SE2000002A1 - Pipe piston (for internal combustion engines) - Google Patents

Pipe piston (for internal combustion engines)

Info

Publication number
SE2000002A1
SE2000002A1 SE2000002A SE2000002A SE2000002A1 SE 2000002 A1 SE2000002 A1 SE 2000002A1 SE 2000002 A SE2000002 A SE 2000002A SE 2000002 A SE2000002 A SE 2000002A SE 2000002 A1 SE2000002 A1 SE 2000002A1
Authority
SE
Sweden
Prior art keywords
explosion
piston
engine block
rudder
engine
Prior art date
Application number
SE2000002A
Other languages
Swedish (sv)
Other versions
SE544342C2 (en
Inventor
Billy Jacquet
Original Assignee
Billy Jacquet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Billy Jacquet filed Critical Billy Jacquet
Priority to SE2000002A priority Critical patent/SE544342C2/en
Publication of SE2000002A1 publication Critical patent/SE2000002A1/en
Publication of SE544342C2 publication Critical patent/SE544342C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C5/00Gas-turbine plants characterised by the working fluid being generated by intermittent combustion
    • F02C5/02Gas-turbine plants characterised by the working fluid being generated by intermittent combustion characterised by the arrangement of the combustion chamber in the chamber in the plant
    • F02C5/04Gas-turbine plants characterised by the working fluid being generated by intermittent combustion characterised by the arrangement of the combustion chamber in the chamber in the plant the combustion chambers being formed at least partly in the turbine rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/02Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/14Shapes or constructions of combustion chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

Uppfinningen består av en roterande kolv benämnd rörkolv, (som kan liknas vid ett cykelhjul, där slangen är röret och ekrarna är navsidan). som har formen av ett rör som är krökt till en cirkel, sittande i en smal navsida mot den inre cirkelns centrum, där navsidan är fast monterat på en utgående drivaxel i 90 grader. Drivaxeln är sedan lagrad i vardera halvan av ett motorblock som innesluter själva rörkolven, med kolvringar, som roterar i passande ursavningar mellan de två hopskruvade motorblocken. När ett explosivt media sprutas in i en eller flera explosionskammare i motorblocket och antänds, uppstår en tryckvåg mot det stumma motorblocket. Tryckvågen fortsätter då mot de inloppsportar i explosionsutrymmen i rörkolven som passerar och står mitt för explosionskamrama. Denna tryckvåg träffar en tryckvägg i explosionsutrymmet som tar upp merparten av explosionskraften, vilket får rörkolven (1) och dess urgående drivaxel att rotera, när explosion sedan sker i de olika explosionskamrama så att rörkolven fortsätter att rotera styrt av det kraftbehov som föreligger.The invention consists of a rotating piston called a pipe piston, (which can be likened to a bicycle wheel, where the hose is the pipe and the spokes are the hub side). which is in the form of a tube which is curved into a circle, sitting in a narrow hub side towards the center of the inner circle, where the hub side is fixedly mounted on an outgoing drive shaft at 90 degrees. The drive shaft is then mounted in each half of an engine block enclosing the pipe piston itself, with piston rings, which rotate in suitable saws between the two screwed engine blocks. When an explosive media is injected into one or more explosion chambers in the engine block and ignites, a pressure wave occurs against the mute engine block. The pressure wave then continues towards the inlet ports in the explosion spaces in the pipe piston that pass and stand in the middle of the explosion chambers. This pressure wave hits a pressure wall in the explosion space which absorbs most of the explosion force, which causes the pipe piston (1) and its outgoing drive shaft to rotate, when explosion then takes place in the various explosion chambers so that the pipe piston continues to rotate controlled by the required power.

Description

Tekniskt omrade Rork°lv for fcirbranningsmotorer, i det fortsatta benamnd: Rork°lv, som ersatter konventionell, kolv, vevstake och vevaxel. Dar rOrkolven roterar lagrad i en utgaende drivaxel innesluten i ett omgivande motorblock. Dar rorkolven sedan ar uppdelad i flera explosionsutrymmen som vart och ett motsvaras av samma volym i en konventionell cylinder med kolv. Technical area Rork ° lv for internal combustion engines, hereinafter referred to as: Rork ° lv, which replaces conventional, piston, connecting rod and crankshaft. The reciprocating piston rotates mounted in an output drive shaft enclosed in a surrounding engine block. Where the rudder piston is then divided into several explosion compartments, each of which corresponds to the same volume in a conventional cylinder with a piston.

Bakgrund Det finns i dag en mangd olika forbranningsmotorer och de fungerar alldeles utmarkt, men de har alla en relativt lag verkningsgrad, och andra nackdelar, som obalanser, cialigt utfall vid 16ga varvtal och manga och rorliga delar som orsakar %fluster eller tatningsproblem. Background There are many different internal combustion engines today and they work very well, but they all have a relatively low efficiency, and other disadvantages, such as imbalances, cial outcome at 16ga speeds and many and moving parts that cause% fuss or tapping problems.

De fiesta motorer har en kolv som via en kolvstang driver en vevaxel. Kolven gar c15, upp och ner. Forevarande uppfinning ayser en helt ny typ av kolv, som är fastsatt och roterar runt drivaxeln vilket narmare ska forklaras i det foljande. The fiesta engines have a piston which drives a crankshaft via a piston rod. The piston goes c15, up and down. The present invention provides a completely new type of piston, which is fixed and rotates about the drive shaft, which will be explained in more detail in the following.

Uppfinningens syfte Avsikten med denna innovation ar att astadkomma en motor som har mindre vibrationer, battre verkningsgrad och ar billigare att framstalla, cla den har fa rorliga delar och ar lattare att reglera, vad galler varvtal och erhallen effekt. Detta ocksa vid 15ga varvtal och anledningen ar som fob er. OBJECT OF THE INVENTION The object of this innovation is to provide an engine which has less vibration, better efficiency and is cheaper to manufacture, although it has variable parts and is easier to regulate, in terms of speed and power obtained. This is also at 15 speed and the reason is as fob er.

Kolvmotorer har utvecklats under en mycket Fang period och de har forfinats mer och mer, sa att de i dag är ytterst driftssakra och relativt billiga att producera. Forevarande uppfinning ayser att: trotts detta, utmana dessa valutvecklade motorer, dad& att uppfinnaren tycker att det ar bakvant att en kolv ska gd fram och tillbaka med lag verkningsgrad och dalig kraftoverfOring och ge obalanser, enligt nedansthende beskrivning som är hamtad fran Wikipedia. Piston engines have been developed during a very Fang period and they have been refined more and more, so that today they are extremely reliable and relatively cheap to produce. The present invention aims to: notwithstanding this, challenge these selectively developed engines, dad & that the inventor thinks that it is behind that a piston should go back and forth with low efficiency and poor power transmission and give imbalances, according to the description below which is taken from Wikipedia.

(Citat fran Wikipedia kursivt och inom citations tecken ) "Kraftaverfaringen i en kolvmotor ar endast optimal neir vev-slangen star i 90 grader, cla kolvmotorn har en kolv som reir sig linjart och en vevstake som delvis gar en cirkular rorelse neir den far vevaxeln att rotera. Vridmomentet blir darfor positivt endast under forbranningstakten och Or da sinusliknande. Noll vid kolvens topplage, for att sedan Oka till max nar vev-slangen ar i 90 grader for att sedan ater ga mot noll. Detta ger upphov till vibrationer fran kolv, vevstake och vevaxel. Detta maste kompenseras med motvikter som ger obalanser som i sin tur maste kompenseras pa olika seitt". Ingenting av detta ar positivt for verkningsgrad och ekonomi. (Quote from Wikipedia in italics and in quotation marks) "The force experience in a piston engine is only optimal when the crank hose is at 90 degrees, the claw piston engine has a piston that moves linearly and a connecting rod that partially moves in a circular motion The torque therefore becomes positive only during the combustion rate and Orda sinusoidal. and crankshaft. This must be compensated by counterweights which give rise to imbalances which in turn must be compensated in different directions ". None of this is positive for efficiency and economy.

Forevarande uppfinning ar inte behaftad med dessa nackdelar, da inga obalanser forekommer. Kraftoverforingen sker ocksa hela tiden nara optimalt mot den utgaende drivaxeln. The present invention does not have these disadvantages, as no imbalances occur. The power transmission also always takes place almost optimally towards the output drive shaft.

En kolvmotor maste ocksa ha ett visst ldgsta varvtal, som kallas tomgangsvarval, det ar samtidigt det varvtal som man maste uppna for att kunna starta motorn. Forevarande uppfinning ar inte beroende av ett sadant lagsta varvatal for att kunna starta, eller att ga pa tomgang. A piston engine must also have a certain lowest speed, which is called idle speed, it is also the speed that you must achieve to be able to start the engine. The present invention is not dependent on such a minimum speed to be able to start, or to idle.

Itorkolvmotorn kommer att kunna startas och ga pa tomgang pa mycket laga varvatal, dad& att kompressionsfas inte behovs och inte heller alla faser som finns i en konventionell kolvmotor fran det att dess vevaxel gar mot noll i verkningsgrad till dess att den ater kommer i lage for antandning och gar fran det ovre noll laget mot max ldget 90 gradermot vevslangen. Rorkolvens alla explosionsutrymmen kommer alltid att fa explosion nara den optimala rata vinkeln mot utgaende drivaxel oaysett var under ett vary som explosion sker. Vid en given motorvolym kommer en konventionell kolvmotor att to c:a 3ganger sa mycket plats i ansprak, som samma volym som hos en rorkolvmotor. The in-piston engine will be able to start and idle at very low speeds, so that the compression phase is not needed, nor all the phases present in a conventional piston engine from the time its crankshaft goes to zero in efficiency until it returns to ignition. and goes from the upper zero layer towards the maximum height 90 degrees towards the crank hose. All of the rudder piston's explosion compartments will always explode near the optimal right angle to the outgoing drive shaft, regardless of where an explosion occurs. At a given engine volume, a conventional piston engine will take up about 3 times as much space as the same volume as a rudder piston engine.

Det beror pa att fler kolvar (med egna motorvolymer) far plats i den gemensamma roterande kolven, ddr inga onodiga utrymmen krays for varje kolv vevstake och vevaxel, som i en konventionell kolvmotor. This is because more pistons (with their own engine volumes) can fit in the common rotating piston, where no unnecessary spaces are required for each piston connecting rod and crankshaft, as in a conventional piston engine.

Forevarande Uppfinning kommer ocksa att kunna ga pa laga varvtal och ands klara en hog belastning, ddrfor att man i sadana fall kan ge samtidig kraft till alla verksamma explosionsutrymmen runt hela rorkolvens omkrets, vilket gor att man inte ar lika beroende av att ha ett hogt varvtal, for att motorn inte ska stanna eller orka. Vid laga belastningar kan motorn ocksa minska antalet explosioner i rorkolvens olika explosionsytrymmen sa att antalet tandningar bli mycket fa som kanske bara, en, eller ingen tandning per vary, eller vart 3:e 4:e eller 5:e vary osv. och da kanske i bara en eller nagra explosionsutrymmen vilket ar gynnsamt ur miljosynpunkt. Rorkolven kan till skillnad mot en konventionell kolvmotor rotera utan hjalp at kontinuerlig antandning, da kolven i sig kommer att fungera som ett ballanserat svanghjul med en massa som vill fortsatta att rotera utan omedelbar hjalp av ny energi. The present invention will also be able to run at low speeds and withstand a high load, so that in such cases one can give simultaneous power to all active explosion spaces around the entire circumference of the rudder piston, which means that one is not as dependent on having a high speed , so that the engine does not stop or power. At low loads, the engine can also reduce the number of explosions in the various explosion spaces of the rudder piston, so that the number of ignitions will be very few, which may only, one, or no ignition per vary, or every 3rd 4th or 5th vary, and so on. and then perhaps in just one or a few explosion spaces, which is favorable from an environmental point of view. Unlike a conventional piston engine, the rudder piston can rotate without the aid of continuous ignition, as the piston itself will function as a balanced flywheel with a mass that wants to continue to rotate without the immediate help of new energy.

Mojlighet firms and& att snabbt- och vid behov, kunna aktivera alla explosionsutrymmen att tanda, samtidigt eller i den takt som programeringen ar satt att Ora, for olika effekter och behov. I stallet for samtidig antandning av samtliga explosionsutrymmen kan dessa vara forskjutna i forhallande till varandra sa att de inte samtidigt kommer i tandningslage i icirhallande till explosionskammaren sa att de clamed ger en mer utjamnad kraft och ballanserad kraftoverforing till rorkolvmotorn. Opportunity firms and & to quickly and if necessary, be able to activate all explosion spaces to ignite, simultaneously or at the pace that the programming is set to Ora, for different effects and needs. Instead of simultaneously igniting all the explosion spaces, these can be offset in relation to each other so that they do not simultaneously come into ignition mode in relation to the explosion chamber, so that they clamed give a more equalized force and balanced power transmission to the rudder engine.

Om ett hogre varvtal skulle fordras, ar uppfinningens konstruktion sadan, att den skulle kunna klara mycket hoga varvatal rent mekaniskt. Mojlighet finns ocksa att tan& olika explosionsutrymmen i sadan takt att man hinner med att fullfolja i den stone hastighet som fordras for att explosions och avgas cykler ska hinnas med, delta genom att man later en explosion ske i en och samma explosionskammare en gang per vary, eller tva ganger alternativt vartannat vary osv. Allt efter behov. If a higher speed were to be required, the construction of the invention is such that it could handle very high speeds purely mechanically. It is also possible to tan & different explosion spaces at such a rate that you have time to complete at the stone speed required for explosion and exhaust cycles to catch up with, participate by letting an explosion take place in one and the same explosion chamber once per vary, or twice or alternately vary etc. As required.

Altemativt skapar man forskjutningar mellan de olika explosionsutrymmen som finns vad galler antandning i dessa. Alternatively, shifts are created between the various explosion spaces that exist as far as ignition in them is concerned.

Figurhanvisningar Figur 1: visar enbart rorkolven (1) i genomskarning Figur 2: visas rorkolven (1) i genomskarning sittande mellan tva motorblockshalvor (19) och (20) med rorkolven (1) i en avgasfas. Figure references Figure 1: shows only the rudder piston (1) in cross section Figure 2: shows the rudder piston (1) in cross section sitting between two engine block halves (19) and (20) with the rudder piston (1) in an exhaust phase.

Figur 3: visar en halv genomskuren ror kolv (1) sittande i motorblockshalvan (20) med explosionskammaren (12) nar denna dr mitt for inloppsporten (8). Ddr syns ocksa bransleinsprutet (13) samt tandanordningen (14) och rorkolven (1) med sitt explosionsutrymme (7) far i delta lage en explosion enligt pilen (30) mot tryckvaggen (5). Figure 3: shows a half-cut rudder piston (1) sitting in the engine block half (20) with the explosion chamber (12) when this is in the middle of the inlet port (8). The fuel injection (13) as well as the tooth device (14) and the rudder piston (1) with their explosion space (7) can also be seen in the delta making an explosion according to the arrow (30) against the pressure cradle (5).

Figur 4: Visar Rorkolven (1) i motorblockshalvan (20) i explosionsfasen men nu med direktinsprutning (13) utan direkta explosionskammare (12). Figure 4: Shows the rudder piston (1) in the engine block half (20) in the explosion phase but now with direct injection (13) without direct explosion chambers (12).

Figur 5: Visar en halv genomskuren rorkolv (1) i motorblockshalva (20) nar rorkolven (1) roterat till avgas-fasen, med overtrycksporten (9) staende mot den bakomliggande dolda overtrycksoppningen (16) samt den efterkommande men ocksa dolda blandaroppningen (27) som senare kommer att passeras av inloppsporten (6) i explosionsutrymmet (7) Detaljlista: med hanvisning till ingaende delar 1. Rork°lv 2. Drivaxel 3. Nav 4. Naysida . Tryckvagg 6. Styrvagg 7. Explosionsutrymme (i rorkolven) 8. Inloppsport (i rorkolven) 9. Overtrycksport (i rorkolven) . Stodlager 11. Motorblock 12. Explosionskammare (i motorblock) 13. Bransleinsprut ( alternativt direktinsprut) 14. Tandanordning . Avgasoppning (i motorblock) 16. Overtrycksoppning ( i motorblock) 17. Kolvringar 18. Navringar 19. Motorblockshalva Vanster . Motorblockshalva H6ger 21. Smorj kanaler 22. Avgasport ( i rorkolven ) 23. Kylkanaler 24. Splines . Oljesump 26. Oljeretur 27. Blandaroppning 28. Utgatt 29. Stromningspilar . Explosionsriktning 31. Explosionsriktning Forenklad fdrklaring Rorkolven kan liknas vid (ett cykelhjul med duck, som har tackta naysidor i stallet for ekrar och dar (Jacket ar ersatt av ett rot.), (se figur 1) inne i detta ror finns flera avgransade explosionsutrymmen fordelade runt hela r6ret. Detta "hjul" sitter sedan monterat inne i och mellan tva sammanskruvade motorblockshalvor, Se figur (2) som har ursvarning for att passa rorkolven som omsluts och tatas av kolvringar. Rorkolvens nav ar fastsatt pa en utgaende drivaxel som ar lagrad i de bada motorblocken vinkelrat mot navet. Figure 5: Shows a half-cut rudder piston (1) in the engine block half (20) when the rudder piston (1) is rotated to the exhaust phase, with the overpressure port (9) facing the underlying overpressure opening (16) and the subsequent but also hidden mixer opening (27). ) which will later be passed by the inlet port (6) in the explosion compartment (7) List of details: with male reference to no-go parts 1. Rork ° lv 2. Drive shaft 3. Hub 4. Nayside. Pressure cradle 6. Control cradle 7. Explosion space (in the rudder piston) 8. Inlet port (in the rudder piston) 9. Overpressure port (in the rudder piston). Stem bearings 11. Engine block 12. Explosion chamber (in engine block) 13. Fuel injection (alternatively direct injection) 14. Dental device. Exhaust opening (in engine block) 16. Overpressure opening (in engine block) 17. Piston rings 18. Hub rings 19. Engine block half Vanster. Engine block half H6ger 21. Lubricate ducts 22. Exhaust port (in the rudder piston) 23. Cooling ducts 24. Splines. Oil sump 26. Oil return 27. Mixer opening 28. Discontinued 29. Flow arrows. Explosion direction 31. Explosion direction Simplified explanation The rudder piston can be compared to (a bicycle wheel with a duck, which has tucked naysides in the place of spokes and days (Jacket is replaced by a root.), (See figure 1) inside this tube there are several delimited explosion spaces distributed This "wheel" is then mounted inside and between two screwed-together engine block halves, See figure (2) which has a recess to fit the rudder piston which is enclosed and taken by piston rings. they bathe the engine blocks perpendicular to the hub.

Inne i motorblocket och runt ursvarvningen for rorkolven sitter flera jamt fcirdelade explosionskammare samt insprutningsventiler och tandanordningar som dr anpassade efter de explosionsutrymmen som finns inne i rorkolven. Rorkolven har inloppsportar som passar dessa explosionskammare. Vidare finns det i motorblockets ursvarvning for rorkolven, avlanga overtrycksoppningar i ena motorblockshalvan, liksom motstaende avgasOppningar i den andra motorblockshalvan. Inside the engine block and around the turn-off for the rudder piston are several evenly distributed explosion chambers as well as injection valves and toothed devices which are adapted to the explosion spaces inside the rudder piston. The rudder piston has inlet ports that fit these explosion chambers. Furthermore, in the engine block's turning for the rudder piston, there are oblong overpressure openings in one engine block half, as well as opposite exhaust openings in the other engine block half.

Nar rorkolven sedan dras runt av en startmotor sprutas explosivt media in i aysedda explosionskammare medels ett bransleinsprut som dar ger ett overtryck. When the rudder piston is then pulled around by a starter motor, explosive media is injected into unseen explosion chambers by means of an industry injection which there gives an overpressure.

Overtryck av syre (och vid behov bransleblandning) finns da redan i explosionsutrymmet nar detta vid rotation via en inloppsport (8) oppnar till explosionskammaren dar bransleblandningen ytterligare fylls pa och antands nar inloppsporten star i ratt 'age. Explosionskraften traffar da motorblockets fasta stumma vaggar i explosionskammaren (som da kan liknas vid ett topplock i en konventionell kolvmotor) varvid kraften i stallet fortplantas till rorkolvens explosionsutrymme. (som da kan liknas vid toppen av en kolv i en konventionell motor). Denna kraft far da rorkolv och drivaxel att rotera. Explosionsutrymmet dr efter explosionen sedan fyllt med avgaser, som kan evakueras nar rorkolven fortsatter att rotera och overtrycksportar i explosionsutrymmet da nar avlanga overtrycksoppningar i motorblockets ena halva. Motstaende avgasportar i explosionsutrymmet (7) oppnar samtidigt till avlanga avgasoppningar i det motsatta motorblocket sa att overtrycket nu kan pressa ut avgaserna ur explosionsutrymet genom avgasoppningen och ut ur motorblocket, innan avgasoppningen passeras och stangs. Overpressure of oxygen (and if necessary fuel mixture) is then already in the explosion space when this when rotating via an inlet port (8) opens to the explosion chamber where the fuel mixture is further filled and ignited when the inlet port is in the steering wheel 'age. The explosion force then strikes the fixed mute of the engine block in the explosion chamber (which can then be compared to a cylinder head in a conventional piston engine), whereby the force in the stable propagates to the explosion space of the rudder piston. (which can then be likened to the top of a piston in a conventional engine). This force causes the rudder piston and drive shaft to rotate. After the explosion, the explosion space then fills with exhaust gases, which can be evacuated when the rudder piston continues to rotate and overpressure ports in the explosion space then elongate overpressure openings in one half of the engine block. Opposite exhaust ports in the explosion chamber (7) simultaneously open to elongate exhaust openings in the opposite engine block so that the overpressure can now push the exhaust gases out of the explosion space through the exhaust opening and out of the engine block, before the exhaust opening is passed and closed.

Overtrycksoppningen kan sedan vara lite langre och darfOr forbli oppen lite langre sa att ett overtryck kan byggas upp i explosionsutrymmet innan overtrycksoppningen stangs och en ny blandaroppning (27) da i stallet kommer mitt for inloppsporten (9) i explosionsutrymmet varvid valda media blandningar med overtryck kan styras att sprutas in i explosionsutrymmet, innan inloppsporten (8) pa nytt nar en explosionskammare for ytterligare en cykel av eventuell insprutning och antandning efter det forlopp som ar satt aft styra insprutning och explosioner i alla explosionsutrymmen runt rorkolven, beroende av behov av haft och typ av brdnsle som foreligger, vilket styrs av ett elektroniskt program med hjalp av vinkelgivare pa drivaxel och rorkolv samt av kraftavkannare mellan drivaxel och drivna hjul. The overpressure opening can then be a little longer and therefore remain open a little longer so that an overpressure can build up in the explosion space before the overpressure opening is closed and a new mixer opening (27) then in the stable is in front of the inlet port (9) in the explosion space. be controlled to be injected into the explosion chamber, before the inlet port (8) again reaches an explosion chamber for another cycle of possible injection and ignition after the course set to control injection and explosions in all explosion spaces around the rudder piston, depending on the need for type and type of fuel available, which is controlled by an electronic program with the help of angle sensors on the drive shaft and rudder piston and by the power sensor between the drive shaft and driven wheels.

Nagra av fordelarna med denna innovation gentemot de motorer som anvands i dag ar att: Uppfinningen har farre rorliga delar samt aft den massa som sans i rorelse vid explosionerna hela tiden ror sig at samma hall, vilket ger en effektivare gang med mycket mindre vibrationer och slitage. Motorblocket kan goras i tva halvor ddr rorkolven laggs in mellan de bada halvorna i motorblocket. Some of the advantages of this innovation over the engines used today are that: The invention has fewer moving parts and also the mass that sense in motion during the explosions constantly moves in the same hall, which provides a more efficient operation with much less vibration and wear . The engine block can be made in two halves when the rudder piston is inserted between the two halves in the engine block.

Sjdlva rorkolven kan gjutas hel eller i tva halvor som senare fogas samman. The rudder piston itself can be cast whole or in two halves which are later joined together.

Man kommer ocksa ifran alla ventiler som ska ga upp och ner med fj aderbelastning och effektforluster. You also get away from all valves that have to go up and down with spring load and power losses.

Antalet explosionskammare som ska aktiveras avgors av vilket effekt behov som foreligger. En enda ringkolv kan pa detta sat innehalla olika antal explosionsutrymmen som var och ett mosvarar en vanlig kolv. Pa detta salt skulle en ringkolvmotor kunna goras mycket liten och mycket enkel, samtidigt som den skulle vara utan obalanser eller vibrationsproblem. The number of explosion chambers to be activated is determined by the power required. A single ring piston can in this way contain different numbers of explosion spaces, each of which corresponds to an ordinary piston. On this salt, a ring piston engine could be made very small and very simple, at the same time as it would be without imbalances or vibration problems.

Naturligtvis kan man satta manga ringkolvar axiellt utefter en gemensam drivaxel med Hera sammanskruvade motorblock. Vad sedan Oiler storleken som ar mojlig att tillverka dessa motorer i sa torde det ga att Ora bade sma och stora motorer. Det gemensamma for dessa motorer skulle vara- att de har mycket fa rorliga delar med litet platsbehov och darldr eager lite i forhallande till motorvolym och prestanda. Of course, many ring pistons can be mounted axially along a common drive shaft with Hera screwed together engine blocks. As far as the Oiler size that is possible to manufacture these engines in, it is likely that Ora will have both small and large engines. The common denominator for these engines would be that they have very few movable parts with little space requirements and darldr eager little in relation to engine volume and performance.

Samtidigt skulle en ringkolvmotor vara enkel och billig att tillverka och aft variera efter behov och mycket flexibel vad galler kraftuttag vid olika varvtal samt vara ldtt att starta vid mycket laga vary och ge litet startmotstand och forvantat mindre emissioner. At the same time, a ring piston engine would be simple and cheap to manufacture and often vary as needed and very flexible in terms of power take-off at different speeds and be easy to start at very low vary and provide little starting resistance and expected smaller emissions.

Dettalierad beskrivning Rorkolvmotorn bestar av en ringformad kolv. (se figur 1) ddr rorkolven (1) dr, fastsatt pa drivaxeln (2). Detailed description The rudder piston engine consists of an annular piston. (see figure 1) ddr rudder piston (1) dr, fixed on the drive shaft (2).

Rorkolven (1) kan liknas vid ett ror som dr format sa att det bildar en sammanhallen, cirkel pa samma salt som en cykelslang. The rudder piston (1) can be compared to a tube that is shaped so that it forms a cohesive circle on the same salt as a bicycle hose.

Den cirkelformade rorkolven (1) a fastsatt pa en drivaxel (2) medels ett nav (3) som i sin tur sitter fastsatt i en eller flera nav-sidor i fortsdttningen kallad naysida. Naysidan (4) sitter tat sammanfogad med roret i rorkolven (1). lime i rorkolven (1), jamt fOrdelat, sitter ett antal explosionsutrymmen (7) som ar avgransade med en tryckvagg (5) och en styrvagg (6). The circular rudder piston (1) is fixed to a drive shaft (2) by means of a hub (3) which in turn is fixed in one or more hub sides hereinafter called the nose side. The nose side (4) is tightly joined to the rudder in the rudder piston (1). glue in the rudder piston (1), evenly distributed, there are a number of explosion spaces (7) which are delimited by a pressure cradle (5) and a guide cradle (6).

Varje explosionsutrymme (7) i rorkolven, har i sin periferi tre stycken till motorblocket (11) passande portar- en inloppsport (8) for den explosiva blandningen. Vidare for avgaserna en overtrycksport (9) som far overtryck fran en overtrycksoppning (16) i motorblocket (20) for att trycka ut avgaserna, genom den motstaende avgasporten (22) till avgas oppning (15) i motorblockshalvan (19) ddr avgaserna sedan i motorblocket (19) i kanaler kan evakueras eller ledas till aterinsprut eller rening och vidare ut i luften pa konventionellt Forloppsbeskrivning. Se figur 3 Rorkolven (1) visas har i genomskarning- ddr brdnsle har sprutats in med overtryck av insprutningsventilen (13) i explosionskammaren (12) vilket skapat ett overtryck ddr, som byggts upp under tiden som rorkolven (1) tatat mot overtryckskammaren (12). Nar rorkolven (1) av en startmotor har tvingats att rotera. Each explosion compartment (7) in the rudder piston has in its periphery three ports fitting to the engine block (11) and an inlet port (8) for the explosive mixture. Furthermore, the exhaust gases pass an overpressure port (9) which is overpressured from an overpressure opening (16) in the engine block (20) to expel the exhaust gases, through the opposite exhaust port (22) to the exhaust opening (15) in the engine block half (19). the engine block (19) in ducts can be evacuated or led to re-injection or purification and further into the air on a conventional sequence description. See figure 3 The rudder piston (1) is shown to have been injected through the overpressure chamber (12) into the explosion chamber (12) with a positive pressure in the explosion chamber (12), which created an overpressure ddr, which was built up during the rudder piston (1) against the overpressure chamber (12). ). When the rudder piston (1) of a starter motor has been forced to rotate.

Explosion sker via tandanordning (14), nar inloppsporten (8) ar helt oppen mot explosionskammaren (12) i motorblocket (11). Explosion occurs via toothed device (14), when the inlet port (8) is completely open towards the explosion chamber (12) in the engine block (11).

Explosionens tryckvag traffar da den stumma och fasta delen i motorblocket (11), varefter kraften i tryckvagen gar vidare in i explosionsutrymmet (7) dar kraften da via styrvaggen (6) nar den bakre tryckvaggen (5) som ar vinklad och svagt konkavt utformad sa att storsta delen av explosionskraften kommer att hamna mot tryckvaggen centrum (5) (se pil) (30). ((Delta kan styras att ske i ett eller flera explosions utrymmen (7) samtidigt, eller forskjutet, eller enskilt )) tryckvagen far da rorkolven (1) att rotera samtidigt som drivaxeln (2) gor det. The explosion pressure wave then hits the dumb and fixed part of the engine block (11), after which the force in the pressure wave continues into the explosion space (7) where the force then via the control rock (6) reaches the rear pressure wave (5) which is angled and slightly concavely designed so that most of the explosive force will end up against the pressure cradle center (5) (see arrow) (30). ((Delta can be controlled to take place in one or more explosion spaces (7) simultaneously, or offset, or individually)) The pressure carriage causes the rudder piston (1) to rotate at the same time as the drive shaft (2) does so.

Explosionsutrymmet (7) blir da fyllt av avgaser (se figur 2 och 5) Avgaser evakueras nar en overtrycksport (9) kommer mitt for en avlang overtrycksoppning (16) i motorblockshalvan (20) dar overtrycks luft sprutas in i rotationsriktningen, samtidigt som en motsaende avgasport (22) oppnar till en avlang avgasoppning (15) i motorblocket (19) genom vilken avgaserna i explosionsutrymmet (7) kan tryckas ut over tid och bort genom avgasror pa konventionellt salt. Avgasoppningen (15) som kan vara olika lang kan da stanga for det overtrycksoppningen (16) Or det, i sadana fall kommer det att bildas Cl overtryck av syre i explosionsutrymmet (7) innan ocksa overtrycksoppningen stanger och overtrycksporten (9) oppnas mot blandaroppningen (27) dar lampliga blandningar av overtryckt bransle, avgaser, luft, eller annat media kan sprutas in, innan inloppsporten (8) pa nytt nar explosionskammaren (12) Samma forlopp kan nu ske i flera explosionsutrymen (7) beroende pa hur den automatiska tand- fOljden ar stand vid varje tillfalle. Under denna fas har rorkolven (1) tatat explosionskammarens (12), sa att nytt bransle har hunnit sprutats in och byggt upp ett overtryck i explosionskammaren (12) nar rorkolven (1) med sin inloppsport (8) pa nytt star i aysett lage for bransleinsprutning (13) och explosion medels tandanordningen (14), vilket da styrs av vinkelgivare pa drivaxeln (2) och rorkolven (1) sa att ett likadant forlopp som tidigare beskrivits kan to vid, med nya cykler i ett aterkommande forlopp. The explosion chamber (7) is then filled with exhaust gases (see Figures 2 and 5) Exhaust gases are evacuated when an overpressure port (9) comes in the middle of an elongated overpressure opening (16) in the engine block half (20) where overpressure air is injected in the direction of rotation, while an opposite exhaust port (22) opens to an elongate exhaust port (15) in the engine block (19) through which the exhaust gases in the explosion space (7) can be forced out over time and away by exhaust pipes on conventional salt. The exhaust opening (15), which can be of different lengths, can then close the overpressure opening (16). 27) where suitable mixtures of overpressed fuel, exhaust gases, air, or other media can be injected before the inlet port (8) reaches the explosion chamber again (12) The same process can now take place in several explosion spaces (7) depending on how the automatic tooth The sequence is correct in each case. During this phase, the rudder piston (1) has penetrated the explosion chamber (12), so that new fuel has had time to be injected and build up an overpressure in the explosion chamber (12) when the rudder piston (1) with its inlet port (8) re-stands in the same position as fuel injection (13) and explosion by means of the toothed device (14), which is then controlled by angle sensors on the drive shaft (2) and the rudder piston (1) so that a similar process as previously described can take place, with new cycles in a recurring process.

Vid direktinsprutning sprutas bransleblandningen direkt in i explosionsutrymmet (7) under den tid cid inloppsporten (8) ar atkomlig for insprutning (13). Alternativt kan bransleinsprutning delas upp da ocksa ske direkt in till explosionsutrymmet (7) via blandaroppningen (27). In the case of direct injection, the fuel mixture is injected directly into the explosion chamber (7) during the time the inlet port (8) is accessible for injection (13). Alternatively, fuel injection can be divided as it also takes place directly into the explosion space (7) via the mixer opening (27).

Formen och storleken pa inloppsporten (8) avgor da detta forlopp beroende av typ av bransle osv. Mojlighet finns ocksa att skapa ett overtryck av syremattad Tuft inne i explosionsutrymme (7) innan detta kommer fram till explosionskammaren (12). Detta kan ske pa tva olika sat, genom att avgasoppningen (15) ar nagot kortare an vad overtrycksoppningen (16) dr och dad& stangs av innan overtrycksoppningen stangs ay. The shape and size of the inlet port (8) then determines this process depending on the type of industry, etc. It is also possible to create an overpressure of oxygen-saturated Tuft inside the explosion chamber (7) before it reaches the explosion chamber (12). This can be done in two different ways, in that the exhaust opening (15) is slightly shorter than the overpressure opening (16) and is closed before the overpressure opening is closed.

Och eller via en blandaroppning (27) som blir atkomlig omedelbart efter det att overtrycksoppningen (16) passerats av overtrycksport (9). Genom blandaroppningen (27) kan da overtryck med olika blandningar av syre bransle ofullstandigt antanda avgaser mm styras att sprutas in kontrollerat sa att explosionsutrymmet (7) pa detta satt kan fa en maximalt gynnsam forbranning ndr inloppsporten (8) pa nytt kommer i lage for insprutningsventilen (13) och tandningsanordningen (14) nar en explosion styrs att antanda bara de explosionsutrymmen (7) som fyllts med en bransleblandning. And or via a mixer opening (27) which becomes accessible immediately after the overpressure opening (16) has been passed by the overpressure port (9). Through the mixer opening (27) the overpressure with different mixtures of oxygen fuel, incompletely igniting exhaust gases etc. can be controlled to be injected in a controlled manner so that the explosion space (7) can in this way have a maximum favorable combustion when the inlet port (8) is put back into the injection valve. (13) and the ignition device (14) when an explosion is controlled to ignite only the explosion spaces (7) filled with a fuel mixture.

Overtrycket med syre och de eventuellt ofullstandigt antanda avgaserna kommer da att bidra till att explosionerna blir effektivare utan att detta i ovrigt paverkar verkningsgraden negativt. Mojlighet finns ocksa att styra avgasernas utlopp och explosionerna i explosionsutrymmet (7) pa flera salt som till exempel genom att man later ett explosionsutrymme (7) passera forbi flera overtrycksoppningar (16)utan att ge bransle och antanda dessa explosionsutrymen (7). The overpressure with oxygen and the possibly incompletely igniting exhaust gases will then contribute to the explosions becoming more efficient without this otherwise having a negative effect on efficiency. It is also possible to control the exhaust emissions and the explosions in the explosion space (7) on several salts, for example by passing an explosion space (7) past several overpressure openings (16) without giving fuel and igniting these explosion spaces (7).

Avgaserna i dessa explosionsutrymmen (7) far da mer tid att evakueras och man har ands mojlighet att ha ett overtryck i explosionsutrymmet (7) nar det sedan dr dags att spruta in bransle och antanda i ett sadant extra evakuerat och overtryckt explosionsutrymme (7) vilket da kommer att gynna fOrbrannings1Orloppet. Detta kan uppnas antingen genom att man konstant skapar ett overtryck i explosions utrymme (7) genom att nagot forskjuta overtrycksoppning (16) kontra avgasoppning (15) Overtrycket skulle ocksa kunna fa en extra kontrollerad tillsats av tryck och syre nth- det ar dags att skapa ett overtryck i slutet av en sadan cykel, 16re det att en fOrbranning i explosionsutrymet (7) ska ske antingen via overtrycksoppningen (16) eller genom en speciell efterkommande oppning i motorblocket (20) bendmnd blandaroppning (27) med specialtryck och blandning aysett endast for att skapa en optimal forbranning. Det overtryck som pa detta sat da skapas i explosionsutrymmet (7) firms sedan kvar dar ndr insprutning av brdnsle sker, via insprutningsmunstycket (13) som da ytterligare okar det overtryck som redan finns i explosionsutrymmet (7), till dess aft den explosiva blandningen fds att tan& och explodera vid raft tidpunkt via tandanordningen (14). The exhaust gases in these explosion spaces (7) then have more time to be evacuated and it is possible to have an overpressure in the explosion space (7) when it is then time to inject fuel and ignite in such an extra evacuated and overpressured explosion space (7) which then will benefit the Combustion1Orloppet. This can be achieved either by constantly creating an overpressure in the explosion space (7) by slightly shifting the overpressure opening (16) versus the exhaust opening (15). an overpressure at the end of such a cycle, 16re it that a combustion in the explosion space (7) is to take place either via the overpressure opening (16) or through a special subsequent opening in the engine block (20) bendmnd mixer opening (27) with special pressure and mixing ayset only for to create an optimal combustion. The overpressure thus created in the explosion space (7) is then maintained where fuel injection takes place, via the injection nozzle (13) which then further increases the overpressure already present in the explosion space (7), until the explosive mixture is fed. to tan & and explode at raft time via the dental device (14).

Overtrycket i explosionsutrymmet (7) och i explosionskammaren (12) hindrar samtidigt olja fran att komma in och forbrannas i dessa utrymmen. The overpressure in the explosion chamber (7) and in the explosion chamber (12) simultaneously prevents oil from entering and burning in these spaces.

Rorkolven (1) tatas runt om mot motorblocket (11) (se figur 1.) med parvisa fjadrande kolvringar (17) vilka inte helt omsluter rorkolven (1). Kolvringarna tatar varandras skarvar da de fran var sida om naysidan (4) omsluter varandra i sina urtag i rorkolven (1) dar de dr lasta i sina lagen i forhallande till varandra radiellt runt rorkolvens (1) explosionsutrymmen (7). Naysidan (4) tatas i sin tur av fjadrande navringar (18) som sitter i urtag i motorblocket (11) dar de passar in i urtag i naysidan (4) pd vardera sidan. The rudder piston (1) is swept around against the engine block (11) (see figure 1.) with pair of resilient piston rings (17) which do not completely enclose the rudder piston (1). The piston rings catch each other's joints as they from each side of the nay side (4) enclose each other in their recesses in the rudder piston (1) where they load in their layers in relation to each other radially around the explosion spaces of the rudder piston (1) (7). The nose side (4) is in turn taken by resilient hub rings (18) which are located in recesses in the engine block (11) where they fit into recesses in the nose side (4) on each side.

Motorblocket (11) dr delat i tva halvor Vanster halva (19) och hoger halva (20). I vardera halvan (19) respektive (20) finns ursvarvningar sa att rorkolven precis passar in i mellan dess bada halvor (19) och (20) ndr drivaxeln (2) i sina stodlager (10) passas in i de bada halvorna (19) och (20) da dessa sedan skruvas samman till ett enda motorblock (11) dar drivaxeln (2) tatas med axeltatningar pd vanligt salt. Flera sadana motorblock kan skruvas samman om de delar pa samma drivaxel och da samtidigt dela pd kyl, avgas och overtryckskanaler, samt bransle och smorj kanaler och en gemensamt styrd tandning. The engine block (11) dr divided into two halves Vanster half (19) and hoger half (20). In each half (19) and (20) there are turns so that the rudder piston fits exactly between its two halves (19) and (20) when the drive shaft (2) in its support bearings (10) fits into the two halves (19) and (20) when these are then screwed together into a single engine block (11) where the drive shaft (2) is taken with shaft seals on ordinary salt. Several such engine blocks can be screwed together if they share on the same drive shaft and then at the same time share the cooling, exhaust and overpressure ducts, as well as fuel and lubrication ducts and a joint-controlled toothing.

Rorkolven (1) fdr smorjning genom smorjkanaler (21) i motorblocket (11), dar utrymme ocksd anordnas for oljesump (25) som kan smorja de ingdende rorliga delarna nar rorkolven (1) roterar och da slungar runt oljan som sedan kan rinna tillbaks ner i kanaler (26) till oljesumpen (25) efter filtrering. Olja hindras fran att komma in i Explosionskammaren (12) och explosionsutrymmet (7) av det overtryck som finns dar. The rudder piston (1) is lubricated through lubrication channels (21) in the engine block (11), where space is also provided for oil sump (25) which can lubricate the constituent movable parts when the rudder piston (1) rotates and then swings around the oil which can then flow back down. in channels (26) to the oil sump (25) after filtration. Oil is prevented from entering the Explosion Chamber (12) and the explosion chamber (7) by the overpressure present there.

Kanaler for bransle samt avgaser och anslutning for tandning Ors pd passande stallen med kanaler och anslutningar i motorblocket (11) Vidare finns kylkanaler i motorblocket pd passande stallen anpassade for vatten eller annat media. Channels for fuel and exhaust gases and connection for ignition Ors on suitable stables with ducts and connections in the engine block (11) Furthermore, cooling ducts in the engine block on suitable stables are adapted for water or other media.

Rorkolven (1) kan gjutas i en eller tva halvor som da samman fogas med fardiga explosionsutrymmen (7) samt med Naysidor (4). De sammansvetsade tva gjutna halvorna kan sedan svarvas med precision samtidigt som ocksa urtag for kolvringar (17) och &riga urtag kan goras. The rudder piston (1) can be cast in one or two halves which are then joined together with finished explosion spaces (7) and with Naysidor (4). The welded two cast halves can then be turned with precision while also recesses for piston rings (17) and other recesses can be made.

Motorblocket (11) kan goras i tva halvor (19) och (20) halvorna kan gjutas svarvas och bearbetas var for sig for att sedan skruvas samman med alla nodvandiga anslutningar och kanaler och anslutningar till fler sammankopplade motorblock (11) med gemensam drivaxel (2) driven av rorkolvar (1) i varje sammankopplat motorblock (11) med gemensamt styrprogram for tandning och bransleinsprutning mm. The motor block (11) can be made in two halves (19) and (20) the halves can be cast, turned and machined separately and then screwed together with all necessary connections and channels and connections to several interconnected motor blocks (11) with a common drive shaft (2). ) driven by rudder pistons (1) in each interconnected engine block (11) with a common control program for ignition and fuel injection etc.

SE2000002A 2020-01-07 2020-01-07 Rotary piston system for internal combustion engine SE544342C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE2000002A SE544342C2 (en) 2020-01-07 2020-01-07 Rotary piston system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE2000002A SE544342C2 (en) 2020-01-07 2020-01-07 Rotary piston system for internal combustion engine

Publications (2)

Publication Number Publication Date
SE2000002A1 true SE2000002A1 (en) 2021-07-08
SE544342C2 SE544342C2 (en) 2022-04-12

Family

ID=76969215

Family Applications (1)

Application Number Title Priority Date Filing Date
SE2000002A SE544342C2 (en) 2020-01-07 2020-01-07 Rotary piston system for internal combustion engine

Country Status (1)

Country Link
SE (1) SE544342C2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR711294A (en) * 1930-02-14 1931-09-07 It Servizi Aerei S A Soc Rotary piston engine
US3145533A (en) * 1962-07-13 1964-08-25 Ollinger George Batchelder Jet-thrust internal combustion engine
EP0416977A1 (en) * 1989-09-06 1991-03-13 Raynald Boyer Rotary combustion engine
RU2241131C1 (en) * 2003-03-13 2004-11-27 Столбов Владимир Иванович Internal combustion engine
US8936004B1 (en) * 2011-12-14 2015-01-20 The United States Of America As Represented By The Secretary Of The Navy Rotary piston engine
CN102996236B (en) * 2011-09-19 2015-08-05 张官霖 Torus sample cylinder ring turns piston engine
WO2017196208A1 (en) * 2016-05-10 2017-11-16 Юрий Дмитриевич НЕТЕСА Device and methods for converting fuel combustion energy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR711294A (en) * 1930-02-14 1931-09-07 It Servizi Aerei S A Soc Rotary piston engine
US3145533A (en) * 1962-07-13 1964-08-25 Ollinger George Batchelder Jet-thrust internal combustion engine
EP0416977A1 (en) * 1989-09-06 1991-03-13 Raynald Boyer Rotary combustion engine
RU2241131C1 (en) * 2003-03-13 2004-11-27 Столбов Владимир Иванович Internal combustion engine
CN102996236B (en) * 2011-09-19 2015-08-05 张官霖 Torus sample cylinder ring turns piston engine
US8936004B1 (en) * 2011-12-14 2015-01-20 The United States Of America As Represented By The Secretary Of The Navy Rotary piston engine
WO2017196208A1 (en) * 2016-05-10 2017-11-16 Юрий Дмитриевич НЕТЕСА Device and methods for converting fuel combustion energy

Also Published As

Publication number Publication date
SE544342C2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
US6539913B1 (en) Rotary internal combustion engine
PT799371E (en) AXIAL PISTON ROTARY ENGINE
US7721687B1 (en) Non-reciprocating, orbital, internal combustion engine
US20160326875A1 (en) Rotary energy converter with retractable barrier
JP2008507648A (en) Turbo combustion engine
US11384684B2 (en) Rotary engine, parts thereof, and methods
JP4393992B2 (en) Rotary type combustion engine
CN201068818Y (en) Blade wheel internal combustion engine
JP5478741B2 (en) Low fuel consumption, low emission 2-stroke engine
SE2000002A1 (en) Pipe piston (for internal combustion engines)
CN104832280A (en) Perfect, practical and efficient output internal combustion engine
US20230092617A1 (en) Rotary engine, parts thereof, and methods
US11788462B2 (en) Rotary engine, parts thereof, and methods
WO2004072441A1 (en) Engine with rotary cylinder block and reciprocating pistons
WO1999031363A1 (en) Orbital internal combustion engine
US8555830B2 (en) Orbital, non-reciprocating, internal combustion engine
RU2441992C1 (en) Rotary diesel engine
CN204663664U (en) Novel energy-saving IC engine
CN104832279B (en) New energy-saving IC engine
CN204677296U (en) Improve the internal-combustion engine that practicality and high efficiency exports
US5749220A (en) Turbocharged RAM tornado engine with transmission and heat recovery system
GB2262569A (en) Oscillatory rotating engine.
RU2720574C1 (en) Rotary-flywheel internal combustion engine
US20140182542A1 (en) Circulating Piston Engine
RU2358126C1 (en) Internal combustion engine