/001000 priority patent/WO2001073389A1/en
Publication of SE9801892L publication Critical patent/SE9801892L/en
Publication of SE513392C2 publication Critical patent/SE513392C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Fluid Pressure (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

A method for contactless detection of preferably mechanic measuring quantities such as torque, force or pressure, characterised in that a measuring quantity actuates a mechanic resonance in a string shaped element and that said resonance is excited by naturally appearing vibrations or movements in the vicinity of the sensor. The sensor is radiated with for instance microwave energy and a modulation of the microwave signal caused by the mechanic oscillation of the string element of the sensor. The distance between the sensor and the microwave transceiver can be > 10 m.

Description

15 20 25 30 513 392 2 “vibrating string” princip. Genom ett trivialt mekaniskt arrangemang omsätts det tryck vilket önskas mätas in en motsvarande mekanisk spänning i en sträng vil- ken exciteras vid sin resonansfrekvens. Mätning av denna resonansfrekvens sker lokalt inom trycksensoms hus genom t.ex. induktiv teknik. 15 20 25 30 513 392 2 “vibrating string” principle. Through a trivial mechanical arrangement, the pressure which it is desired to measure is converted into a corresponding mechanical stress in a string which is excited at its resonant frequency. Measurement of this resonant frequency takes place locally within the pressure sensor housing by e.g. inductive technology.

Genom en kombination av mekanisk HF modulering och den redan kända "vib- rating string” trycksensor-principen kan en ny trycksensor för teledetektering konstrueras, nämligen (Fig 1) bestående av: ett tryckkännande element (t.ex. en membranbälg) kopplat till ett mekaniskt re- sonanselement vars frekvens därigenom styres (t.ex. en gitarrsträng) en mekanisk excitationssignal för excitering av den mekaniska resonanssväng- ningen (t.ex vibrationer frän vägbana och motorfordon i applikationen däck- tryckssensor) en radio-sändare/mottagare med amplituddemodulator och efterföljande signal- omvandling frän AM till tryck.By a combination of mechanical HF modulation and the already known "vibration rating string" pressure sensor principle, a new pressure sensor for remote detection can be constructed, namely (Fig. 1) consisting of: a pressure sensing element (eg a diaphragm bellows) connected to a mechanical resonant element whose frequency is thereby controlled (eg a guitar string) a mechanical excitation signal for excitation of the mechanical resonant oscillation (eg vibrations from roadway and motor vehicle in the tire pressure sensor application) a radio transmitter / receiver with amplitude demodulator and subsequent signal conversion from AM to pressure.

Ett identiskt förfarande kan nu också användas för mätning av vridmoment (Fig 2). En strängelement anbringas mellan två punkter längs en huvudspännings- linje på den axel vars vridmoment önskas mätas. Strängen anbringas fritt över axelytan så att den kan bringas i resonansoscillation - t.ex. genom naturligt före- kommande vibrationer 1 axeln eller genom en anslagsexcitering genom axelns rotation.An identical method can now also be used for measuring torque (Fig. 2). A string element is applied between two points along a main voltage line on the shaft whose torque is desired to be measured. The string is applied freely over the shaft surface so that it can be brought into resonant oscillation - e.g. by naturally occurring vibrations in the shaft or by an impact excitation by the rotation of the shaft.

Strängen ges en mekanisk förspänning så att dess resonansfrekvens kan styras upp eller ner beroende på drag- eller tryckspänningar längs vald töjningslinje.The string is given a mechanical bias so that its resonant frequency can be controlled up or down depending on tensile or compressive stresses along the selected elongation line.

Genom att anbrlnga flera strängar på samma axel i olika töjningsriktningar och avstämda till olika frekvensband (genom att ge dem olika längd, förspänningsni- 20 25 30 513 392 3 vå, massbelastning, etc) kan axelns fullständiga mekaniska spänningstillstånd avkännas beröringsfritt och på ett ansenligt avstånd.By applying your strings to the same shaft in different elongation directions and tuned to different frequency bands (by giving them different lengths, bias levels, mass loads, etc.), the complete mechanical stress state of the shaft can be sensed without contact and at a considerable distance. .

Genom att utnyttja ett elem_ent vars mekaniska form ändras med dess tempera- tur och genom att, enligt ovan beskrivna förfarande, koppla detta för styming av en mekanisk resonansfrekvens kan en telemetrisk temperatursensor också framställas enligt den här beskrivna nya principen.By utilizing an element whose mechanical shape changes with its temperature and by, according to the method described above, coupling this for controlling a mechanical resonant frequency, a telemetric temperature sensor can also be manufactured according to the new principle described here.

Mätning och övervakning av mekaniska vibrationer är ett betydande teknikom- ràde. Här erbjuder den nya radiotekniken en mångfald möjligheter. Ett vibreran- de objekt kan direkt bestrålas med elektromagnetiska signaler och den av den mekaniska rörelsen introducerade modulationen analyseras. Altemativt kan tex. antennformiga trådelement anbringas på en vibrerande struktur i särskilt intres- santa mätpunkter.Measurement and monitoring of mechanical vibrations is a significant area of technology. Here, the new radio technology offers a variety of possibilities. A vibrating object can be directly irradiated with electromagnetic signals and the modulation introduced by the mechanical movement is analyzed. Alternatively, e.g. antenna-shaped wire elements are applied to a vibrating structure at particularly interesting measuring points.

En akustisk signal vilken försätter ett enkelt membran i svängning medger, enligt den nya principen, i sig själv en mikrofonfunktion.An acoustic signal which sets a simple diaphragm in oscillation allows, according to the new principle, in itself a microphone function.

För stränginstrument, igen med exemplet gitarr, erbjuds ett nytt förfarande för omvandling frän mekanisk/akustisk till elektrisk signal för vidare behandling och distribution i ljudanläggningssystem.For stringed instruments, again with the guitar example, a new method is offered for conversion from mechanical / acoustic to electrical signal for further processing and distribution in sound system systems.

För bl.a. applikationema vridmoment- och däcktrycksmätning kan ytterligare en effekt utnyttjas i syfte att förhöja detekteringssäkerheten och för att erhålla ytter- ligare Infomation såsom varvtal och vinkelförlopp. När den oscillerande sträng- en sensom också bringas att rotera ändras därmed dess antennaspekt relativt detekteringssystemets sändar/mottagarantenner vilket resulterar i en överlagrad mod ulering av totalstyrkan iden elektromagnetiska signalen från den oscilleran- de strängen. Detta innebär att spektrallinjen från strängen i HF signalens ampli- tuddemodulerade spektra, vars frekvensposition motsvarar ett visst däcktryck eller vridmoment, nu varierari styrka avhängighet till sensorns rotation. Därige- 513 392 4 nom erhålles också information om t.ex. däckets varvtal och vinkelförlopp. Den- na Information kan t.ex. utnyttjas för att särskilja de fràn det egna fordonet kommande däcksignaler (vilka normalt alla är rotationsmässigt synkroniserade) från signaler härrörande från andra fordon i det egna fordonets närhet och ut- rustade med samma mätsystem för däcktrycksmätning.For i.a. In the torque and tire pressure measurement applications, an additional effect can be used in order to increase the detection reliability and to obtain additional information such as speed and angular course. When the oscillating string sensor is also caused to rotate, its antenna aspect changes relative to the transmitting / receiving antennas of the detection system, which results in a superimposed modulation of the total strength of the electromagnetic signal from the oscillating string. This means that the spectral line from the string in the amplitude-modulated spectra of the HF signal, whose frequency position corresponds to a certain tire pressure or torque, now varies in strength depending on the rotation of the sensor. Thereby 513 392 4 information is also obtained about e.g. tire speed and angular course. This Information can e.g. is used to distinguish the tire signals coming from the own vehicle (which are normally all rotationally synchronized) from signals originating from other vehicles in the vicinity of the own vehicle and equipped with the same measuring system for tire pressure measurement.

Ytterligare exploatering och analys av den här beskrivna nya principen och dess utnyttjande i ett mätsystem är naturligtvis möjlig och anses därför som omfattad av denna uppfinning. ilFurther exploitation and analysis of the new principle described here and its utilization in a measurement system is of course possible and is therefore considered to be covered by this invention. il

Claims (1)

1. 5 20 25 30 att att att att 513 392 PATENTKRAV Förfarande för detektering av en mätstorhet hos ett objekt, kännetecknatav ett med objektet förbundet svängningselement bestrålas med en mikro- vågssignal, nämnda mätstorhet styr en hos svängningselementet uppträdande meka- nisk svängningsrörelse, svängningsrörelsen detekteras som en modulering av mikrovàgssignalen från svängningselementet, den mekaniska svängningsrörelsen exciteras av naturligt förekommande mekanisk energi tillgänglig i dess omedelbara omgivning. Förfarande enligt krav 1 k ä n n e t e c k n a t av att mätstorheten styr en mekanisk resonansfrekvens. Förfarande enligt krav 1 och 2, k ä n n e t e c k n a t av att mätstorheten är ett gas eller vätsketryck. Förfarande enligt krav 1 och 2, k ä n n e t e c k n a t av att mätstorheten är ett vridmoment. Förfarande enligt krav 1 och 2, k ä n n e t e c k n a t av att mätstorheten är en temperatur. _ _ Förfarande enligt krav 2, k ä n n e t e c k n a t av att flera mätstorheter samtidigt detekteras genom att de genom dessa styrda resonansfrek- venserna ej sammanfaller. 10 15 20 25 30 att att att att att 10. 11. 12. 513 392 6 Förfarande enligt krav 1, k ä n n e t e c k n a t av variationeri intensiteten hos mikrovågssignalen från svängningselementet utnyttjas för att detektera en rotation hos svängningselementet. Förfarande enligt krav 1 och 7, k ä n n e t e c k n a t av att dylika intensi- tetsvariationer utnyttjas för att relatera flera roterande svängningselement intill varandra. Anordning för detektering av en mätstorhet hos ett objekt, k ä n n e - te c k n a d av en mikrovågssändare är anordnad för bestràlning av ett med objektet för- bundet svängningselement med en mikrovàgssignal, svängningselementet är förbundet med objektet, så att nämnda mätstorhet styr en hos svängningselementet uppträdande mekanisk svängningsrörel- se, organ är anordnade för mottagning av en mikrovàgssignal från sväng- ningselementet och för detektering av en av svängningsrörelsen introduce- rad modulering av den mottagna mikrovågssignalen, svängningselementet är mekaniskt inrättat för att exciteras av den naturligt förekommande mekanisk energi som är tillgänglig i svängningselementets omedelbara omgivning. Anordning enligt krav 9, varvid svängningselementet är strängformigt. Anordning enligt krav 10, varvid det strängformade elementet är anordnat att utföra en transversal resonanssvängning. Anordning enligt krav 9, varvid det strängforrnade elementet är mekaniskt förspänt.A method for detecting a measured quantity of an object, characterized in that an oscillating element connected to the object is irradiated with a microwave signal, said measuring quantity controlling a mechanical oscillating movement occurring at the oscillating element, the oscillating movement as a modulation of the microwave signal from the oscillating element, the mechanical oscillating motion is excited by naturally occurring mechanical energy available in its immediate vicinity. Method according to Claim 1, characterized in that the measured quantity controls a mechanical resonant frequency. Method according to claims 1 and 2, characterized in that the measured quantity is a gas or liquid pressure. Method according to claims 1 and 2, characterized in that the measured quantity is a torque. Method according to claims 1 and 2, characterized in that the measured quantity is a temperature. _ _ A method according to claim 2, characterized in that ät your measured quantities are simultaneously detected by the resonance frequencies controlled by these not coinciding. The method according to claim 1, characterized by the variation in the intensity of the microwave signal from the oscillating element is used to detect a rotation of the oscillating element. Method according to claims 1 and 7, characterized in that such intensity variations are used to relate rot your rotating oscillating elements next to each other. Device for detecting a measured quantity of an object, characterized by a microwave transmitter, is arranged for irradiating an oscillation element connected to the object with a microwave signal, the oscillation element is connected to the object, so that said measuring quantity controls an oscillation element mechanical oscillation movement, means are provided for receiving a microwave signal from the oscillation element and for detecting a modulation of the received microwave signal introduced by the oscillation movement, the oscillation element is mechanically arranged to be excited by the naturally occurring mechanical energy available in the immediate vicinity of the oscillating element. Device according to claim 9, wherein the pivoting element is string-shaped. Device according to claim 10, wherein the strand-shaped element is arranged to perform a transverse resonant oscillation. Device according to claim 9, wherein the strand-shaped element is mechanically prestressed.
SE9801892A 1998-05-26 1998-05-26 Method and device for contactless detection via modulation of electromagnetic signal by measuring magnitude controlled mechanical resonance SE513392C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE9801892A SE513392C2 (en) 1998-05-26 1998-05-26 Method and device for contactless detection via modulation of electromagnetic signal by measuring magnitude controlled mechanical resonance
PCT/SE1999/001000 WO2001073389A1 (en) 1998-05-26 1999-06-08 Sensor for non-contacting detection via modulation of electromagnetic signal through by measurement entity controlled mechanical resonance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9801892A SE513392C2 (en) 1998-05-26 1998-05-26 Method and device for contactless detection via modulation of electromagnetic signal by measuring magnitude controlled mechanical resonance
PCT/SE1999/001000 WO2001073389A1 (en) 1998-05-26 1999-06-08 Sensor for non-contacting detection via modulation of electromagnetic signal through by measurement entity controlled mechanical resonance

Publications (3)

Publication Number Publication Date
SE9801892D0 SE9801892D0 (en) 1998-05-26
SE9801892L SE9801892L (en) 1999-11-27
SE513392C2 true SE513392C2 (en) 2000-09-04

Family

ID=26663316

Family Applications (1)

Application Number Title Priority Date Filing Date
SE9801892A SE513392C2 (en) 1998-05-26 1998-05-26 Method and device for contactless detection via modulation of electromagnetic signal by measuring magnitude controlled mechanical resonance

Country Status (2)

Country Link
SE (1) SE513392C2 (en)
WO (1) WO2001073389A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7397421B2 (en) 2004-04-22 2008-07-08 Smith Gregory C Method for detecting acoustic emission using a microwave Doppler radar detector
SE532175C2 (en) 2008-02-13 2009-11-10 Sondero Ab Device for improved response when measuring vibration frequency of a vibrating object
GB0821587D0 (en) 2008-11-26 2008-12-31 Rolls Royce Plc Torque measurement
GB0821588D0 (en) 2008-11-26 2008-12-31 Rolls Royce Plc Strain measurement of rotating components
GB0821592D0 (en) 2008-11-26 2008-12-31 Rolls Royce Plc Strain measurement of rotating components
US9234815B2 (en) 2011-09-01 2016-01-12 Volvo Lastvagnar Ab Torque measuring system and a method thereof
RU2014113161A (en) 2011-09-06 2015-10-20 Вольво Ластвагнар Аб DEVICE AND METHOD FOR ADAPTING A CRUISE CONTROL SYSTEM ON A VEHICLE
US20230093357A1 (en) * 2021-09-21 2023-03-23 Abb Schweiz Ag Systems and methods of estimating torque, rotational speed, and overhung shaft forces using a machine learning model

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914992A (en) * 1974-08-12 1975-10-28 Us Interior Load measuring gage
US3960009A (en) * 1975-05-02 1976-06-01 Roepke Wallace W Rockbolt safety gage
US4521684A (en) 1982-02-22 1985-06-04 The Foxboro Company Optical measurement system with light-driven vibrating sensor element
US4977784A (en) * 1989-05-08 1990-12-18 Sri International Axle spindle load and torque sensing apparatus and method for sensing load and torque
JPH0910902A (en) * 1995-06-26 1997-01-14 Nisshin Steel Co Ltd Device for detecting rotation of roll
US5747680A (en) * 1996-04-10 1998-05-05 Sundstrand Corporation Multiple parameter sensor and method of operation thereof

Also Published As

Publication number Publication date
SE9801892D0 (en) 1998-05-26
WO2001073389A8 (en) 2002-02-07
WO2001073389A1 (en) 2001-10-04
SE9801892L (en) 1999-11-27

Similar Documents

Publication Publication Date Title
Pohl et al. The" intelligent tire" utilizing passive SAW sensors measurement of tire friction
US5585571A (en) Method and apparatus for measuring strain
EP1897076B1 (en) Rfid to store saw calibration coefficients
US20150013461A1 (en) Device and method for measuring physical parameters using saw sensors
EP2150790B1 (en) Mechanical packaging of surface acoustic wave device for sensing applications
US20150011428A1 (en) Array of Sensors with Surface Modifications
US6260415B1 (en) System and method for material testing, material suitable for such testing and method for producing such material
Kalinin Wireless physical SAW sensors for automotive applications
Liao et al. Wireless monitoring of cable tension of cable-stayed bridges using PVDF piezoelectric films
SE513392C2 (en) Method and device for contactless detection via modulation of electromagnetic signal by measuring magnitude controlled mechanical resonance
Wang et al. Wireless transmission for health monitoring of large structures
CN116718102A (en) Far-field passive wireless strain sensor and system for metal pipeline strain detection
Lin et al. A study of wireless torque sensing based on SAW sensors
Reindl Wireless passive sensors: Basic principles and performances
Buff SAW sensors for direct and remote measurement
Merkulov et al. SAW-based wireless measurements of the fast-varying deformations in rotating vibrating objects
EP1281056B1 (en) Sensor for non-contacting detection via modulation of electromagnetic signal through by measurement entity controlled mechanical resonance
Kim et al. Wireless health monitoring of cracks in structures with MEMS-IDT sensors
CN108988601B (en) Spherical motor, and spherical motor position detection device and method
Reindl Unwired SAW sensors systems
Cheng et al. A multi-resolution wireless force sensing system based upon a passive SAW device
Hollinger et al. Wireless surface-acoustic-wave-based humidity sensor
Varadan Wireless microsensors for health monitoring of aircraft structures
Varadan et al. Conformal and embedded IDT microsensors for health monitoring of structures
Xu et al. Sensing Systems in Intelligent Tires