SE502884C2 - Process and appts. for recovery of plastics and/or metal - Google Patents

Process and appts. for recovery of plastics and/or metal

Info

Publication number
SE502884C2
SE502884C2 SE9401286A SE9401286A SE502884C2 SE 502884 C2 SE502884 C2 SE 502884C2 SE 9401286 A SE9401286 A SE 9401286A SE 9401286 A SE9401286 A SE 9401286A SE 502884 C2 SE502884 C2 SE 502884C2
Authority
SE
Sweden
Prior art keywords
plastic
aluminum
metal
centrifuge
melt
Prior art date
Application number
SE9401286A
Other languages
Swedish (sv)
Other versions
SE9401286L (en
SE9401286D0 (en
Inventor
Lage Knutsson
Original Assignee
Graenges Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graenges Ab filed Critical Graenges Ab
Priority to SE9401286A priority Critical patent/SE502884C2/en
Publication of SE9401286D0 publication Critical patent/SE9401286D0/en
Publication of SE9401286L publication Critical patent/SE9401286L/en
Publication of SE502884C2 publication Critical patent/SE502884C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0217Mechanical separating techniques; devices therefor
    • B29B2017/0231Centrifugating, cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0255Specific separating techniques using different melting or softening temperatures of the materials to be separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/003Layered products comprising a metal layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

Method for the recovery of metal and/or plastic from an opt. fragmented mixed material comprises heating to melt the plastic, then subjecting the melt to centrifugal force to enrich the metal and plastic content, and then treating the opt. solidified enriched melt to recover the metal and/or plastic. The appts. for carrying out the method is also claimed.

Description

502 884 2 för att lösa plasten och återvinna de icke lösbara komponenterna. 502 884 2 to dissolve the plastic and recycle the insoluble components.

Ett liknande förfarande beskrivs i Rohstoff/Rundschau 18/1992 s667-668. Där löses polyetendelen i ett lösningsmedel vid förhöjd temperatur varefter aluminiumdelen separeras genom filtrering.A similar procedure is described in Rohstoff / Rundschau 18/1992 s667-668. There, the polyethylene part is dissolved in a solvent at elevated temperature, after which the aluminum part is separated by filtration.

Vidarebehandlingen av den tjockflytande polyetenlösningen anges vara omständlig och svår. En ytterligare metod beksrivs i JP 51020159 där ett flotationsförfarande används för att separera plast och aluminium som härrör från ett aluminium/plast-laminat.The further treatment of the viscous polyethylene solution is stated to be cumbersome and difficult. A further method is described in JP 51020159 where a flotation process is used to separate plastic and aluminum derived from an aluminum / plastic laminate.

Uppenbarligen har dessa metoder ej funnit någon större användning vilken förutom bristfällig källsortering av använda förpackningar i sopor förmodligen kan förklaras med att metoderna har tekniska brister. Användningen av lösningsmedel enligt JP 51020976 torde således förorsaka större miljöproblem än vad som kan vinnas genom återvinningen av aluminiumet, under det att en fullständig mekanisk separation enligt JP 52112673, vilket även torde vara en förutsättning vid metoden enligt JP 51020159, är svår att åstadkomma på grund av vidhäftningen mellan de olika skikten.Obviously, these methods have not found any major use, which in addition to inadequate source sorting of used packaging in waste can probably be explained by the fact that the methods have technical shortcomings. The use of solvents according to JP 51020976 is thus likely to cause greater environmental problems than can be achieved by the recycling of the aluminum, while a complete mechanical separation according to JP 52112673, which is also a prerequisite for the method according to JP 51020159, is difficult to achieve due to of the adhesion between the different layers.

I samband med den allt strängare lagstiftning med högre krav på materialåtervinning av bl.a. använda förpackningar som nu införs i olika länder har behovet av ny teknik accentuerats.In connection with the increasingly stringent legislation with higher requirements for material recycling of e.g. used packaging that is now being introduced in different countries, the need for new technology has been accentuated.

Föreliggande uppfinning har till ändamål att åstadkomma en metod som möjliggör att aluminium och plast på ett enkelt sätt separeras så att en aluminiumfri plastfraktion och en aluminiumfraktion med lågt plastinnehåll erhålls. Detta ernås medelst en metod och en anordning som har erhållit de i patentkraven angivna kännetecknen.The object of the present invention is to provide a method which enables aluminum and plastic to be separated in a simple manner so that an aluminum-free plastic fraction and an aluminum fraction with a low plastic content are obtained. This is achieved by means of a method and a device which have obtained the features stated in the claims.

Metoden innefattar värmning av till lämplig storlek fragmenterat plast/aluminium-laminat i inert atmosfär till en temperatur som ligger väsentligt under aluminiums smältpunkt men vid vilken plasten är lättflytande. Samtidigt skall plastens molekylstruktur i största grad bibehållas. Detta kan ske genom lämpligt val av tid, temperatur och atmosfär. Likaså kan stabilisatorer användas för att minska polymermolekylernas nedbrytning, såsom oxidation och klippning av molekylkedjor. Ur blandningen av plastsmälta och aluminiumflagor separeras aluminium genom centrifugering. Aluminiums densitet är ca 3 gånger den hos plastmaterial vid den aktuella temperaturen.The method involves heating the appropriately sized fragmented plastic / aluminum laminate in an inert atmosphere to a temperature which is substantially below the melting point of the aluminum but at which the plastic is readily flowable. At the same time, the molecular structure of the plastic must be largely maintained. This can be done by appropriate choice of time, temperature and atmosphere. Stabilizers can also be used to reduce the degradation of polymer molecules, such as oxidation and cleavage of molecular chains. From the mixture of molten plastic and aluminum flakes, aluminum is separated by centrifugation. The density of aluminum is about 3 times that of plastic material at the current temperature.

Ytterligare detaljer framgår av de angivna exemplen med 502 884 3 hänvisning till genomförda prov.Further details are given in the examples given with reference to completed tests.

Några exempel kommer nu att beskrivas med hänvisning till bifogade ritningar i vilka fig. 1 och 2 i diagramform visar molekylviktsfördelningen för de i exemplen angivna proverna under det att fig. 3 schematiskt visar en anordning avsedd att användas vid metoden enligt uppfinningen.Some examples will now be described with reference to the accompanying drawings in which Figures 1 and 2 show in diagrammatic form the molecular weight distribution of the samples given in the examples, while Figure 3 schematically shows a device intended for use in the method according to the invention.

Exempel 1 Ett förpackningslaminat av typ kartong/aluminiumfolie/- polyeten med viktandelarna ca 75/5/20% hade tidigare behandlats i en process där kartongdelen tagits om hand för materialåter- vinning i en våt process. Restmaterialet aluminiumfolie/polyeten utgjorde utgångsmaterialet för försöket. Tjockleken hos aluminiumfolien var 6-7 pm. Materialet var tidigare fragmenterat till ca 0,5 cm: stora flingor. Efter torkning bestämdes viktsandelen aluminium till 23%. Resten antogs vara polyeten. I ett provrör av glas med 40 mm diamter värmdes totalt 58 g av detta material. På grund av materialets volumniösa karaktär fick detta göras i fyra omgångar om ca 15 g per gång. Vid värmningen var provrörets nedre del nedsänkt i ett smält tennbad med temperaturen 360°C. Härvid smälter laminatets polyetendel.Example 1 A packaging laminate of the cardboard / aluminum foil / polyethylene type with the weight proportions of about 75/5/20% had previously been treated in a process where the cardboard part was taken care of for material recycling in a wet process. The residual material aluminum foil / polyethylene was the starting material for the experiment. The thickness of the aluminum foil was 6-7 μm. The material was previously fragmented into about 0.5 cm: large flakes. After drying, the weight fraction of aluminum was determined to be 23%. The remainder was assumed to be polyethylene. A total of 58 g of this material was heated in a glass test tube with a diameter of 40 mm. Due to the voluminous nature of the material, this had to be done in four batches of about 15 g at a time. During heating, the lower part of the test tube was immersed in a molten tin bath with a temperature of 360 ° C. The polyethylene part of the laminate melts.

Kvävgas tillfördes samtidigt i provöret för att erhålla en miljö som var mindre oxiderande än luft. Mellan delsmältningarna fördes provröret med varmt innehåll över till en laboratoriecentrifug och centrifuge-rades under 5 min vid varvtalet 3000 rpm. Vid flyttningen av provet och vid centrifugeringen var provröret värmeisolerat så att temperaturen kunde bibehållas i möjligaste mån. Likaså hölls provröret förslutet för att minska kontakten med luftsyre. Efter centrifugeringen krossades provröret och det svalnade provet undersöktes. Övre delen av provet bestod av plast utan några rester av aluminium. Plasten var emellertid brunfärgad. Den undersöktes inte vidare. Nedre delen av provet var anrikat på aluminium; ju närmare provrörets botten i allt högre grad. Av den mest anrikade delen smältes 25 g tillsammans med en slaggbildare (Montanalsalt) i en grafitdegel vid 700 °C.Nitrogen gas was added simultaneously in the test tube to obtain an environment that was less oxidizing than air. Between meltings, the hot tube test tube was transferred to a laboratory centrifuge and centrifuged for 5 minutes at 3000 rpm. During the movement of the sample and during the centrifugation, the test tube was thermally insulated so that the temperature could be maintained as much as possible. The test tube was also kept closed to reduce contact with atmospheric oxygen. After centrifugation, the test tube was crushed and the cooled sample was examined. The upper part of the sample consisted of plastic without any remnants of aluminum. However, the plastic was brown. It was not further investigated. The lower part of the sample was enriched in aluminum; the closer to the bottom of the test tube to an increasing degree. Of the most enriched part, 25 g were melted together with a slag former (Montanal salt) in a graphite crucible at 700 ° C.

Härvid utvanns totalt 6,8 g aluminium.A total of 6.8 g of aluminum was recovered.

Exempel 2 Ett försök liknande Exempel 1 gjordes med en typ av 502 884 4 aluminium/plastlaminat som används för vakuumförpackning av kaffe. Detta laminat.består'av'polyesterfilm/aluminiumfolie/poly- etenfilm med viktandelarna ca 10/20/70 %. Aluminiumfoliens tjocklek var"7 pm. Under samma betingelser som angivits ovan smältes sammanlagt 82 g laminat i tre omgångar. Även i detta fall separerades plast och aluminium väl. Vid smältning av det mest anrikade aluminiumet i grafitdegel med montanalsalt utvanns 4,4 g aluminium.Example 2 An experiment similar to Example 1 was made with a type of 502 884 aluminum / plastic laminate used for vacuum packaging of coffee. This laminate consists of a polyester film / aluminum foil / polyethylene film with parts by weight of about 10/20/70%. The thickness of the aluminum foil was 7 .mu.m. Under the same conditions as stated above, a total of 82 g of laminate was melted in three batches. In this case, too, plastic and aluminum were separated well.

Exempel 3 Material av samma typ som i Exempel 1 behandlades på i princip samma sätt som där. Av totalt ca 300 g material som anrikades i omgångar, smältes ca 35 g av den aluminiumrika delen och därur utvanns ca 14 g aluminium. Vid analys visade sig detta ha en sammansättning som överensstämmer med kraven för olegerat aluminium 99,0 % (SS 4010, AA 1200) utom vad gäller Sn-halten, 0,4 %, som bedömdes vara förorening från tennsmältan.Example 3 Materials of the same type as in Example 1 were treated in basically the same way as there. Of a total of about 300 g of material which was enriched in batches, about 35 g of the aluminum-rich part was melted and about 14 g of aluminum was extracted therefrom. On analysis, this was found to have a composition that complies with the requirements for unalloyed aluminum 99.0% (SS 4010, AA 1200) except for the Sn content, 0.4%, which was judged to be contamination from the tin melt.

Ca 50 g av det aluminiumfria, stelnande plastmaterialet i provrörets övre del delades sönder till ca 1 cm3 stora bitar.About 50 g of the aluminum-free, solidifying plastic material in the upper part of the test tube was divided into pieces about 1 cm3 in size.

Materialets färg var ljusbrunt, pâminnande om bivax. Det var ganska mjukt och lät sig lätt täljas. Materialet gavs beteckningen "Prov' R". Vid SEC-analys (SEC == Size-exclusion Liquid Chromatography) konstaterades att molekylvikten Mn (antalsmedelvärde) var ca 4700, under det att ett bra polyetenmaterial bör ha Mn = 10 000 - 15 000. De faktorer som starkast medverkat till nedbrytningen av polymeren har bedömts vara hög temperatur, lång tid och relativt hög syrgashalt i atmosfären.The color of the material was light brown, reminiscent of beeswax. It was quite soft and easy to carve. The material was designated "Sample 'R". In SEC analysis (SEC == Size-exclusion Liquid Chromatography) it was found that the molecular weight Mn (number average) was about 4700, while a good polyethylene material should have Mn = 10,000 - 15,000. The factors that most strongly contributed to the degradation of the polymer has been judged to be high temperature, long time and relatively high oxygen content in the atmosphere.

I de ovan beskrivna försöken har visats att principen fungerar. Det går således att separera plast och aluminium genom centrifugering vid hög temperatur. Emellertid behövde försökstekniken förbättras så att polymeren mer effektivt skcnades från nedbrytning. Försök gjordes därför med en effektivare avskärmning av omgivande luftsyre, sänkning av temperaturen samt användning av oxidationsstabilisatorer.In the experiments described above, it has been shown that the principle works. It is thus possible to separate plastic and aluminum by centrifugation at high temperature. However, the experimental technique needed to be improved so that the polymer was more effectively separated from degradation. Experiments were therefore made with a more effective shielding of ambient air oxygen, lowering the temperature and the use of oxidation stabilizers.

FÖRBÄTTRAD FöRsöKsTEKNIK I ett ca 140 mm lång, tjockväggigt provrör med diametern 502 884 Dy/di 22/18 mm värmdes provmaterial av samma typ som i tidigare exempel till 200°C i ett termostaterat värmeblock. En väsentlig skillnad mot tidigare var att provmaterialet i flertalet försök försetts med ca 0,2 viktsprocent av oxidationsstabilisatorn Irganox B561 (Ciba-Geigy) i avsikt att minska polymerens nedbrytning.IMPROVED EXPERIMENTAL TECHNIQUE In an approximately 140 mm long, thick-walled test tube with a diameter of 502 884 Dy / di 22/18 mm, test material of the same type as in previous examples was heated to 200 ° C in a thermostated heating block. A significant difference from the previous one was that in most experiments the sample material was provided with about 0.2% by weight of the oxidation stabilizer Irganox B561 (Ciba-Geigy) in order to reduce the degradation of the polymer.

Som skyddsgas användes i detta fall koldioxid i stället för kvävgas. Skälet är att koldioxid i motsats till kväve har högre densitet än luft och därför bedömts ge bättre skyddsverkan vid den aktuella provningen.In this case, carbon dioxide was used as shielding gas instead of nitrogen gas. The reason is that carbon dioxide, in contrast to nitrogen, has a higher density than air and is therefore judged to provide a better protective effect in the test in question.

Provrör med provmaterial genomspolades under den 11 min långa uppvärmningen med skyddsgas. Det varma (klibbiga) provet kunde utan svårighet kompakteras till ca en tredjedel av dess tidigare volym med hjälp av en rundstav med diametern 17 mm och spolades sedan under ytterligare 4 min med skyddgas. Därefter förseglades provrörets öppna ände. Provröret togs därefter upp och fick svalna i förseglat skick.Test tubes with test material were purged during the 11 minute heating with shielding gas. The hot (sticky) sample could be easily compacted to about one third of its previous volume using a 17 mm diameter round rod and then purged for an additional 4 minutes with shielding gas. Then the open end of the test tube was sealed. The test tube was then picked up and allowed to cool in a sealed condition.

Det förseglade provröret flyttades därefter till en elektriskt värmd degelugn för slutgiltig värmning inför centrifugeringen. Ugnsutrymmet runt provröret hade i förväg fyllts med koldioxid som skyddsgas. I ugnsutrymmet placerades provöret i ett liknande värmeblock som tidigare. Vid ett antal försök varierades såväl tid som temperatur för provet i ugnen.The sealed test tube was then moved to an electrically heated crucible furnace for final heating prior to centrifugation. The furnace space around the test tube had been pre-filled with carbon dioxide as a shielding gas. In the oven compartment, the test tube was placed in a similar heating block as before. In a number of experiments, both the time and temperature of the sample in the oven were varied.

Tiden valdes till 10 eller 20 min. Temperaturen varierades mellan 300 OCh 400°C.The time was chosen to be 10 or 20 minutes. The temperature was varied between 300 ° C and 400 ° C.

För att det skulle vara möjligt att genomföra centrifugering vid hög temperatur och undvika snabb svalning av provet fick speciella åtgärder vidtas. Centrifugens hållare av rostfritt stål fylldes med gipsmassa som fick stelna. Ett 30 mm cylindriskt hål borrades i gipskroppen. Hålet fodrades med isolerande filt av keramisk fiber till lämplig diameter för provröret. Före centrifugering förvärmdes gipskroppen. På detta sätt kunde provrören hållas varmare än annars under den 5 min långa centrifugeringstiden. Varvtalet höjdes till 4 000 rpm.In order to be able to carry out centrifugation at a high temperature and to avoid rapid cooling of the sample, special measures had to be taken. The stainless steel holder of the centrifuge was filled with gypsum mass which was allowed to solidify. A 30 mm cylindrical hole was drilled in the plaster body. The hole was lined with ceramic fiber insulating felt to the appropriate diameter for the test tube. Prior to centrifugation, the gypsum body was preheated. In this way, the test tubes could be kept warmer than otherwise during the 5 minute spinning time. The speed was increased to 4,000 rpm.

Medelradien från provet till rotationscentrum var 23 cm, vilket ger G~talet ca 4 100.The average radius from the sample to the center of rotation was 23 cm, giving the G ~ number about 4,100.

Exempel 4 Försök gjordes för att finna optimal temperatur för 502 884 6 processen. I Exempel 1-3 hade temperaturen 360 °C tillämpats och det bedömdes önskvärt att kunna använda en lägre processtemperatur. Vid försök med den förbättrade tekniken vid varierande temperatur från 300 °C och uppåt visade det sig att separation vid centrifugering ej erhölls vid 300, 330 eller 360 “C utan först vid 385 °C. Orsaken till detta är sannolikt högre viskositet (vid viss temperatur) hos plastfraktionen på grund av minskad nedbrytning till följd av den förbättrade processtekniken. För de fortsatta försöken har därför temperaturen 385 °C använts.Example 4 Attempts were made to find the optimum temperature for the process. In Examples 1-3, the temperature of 360 ° C had been applied and it was considered desirable to be able to use a lower process temperature. In experiments with the improved technique at varying temperatures from 300 ° C and upwards, it was found that separation by centrifugation was not obtained at 300, 330 or 360 ° C but only at 385 ° C. The reason for this is probably higher viscosity (at a certain temperature) of the plastic fraction due to reduced degradation due to the improved process technology. For the further experiments, therefore, the temperature of 385 ° C has been used.

Exempel 5 Provmaterial av samma typ som i Exempel 1 (och 3) behandlades enligt den förbättrade tekniken vid 385 ”C och med 0,2 viktsprocent B56l varvid tiden i ugn var 20 eller 10 minuter (prov 14 resp. V31). I båda fallen hade den avskilda plastfraktionen betydligt ljusare färg än från Prov R i Exempel 3. Medelmolekylvikten Mn var 8 300 resp. 9 900. Detta exempel visar dels att materialet i prov 14 och 31 har brutits ned i väsentligt mindre omfattning än i prov R, dels att den kortare tiden i ugnen medfört mindre nedbrytning.Example 5 Sample materials of the same type as in Example 1 (and 3) were treated according to the improved technique at 385 ° C and with 0.2% by weight of B561, the oven time being 20 or 10 minutes (Sample 14 and V31, respectively). In both cases, the separated plastic fraction had a significantly lighter color than from Sample R in Example 3. The average molecular weight Mn was 8,300 resp. 9 900. This example shows that the material in samples 14 and 31 has decomposed to a much lesser extent than in sample R, and that the shorter time in the furnace has resulted in less decomposition.

Behandling Medelmolekylvikt Prov °C/min/stab. antalsmedelvärde sss/zo/sssi a zoo 14 sss/io/Bssi 9 900 31 Exempel 6 Syftet med detta försök var att fastställa hur mycket den termiska behandlingen egentligen påverkadeí materialet. Som provmaterial användes PE-granulat av den typ som används för den aktuella produkten. Granulatet processades enligt den förbättrade tekniken och på motsvarande sätt som laminaten.Treatment Average molecular weight Sample ° C / min / staff. number average sss / zo / sssi a zoo 14 sss / io / Bssi 9 900 31 Example 6 The purpose of this experiment was to determine how much the thermal treatment actually affected the material. PE granules of the type used for the product in question were used as sample material. The granules were processed according to the improved technique and in the same way as the laminates.

Medelmolekylvikten hos granulat som processats vid 385°C/ min och 385 °C/ 10 min dels utan, dels med tillsats av 0,2 viktsprocent B56l jämfördes med den hos ej processat granulat.The average molecular weight of granules processed at 385 ° C / min and 385 ° C / 10 minutes partly without, partly with the addition of 0.2% by weight of B561 was compared with that of unprocessed granules.

Följande resultat erhölls: 502 884 7 Behandling, Medelmolekylvikt, Prov °C/min/stab. antalsmedelvärde 385/20/---- 9 200 ll 385/l0/---- 12 500 26 385/10/B56l 13 600 29 ingen 18 650 0 Molekylviktsfördelningen för ovannämnda prover visas i diagramform i Figur 1 och 2, Resultaten visar vilken inverkan såväl kort processtid som tillsats av stabilisator har vid den aktuella applikationen.The following results were obtained: 502 884 7 Treatment, Mean molecular weight, Sample ° C / min / staff. number average 385/20 / ---- 9 200 ll 385 / l0 / ---- 12 500 26 385/10 / B56l 13 600 29 none 18 650 0 The molecular weight distribution for the above samples is shown in diagram form in Figures 1 and 2, The results show what effect both short process time and the addition of stabilizer have on the current application.

Exempel 7 I avsikt att få en uppfattning om i hur hög grad PE- materialet förändrats vid användningen som förpackning gjordes en jämförelse av molekylvikten hos aktuell typ av granulat resp. använt laminat efter det att de utsatts för samma behandling (385/10/B561) enligt den ovan angivna förbättrade tekniken. Då blir jämförelsen denna: Utgångsmaterial Medelmolekylvikt, Prov antalsmedelvärde granulat 13 600 29 använt laminat 9 900 31 Resultatet indikerar att en åldring som lett till en påtaglig minskning av laminatmaterialets molekylvikt skett mellan tillverkningen och återvinningen av förpackningsmaterialet. Av resultaten i Exempel 6 framgår att molekylvikten hos granulat vid processen sänkts med 27%. Om motsvarande förhållande antas gälla för använt laminat så skulle dess molekylvikt före processen i prov 31 ha varit 13 560.Example 7 In order to get an idea of the extent to which the PE material has changed during use as a package, a comparison was made of the molecular weight of the current type of granulate resp. used laminates after being subjected to the same treatment (385/10 / B561) according to the above improved technique. Then the comparison is this: Starting material Average molecular weight, Sample number average granules 13 600 29 used laminate 9 900 31 The result indicates that an aging that led to a significant reduction in the molecular weight of the laminate material occurred between the manufacture and recycling of the packaging material. The results in Example 6 show that the molecular weight of granules in the process was reduced by 27%. If the corresponding ratio is assumed to apply to the laminate used, its molecular weight before the process in sample 31 would have been 13,560.

Här kan också nämnas att vid processing av använt laminat erhöll den omsmälta plasten en väsentlig mörkare färg än vid motsvarande försök med granulat. Detta bedöms främst bero på föroreningar av t.ex. tryckfärg från de använd förpackningarna. 502 884 8 Sammanfattning av de gjorda försöken - Försöken har således visat att det är möjligt att långtgående anrika aluminium ur sammansatta material exempelvis förpackningslaminat bestående av tunn aluminiumfolie och olika typer av termoplastiska polymera filmer genom uppvärmning i inert atmosfär följt av centrifugering vid förhöjd temperatur. Aluminiumandelen har vid enkla laboratorieförsök höjts från ca 20 % till över 60 % vilket avsevärt underlättar materialåtervinning av aluminiumet.It can also be mentioned here that when processing used laminate, the remelted plastic obtained a significantly darker color than in the corresponding experiments with granules. This is judged to be mainly due to pollutants of e.g. ink from the packages used. 502 884 8 Summary of the experiments performed - The experiments have thus shown that it is possible to extensively enrich aluminum from composite materials, for example packaging laminates consisting of thin aluminum foil and various types of thermoplastic polymeric films by heating in an inert atmosphere followed by centrifugation at elevated temperature. The proportion of aluminum has been increased in simple laboratory experiments from about 20% to over 60%, which considerably facilitates material recycling of the aluminum.

- Försök med materialåtervinning genom smältning av aluminiumet i anrikad fraktion enligt ovan har visat att omsmält aluminium med hög kvalitet kan erhållas.- Experiments with material recovery by melting the aluminum in enriched fraction as above have shown that remelted aluminum of high quality can be obtained.

- Visserligen erhålles en ej önskad nedbrytning av termoplasterna vid den tillämpade tekniken men återvunnet plastmaterial med den erhållna medelmolekylvikten kan anses ha en så pass acceptabel kvalitet att det kan användas som råmaterial för vissa typer av plastprodukter.Although an undesired degradation of the thermoplastics is obtained with the applied technique, recycled plastic material with the obtained average molecular weight can be considered to have such an acceptable quality that it can be used as raw material for certain types of plastic products.

Industrialisering av processen Industrialisering av det beskrivna förfarandet kan ske med användning av en anpassad dekantercentrifwg. Användningen av dekantercentrifuger är en beprövad teknik att separera t.ex. en fast fas från en flytande. Industriella dekantercentrifuger arbetar med volymandelen fast fast från mindre än l % upp till över 60 % och med arbetstemperaturer upp till 360°C och G-tal på upp till 10 000.Industrialization of the process Industrialization of the described process can take place using a custom decanter centrifuge. The use of decanter centrifuges is a proven technique to separate e.g. a solid phase from a liquid. Industrial decanter centrifuges operate with the volume fraction fixed from less than 1% up to over 60% and with operating temperatures up to 360 ° C and G-figures of up to 10,000.

Av flera möjliga anordningar för att genomföra ovannämnda förfarande visas schematiskt en i fig. 3. Utgångsmaterialet skall vara torrt. I annat fall skall en särskild torkning ske.Of several possible devices for carrying out the above-mentioned method, one is schematically shown in Fig. 3. The starting material should be dry. Otherwise a special drying must take place.

Materialet.matas från en påfyllningsanordning 10 exempelvis medelst en skruvtransportör ll in i en kammare 12 el dyl. som har en uppvärmningszon 13 och vidare till en dekantercentrifug 14.The material is fed from a filling device 10, for example by means of a screw conveyor 11 into a chamber 12 or the like. having a heating zone 13 and further to a decanter centrifuge 14.

Kammaren 12 har ett inlopp 15 för skyddsgas och är medelst en 502 884 9 sluss 16, som är anordnad i anslutning till påfyllningsanordningen 10, avskild från omgivningen.The chamber 12 has an inlet 15 for shielding gas and is separated from the surroundings by means of a lock 16, which is arranged in connection with the filling device 10.

Uppvärmningen i skyddsgasatmosfären skall ske på ett sådant sätt att materialet snabbt når processtemperatur. Elektromagnetisk (induktiv) uppvärmning kan vara en lämplig sådan teknik. Efter uppvärmningen matas blandningen medelst skruvtransportören 11 in i dekantercentrifugen 14 vars konstruktion är anpassas till den erforderliga arbetstemperaturen och till drift med skyddsgas.The heating in the shielding gas atmosphere must take place in such a way that the material quickly reaches the process temperature. Electromagnetic (inductive) heating may be a suitable such technique. After heating, the mixture is fed by means of the screw conveyor 11 into the decanter centrifuge 14, the construction of which is adapted to the required working temperature and to operation with shielding gas.

Den aluminiumrika fasen avgår via ett första utlopp 17 och samlas upp för att i en senare process förbehandlas inför omsmältning och materialåtervinning av aluminiumet.The aluminum-rich phase departs via a first outlet 17 and is collected for pre-treatment in a later process before remelting and material recycling of the aluminum.

Polymerandelen i aluminiumfraktionen bedöms bäst kunna nyttiggöras genom energiutvinning i samband med den nämnda förbehandlingen.The polymer fraction in the aluminum fraction is judged to be best utilized by energy recovery in connection with the said pretreatment.

Den flytande polymerfraktionen tillåts att svalna till lämplig temperatur för granulering och kan i form av granuler utgöra råvara för nya plastprodukter. Hur stor andel av plasten som bör kunna återvinnas framgår av följande teoretiska kalkyl med typiska viktandeler för Al och plast i laminat.Om aluminiumfraktionen anrikas till 60 % Al (och 40 % plast) så har därmed 92 % av plastinnehållet i ett 90/10-laminat (med 90 % plast och 10 % Al) separerats. För ett 80/20-laminat blir motsvarande separationsgrad 83% om aluminiumfraktionen anrikas till 60 % Al. Det är således en väsentlig del av det totala plastinnehållet som på detta sätt kan göras tillgängligt för materialåtervinning. För aluminium är materialåtervinning med högt utbyte möjligt även före anrikning, men är enklare att genomföra ju lägre plastandelen är.The liquid polymer fraction is allowed to cool to a suitable temperature for granulation and can in the form of granules constitute a raw material for new plastic products. The proportion of plastic that should be recyclable is shown in the following theoretical calculation with typical weight percentages for Al and plastic in laminate. If the aluminum fraction is enriched to 60% Al (and 40% plastic), then 92% of the plastic content in a 90 / 10- laminate (with 90% plastic and 10% Al) separated. For an 80/20 laminate, the corresponding degree of separation is 83% if the aluminum fraction is enriched to 60% Al. It is thus a significant part of the total plastic content that can in this way be made available for material recycling. For aluminum, high-yield material recycling is possible even before enrichment, but is easier to implement the lower the plastic content.

Claims (13)

502 884 10 Patentkrav502 884 10 Patent claims 1. Sätt att med utgångspunkt från sammansatta material innehållande åtminstone plast och metall utvinna åtminstone en del av den i materialet ingående metallen och/eller plasten, kännetecknat därav, att materialet ev. efter fragmentering upphettas så att åtminstone en del av det i materialet ingående plasten smälter samt att smältan centrifugeras varvid metallen och plasten anrikas i smältan och att metallen och/eller plasten i ytterligare behandlingssteg utvinnes ur den anrikade och ev. stelnade smältanA method of recovering at least a part of the metal and / or plastic contained in the material on the basis of composite materials containing at least plastic and metal, characterized in that the material ev. after fragmentation, it is heated so that at least a part of the plastic contained in the material melts and that the melt is centrifuged, whereby the metal and plastic are enriched in the melt and that the metal and / or plastic in further treatment steps is recovered from the enriched and possibly solidified the melt 2. Sätt enligt patentkravet 1, kännetecknat därav, att det sammansatta materialet utgöres av ett laminat och metallen utgöres av aluminium.2. A method according to claim 1, characterized in that the composite material consists of a laminate and the metal consists of aluminum. 3. Sätt enligt patentkravet 1 eller 2, kännetecknat därav, att plasten utgöres av åtminstone en eller flera termoplaster.3. A method according to claim 1 or 2, characterized in that the plastic consists of at least one or more thermoplastics. 4. Sätt enligt något av föregående patentkrav, kännetecknat därav, att materialet i samband med centrifugeringen upphettas till en temperatur mellan 200-500 °C företrädesvis mellan 300-400 °C.Method according to one of the preceding claims, characterized in that the material is heated in connection with the centrifugation to a temperature between 200-500 ° C, preferably between 300-400 ° C. 5. Sätt enligt något av föregående patentkrav, kännetecknat därav, att upphettningen sker i en icke oxiderande miljö.5. A method according to any one of the preceding claims, characterized in that the heating takes place in a non-oxidizing environment. 6. Sätt enligt patentkravet 5, kännetecknat därav, att den icke oxiderande miljön består av en skyddsgas t.ex. koldioxid eller av vacuum.6. A method according to claim 5, characterized in that the non-oxidizing environment consists of a shielding gas e.g. carbon dioxide or by vacuum. 7. Sätt enligt något av föregående patentkrav, kännetecknat därav, att en oxidationsstabilisator tillsättes materialet och/eller smältan.Method according to one of the preceding claims, characterized in that an oxidation stabilizer is added to the material and / or the melt. 8. Sätt enligt något av föregående patentkrav, kännetecknat därav, att materialet under upphettningen successivt tillföres centrifugen.Method according to one of the preceding claims, characterized in that the material is successively fed to the centrifuge during heating. 9. Sätt enligt något av föregående patentkrav, kännetecknat därav, att den genom centrifugeringen erhållna plastfasen avskiljes och omhändertas för återvinning.Method according to one of the preceding claims, characterized in that the plastic phase obtained by centrifugation is separated and disposed of for recycling. 10. Sätt enligt något av föregående patentkrav, kännetecknat därav, att den genom centrifugeringen erhållna aluminiumrika fraktionen avskiljes och omhändertas för fortsatt behandling.10. A method according to any one of the preceding claims, characterized in that the aluminum-rich fraction obtained by the centrifugation is separated and disposed of for further treatment. 11. ll. Sätt enligt patentkravet 10, kännetecknat därav, att den aluminiumrika fraktionen termiskt behandlas så att organiskt och 502 884 ll lättflyktigt material avdrivs vid en temperatur som är lägre än aluminiums smälttemperatur.11. ll. A method according to claim 10, characterized in that the aluminum-rich fraction is thermally treated so that organic and 502,884 μl volatile material are evaporated at a temperature lower than the melting temperature of aluminum. 12. Sätt enligt patentkravet 11, kännetecknat därav, att föroreningar i den aluminiumrika fraktionen separeras mekaniskt, magnetiskt eller elektromagnetiskt från basmaterialet.12. A method according to claim 11, characterized in that impurities in the aluminum-rich fraction are separated mechanically, magnetically or electromagnetically from the base material. 13. Anordning för att med utgånspunkt från sammansatta material innehållande plast och metall utvinna åtminstone en del av det i materialet ingående metallen och/eller plasten enligt det i patentkravet 1 angivna sättet, kännetecknad därav, att anordningen innefatter en centrifug (14), företrädesvis en dekantercentrifug, med en från omgivningen avskild kammare (12) i vilken en icke oxiderande miljö råder varvid materialet från en påfyllningsanordning (10) införes i kammaren (12), att kammaren innefattar en värmezon (13) avsedd att uppvärma materialet innan det införes i centrifugen (14) och att centrifugen är så utrustad att materialet hålls vid önskad arbetstemperatur varvid centrifugen är försedd. med åtminstone två utlopp där under centrifugeringsprocessen anrikat aluminium avgår genommdet första utloppet (17) och anrikad plast avgår genom det andra utloppet (18).Device for recovering, on the basis of composite materials containing plastic and metal, at least a part of the metal and / or plastic contained in the material according to the method specified in claim 1, characterized in that the device comprises a centrifuge (14), preferably a decanter centrifuge, with a chamber (12) separated from the environment in which a non-oxidizing environment prevails, the material from a filling device (10) being introduced into the chamber (12), that the chamber comprises a heating zone (13) intended to heat the material before it is introduced into the centrifuge (14) and that the centrifuge is so equipped that the material is kept at the desired operating temperature, the centrifuge being provided. with at least two outlets where during the centrifugation process enriched aluminum exits through the first outlet (17) and enriched plastic exits through the second outlet (18).
SE9401286A 1994-04-15 1994-04-15 Process and appts. for recovery of plastics and/or metal SE502884C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE9401286A SE502884C2 (en) 1994-04-15 1994-04-15 Process and appts. for recovery of plastics and/or metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE9401286A SE502884C2 (en) 1994-04-15 1994-04-15 Process and appts. for recovery of plastics and/or metal

Publications (3)

Publication Number Publication Date
SE9401286D0 SE9401286D0 (en) 1994-04-15
SE9401286L SE9401286L (en) 1995-10-16
SE502884C2 true SE502884C2 (en) 1996-02-12

Family

ID=20393673

Family Applications (1)

Application Number Title Priority Date Filing Date
SE9401286A SE502884C2 (en) 1994-04-15 1994-04-15 Process and appts. for recovery of plastics and/or metal

Country Status (1)

Country Link
SE (1) SE502884C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059706A1 (en) * 2010-11-04 2012-05-10 Chinook Sciences Limited Improvements in waste processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059706A1 (en) * 2010-11-04 2012-05-10 Chinook Sciences Limited Improvements in waste processing

Also Published As

Publication number Publication date
SE9401286L (en) 1995-10-16
SE9401286D0 (en) 1994-04-15

Similar Documents

Publication Publication Date Title
EP0289240B1 (en) Method and apparatus for glass flakes
EP1979497B1 (en) Process for recycling aluminium-bearing composite materials
Wang et al. A novel method for in situ formation of bulk layered composites with compositional gradients by magnetic field gradient
Gente et al. Electrical separation of plastics coming from special waste
EP0075978A2 (en) Process for the recovery of metals from the scrap from nickel-cadmium electric storage batteries
BRPI0718616B1 (en) METHOD FOR PRE-TREATMENT, REPROCESSING OR RECYCLING OF THERMOPLASTIC MATERIAL.
Meng et al. High-temperature centrifugal separation of Cu from waste printed circuit boards
Meng et al. Novel and efficient purification of scrap Al-Mg alloys using supergravity technology
CN1094461A (en) The grow method and apparatus of a plurality of single crystal
SE502884C2 (en) Process and appts. for recovery of plastics and/or metal
GB2257162A (en) Treating oil-contaminated metal waste
FR2443475A1 (en) PROCESS AND APPARATUS FOR DEMONOMIZING POLYCAPRONAMIDE
US5934577A (en) Process for separating the constituents of a mutlilayer material
Meng et al. Supergravity separation of Pb and Sn from waste printed circuit boards at different temperatures
JP2001327942A (en) Method for sorting/recovering resources
GB886976A (en) Method and apparatus for recovery and reuse of quartz containers used for the melting of silicon
Simensen et al. Determination of the Equilibrium Phases in Molten Mg--4 wt.% Al--Mn Alloys
CN1191520A (en) Process for producing high-purity silicon
JP2009084543A (en) Waste plastic liquefying apparatus
Meng et al. Selective Recycling of Cu Alloys from Metal-Rich Particles of Crushed Waste Printed Circuit Boards by High-Temperature Centrifugation
US4063721A (en) Method for the separation of segregations and impurities from material mixtures by centrifuging and equipment for the execution of the method
CN110734577A (en) method for reducing heavy metal content in ABS plastics
Zheng et al. Microstructural evolution of undercooled Ni-40wt% Pb hypermonotectic alloy
SU1742078A1 (en) Method of melting thermoplastics
Meng et al. Supergravity separation of Pb and Sn from waste printed circuit boards

Legal Events

Date Code Title Description
NUG Patent has lapsed

Ref document number: 9401286-1

Format of ref document f/p: F