SE193558C1 - - Google Patents

Info

Publication number
SE193558C1
SE193558C1 SE1165455A SE1165455A SE193558C1 SE 193558 C1 SE193558 C1 SE 193558C1 SE 1165455 A SE1165455 A SE 1165455A SE 1165455 A SE1165455 A SE 1165455A SE 193558 C1 SE193558 C1 SE 193558C1
Authority
SE
Sweden
Prior art keywords
ethylene
aluminum
compounds
polyethylene
solution
Prior art date
Application number
SE1165455A
Other languages
Swedish (sv)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of SE193558C1 publication Critical patent/SE193558C1/sv

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J13/00Discharge tubes with liquid-pool cathodes, e.g. metal-vapour rectifying tubes
    • H01J13/02Details
    • H01J13/04Main electrodes; Auxiliary anodes
    • H01J13/06Cathodes
    • H01J13/10Containers for the liquid pool; Arrangements or mounting thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/02Neutralisation of the polymerisation mass, e.g. killing the catalyst also removal of catalyst residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/22Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing phenol radicals
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/06Feeding liquid to the spinning head
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2893/00Discharge tubes and lamps
    • H01J2893/0072Disassembly or repair of discharge tubes
    • H01J2893/0073Discharge tubes with liquid poolcathodes; constructional details
    • H01J2893/0074Cathodic cups; Screens; Reflectors; Filters; Windows; Protection against mercury deposition; Returning condensed electrode material to the cathodic cup; Liquid electrode level control
    • H01J2893/0075Cathodic cups
    • H01J2893/0078Mounting cathodic cups in the discharge tube

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

Uppfinnare: K Ziegler, H Breil, E Holzkamp och H Martin Prioritet begard f rem den 27 december 1954 (Forbandsrepubliken Tyskland) Foreliggande uppfinning avser framstallRing av sasom plaster anvandbara, hOgmolekylara polyetener med en molekylvikt Over 2000 .och foretrd.desvis over 10000. I allmanhet kan man med lamplig katalysatorkoneentration enligt uppfinningen till och med erhalla polyetener med en molekylstorlek, vii-ken är hogre an den som hittills ansetts sasom owe grans f5r de tekniskt tillgangliga polyetenerna. Derma grans ligger ungefar vid molekylvikter av i runt tal 50000, varvid detta tal endast avaer en uppgift om, alt lOsningar av dylika polyetener uppvisa en viss viskositet. Berakningen av gransviskositets- taletsker i foreliggande fall pa basis av en formel, som beskrivits av Schulz och Blaschke (Journal ftir praktische Chemie, band 158 [1911], sid. 130-135, formel 5b, sid. 132), varvid den dari omnamnda speciella viskositeten korrigerats enligt Fox, Fox och Flory, J. Am. Chem. Soc. 73 (1951), sid. 1901. Ur denna gransviskositet berakn•ades den ovan angivna medelmolekylvikten 50000 med hjalp av den av R. Houvvink, Journal fiir praktische Chemie, Neue Folge 1957 (1940), sid. 15-16, beskrivna formeln (5) i nagot modifierad form MG = k • (0° varvid for den:na nya plast raknats med kon, stanterna k = 2,51• 4 och a =. 1,285. I enlighet med en sadan definition av molekylvikten. kan kan man med lamplig katalysatorkombination och -koncentration enligt uppfinningen erhalla polyeten med en molekylvikt upp till 3000000 och darover. Inventors: K Ziegler, H. Breil, E. Holzkamp and H. Martin Priority requested until December 27, 1954 (Federal Republic of Germany). The present invention relates to the production of such plastics as usable, high molecular weight polyethylenes having a molecular weight of over 2000 and preferably more than 10,000. In general, with suitable catalyst concentration according to the invention, it is even possible to obtain polyethylenes with a molecular size, which is higher than that which has hitherto been regarded as the owe limit for the technically available polyethylenes. This limit is approximately at molecular weights of around 50,000, this number being only an indication that solutions of such polyethylenes have a certain viscosity. The calculation of spruce viscosity tables in the present case on the basis of a formula described by Schulz and Blaschke (Journal of Practical Chemistry, Vol. 158 [1911], pp. 130-135, formula 5b, p. 132), the latter special viscosity corrected according to Fox, Fox and Flory, J. Am. Chem. Soc. 73 (1951), p. 1901. From this granular viscosity the above-mentioned average molecular weight 50,000 was calculated with the aid of that of R. Houvvink, Journal for Practical Chemistry, Neue Folge 1957 (1940), p. 15-16, described the formula (5) in a slightly modified form MG = k • (0 ° whereby for the new plastics shaved with the cone, the stants k = 2.51 • 4 and a = 1.285. definition of molecular weight, polyethylene having a molecular weight up to 3000000 and above can be obtained with suitable catalyst combination and concentration according to the invention.

De enligt uppfinningen erhallna polyetenerna aro, sasom ovan angivits, utomordentligt hogmolekyldra. De ha en mjuknings- eller smaltpunkt Over 130° C. Vidare aro de vid rumstemperatur fullstandigt olosliga i alla losningsmedel. Dc lagmolekylara produkterna (upp till en molekylvikt av ungefar 100000) losa sig delvis• fiirst over 70° C, medan de hogmolekylara (med en molekylvikt Over 100000) delvis losa sig forst Over 100° C. De nya produkternas temperaturbestandighet är storre an a.n,dra kanda polyeteners. Vid uppvarmning av de nya produkterna till en ternperatur over 250° C behalla de sin vita farg, medan fargen av en hand produkt overgar till gra mellan 200 .och 250° C. De nya produkternas bestandighet gentemot luftsyrets oxiederande inverkan är likaledes storre an tidigare kanda pro dukters. The polyethylenes obtained according to the invention are, as stated above, extremely high molecular weight. They have a softening or melting point above 130 ° C. Furthermore, they are completely insoluble in all solvents at room temperature. Dc low molecular weight products (up to a molecular weight of about 100000) dissolve partially • first over 70 ° C, while the high molecular weight (with a molecular weight Over 100000) partially dissolve only above 100 ° C. The temperature resistance of the new products is greater than, wear kanda polyethylene. When the new products are heated to a temperature above 250 ° C, they retain their white color, while the color of a hand product changes to gray between 200 and 250 ° C. The resistance of the new products to the oxidizing effect of atmospheric oxygen is also greater than in the previous can pro dukters.

De nya polyetenerna ha en h5g vilket är ovanligt for hogmolekylara kolvaten. Kristalliniteten forblir oforandrad till Over 100° C och forsvinner forst i narheten av mjukningspunkten. Sasom framgar av rontgendiagram uppgar kristallinitetsgraden i allmanhet till ungefar 80 % och Or i manga fall hogre. Aven lagre varden kunita givetvis forekomma. The new polyethylenes have a h5g which is unusual for high molecular weight carbonates. The crystallinity remains unchanged at Over 100 ° C and only disappears near the softening point. As can be seen from X-ray diagrams, the degree of crystallinity in general states about 80% and Or in many cases higher. Also store the cairn kunita of course occur.

De enligt uppfinningen framstallda polyetenerna ha fullstandigt linjar struktur och praktiskt taget inga forgreningar. Pa 100 metylengrupper innehalla polyetenerna hogst 3 metylgrupper men i allmanhet är antalet metylgrupper annu mycket lagre och hogst 0,03 per hundra metylengrupper, i manga fall till och med mindre an 0,01 per hundra metylen- 2— — grupper. De enligt uppfinningen framstallda produkternas infrarodspektrum uppvisar motsats till de av tidigare kanda polyetener lake nagra karakteristiska metylband. The polyethylenes produced according to the invention have a completely linear structure and practically no branches. Out of 100 methylene groups, the polyethylenes contain at most 3 methyl groups, but in general the number of methyl groups is still much lower and at most 0.03 per hundred methylene groups, in many cases even less than 0.01 per hundred methylene groups. The infrared spectra of the products produced according to the invention show, in contrast to those of previously known polyethylenes which have some characteristic methyl bands.

Rivhallfastheten uppgar till ming 100 kp/ cm2 och i manga fall till 8ver 200 kp/cm2. Draghallfastheten i ostrackt tillstand uppgar till mer an 200 kp/cm2 och dr upp till 3000 kp/cm2 has efter strackning orienterade folier. The tear hall strength amounts to a maximum of 100 kp / cm2 and in many cases to 8 over 200 kp / cm2. The tensile strength in the unstretched state amounts to more than 200 kp / cm2 and up to 3000 kp / cm2 is drawn after stretching oriented foils.

Produkterna kunna direkt, t. ex. m.ellan upphettade plattor, bearbetas till klart genomsynliga, elastiska och bojliga plattor eller folier. De dro aven lampliga att bearbeta genom strangpressning eller formsprutning. Produkterna aro strackbara i kyla och i kallt tillstand &eh kunna pa detta satt dragas till band, tradar eller fibrer med hog elasticitet och hallfasthet, vilket tidigare aldrig varit mojligt med polyeten framstalld pa annat att. Produkterna visa redan under bearbetningen en anmarkningsvard bendgenhet for fiberbildning. De kunna i small tillstand spinnas till trdclar enligt de vid spinning av superpolyamidfibrer sedvanliga metoderna. De av de nya polyetenerna framställda triklarna kunna anvandas som sadana for industriella andamdl. The products can directly, e.g. between heated plates, processed into clearly transparent, elastic and flexible plates or foils. They were also suitable for processing by extrusion or injection molding. The products are stretchable in the cold and in the cold state & can in this way be drawn into ribbons, threads or fibers with high elasticity and half-strength, which has never before been possible with polyethylene made otherwise. The products already show a remarkable tendency for fiber formation during processing. In the small state, they can be spun into threads according to the methods customary for spinning superpolyamide fibers. The tricycles made from the new polyethylenes can be used as such for industrial purposes.

I det svenska patentet 159 804 heskrives ett f8rfarande for framstallning av sadana 118gmolekylara, plastartade palyetener av detta slag, enligt vilket eten bringas i kontakt med katalysatorer, vilka besta av blandningar av aluminiumtrialkyler med foreningar av overgingsmetaller i grupperna IV—VI i det periodiska systemet, inkl. torium och uran. Andra metaller kunna icke anvandas vid denna framstallning av hirigmolekylara etenpolymerer av plastartad karaktd.r. Swedish patent 159 804 describes a process for the preparation of such 118 g molecular, plastic-like polyethylenes of this kind, according to which ethylene is brought into contact with catalysts which consist of mixtures of aluminum trialkyls with compounds of transition metals in groups IV-VI of the periodic table. incl. thorium and uranium. Other metals cannot be used in this preparation of high molecular weight ethylene polymers of plastic nature.

I det belgiska patentet 534 888 beskrives framstallning av hogrnolekylara, plastartade polyetener genom att gasformig eten bringas I kontakt med katalysatorer, vilka besta av blandningar av organiska foreningar av magnesium och/eller zink och fareningar av Overgdngsmetaller i grupperna IV—VI i det periodiska systemet inkl. torium och uran, under betingelser, vid vilka metallforeningarna varken redueeras till fri metall eller joniseras. Belgian patent 534 888 describes the production of high molecular weight, plastic-like polyethylenes by contacting gaseous ethylene with catalysts, which consist of mixtures of organic compounds of magnesium and / or zinc and compounds of Group IV-VI transition metals in the Periodic Table incl. . thorium and uranium, under conditions in which the metal compounds are neither reduced to free metal nor ionized.

Uppfinningen avser salunda ett forfarande for framstallning av sasom plaster anvandbara, hogniolekyldra polyetener genom polymerisation av eten i narvaro av en katalysator, silken bestar av organiska metallfOreningar och av foreningar av overgangsm.etaller frau grupp IV till VI i det periodiska systemet. Det utmarkande fur forfarandet at, att man, even-Welk tillsammans med sasom bestandsdel i dylika katalysatorer kanda organiska foreningar av aluminium, magnesium diet zink, som organisk metallforening i katalysatorn anvander alkalimetallalkyler eller komplexforeningar antingen av organiska foreningar av aluminium och magnesium eller alumi nium och zink eller av organiska fareningar av aluminium, magnesium eller zink med alkalimetallalkyler eller alkalimetallhydrider. The invention thus relates to a process for the preparation of high-use, high-grade polyethylenes which can be used as plastics by polymerizing ethylene in the presence of a catalyst, the silk consisting of organic metal compounds and of transition metal compounds from groups IV to VI of the Periodic Table. The distinguishing feature of the process is that, even with such a component in such catalysts, organic compounds of aluminum, magnesium diet zinc, known as organic metal compound in the catalyst, use alkali metal alkyls or complex compounds of either organic compounds of aluminum and magnesium or aluminum and zinc or of organic compounds of aluminum, magnesium or zinc with alkali metal alkyls or alkali metal hydrides.

Det är redan lcdnt att palymerisera flytande eten vid en temperatur under 9,6° C vid lagt tryck, varvid alkalimetallalkyler utgor en koraponent i katalysatorkombinationerna. Dessa alkalimetallorganiska foreningar an- vandas tillsammans med metaller i grupp 8 och i grupp lb av det periodiska systemet. I de fall cla salter av dessa metaller anvandas, valjas sadana betingelser, att fria metaller Midas. Enligt en anima utforingsform av detta forfarande anvandas principiellt olika kombinationer sasom katalysatorer, namligen peroxider i ndrvaro av joner av silver, titan, vanadin, krona, mangan, jam, kobolt, nickel och koppar. Jonformen hos de anvanda metallerna är harvid av utslagsgivande betydelse. It is already possible to polymerize liquid ethylene at a temperature below 9.6 ° C at pressurized pressure, whereby alkali metal alkyls form a component in the catalyst combinations. These organometallic organometallic compounds are used in conjunction with Group 8 and Group 1b metals of the Periodic Table. In cases where cla salts of these metals are used, such conditions are chosen, that free metals Midas. According to an animated embodiment of this process, in principle various combinations are used as catalysts, namely peroxides in the presence of ions of silver, titanium, vanadium, crown, manganese, jam, cobalt, nickel and copper. The ionic form of the metals used is of crucial importance.

Foreliggande forfarande är overldgset detta kanda forfarande med avseende pa katalysatorernas verkan ()eh damned pa den hastighet, med vilken polymerisering till hogmolekylara polyetener sker. &Isom alkalimetallorganiska: foreningar enligt uppfinningen kan man anvanda alkalimetallalkyler, t. ex. litium-, natrium- eller kaliummetyl, -etyl, -propyl, -bensyl, -isobutyl eller Oxen hogre alkalimetallalkyler. Man kan emellertid aven anvanda komplexforeningar av dessa alkalimetallalkyler med organiska foreningar av aluminium, magnesium eller zink, exempelvis enligt det svenska patentet 159 804 och den belgiska patentskriften 534 792, t. ex. med aluminiumtrialkyler eller alkylaluminiumhalogenider. Slutligen kan man aven anvanda komplexforeningar av al- kalimetallhydrider med organiska foreningar av aluminium, magnesium eller zink. Enligt uppfinningen ifragakomma alltsa exempelvis foreningar med. formlerna Na [Al (CA )4] , Li[A1(C118)2l12], Na[Al(C0llr,)3H] och Mg[Al(C21-1)4] 2. The present process is by far the best process with respect to the action of the catalysts on the rate at which polymerization to high molecular weight polyethylenes takes place. As alkali metal organic compounds according to the invention, alkali metal alkyls can be used, e.g. lithium, sodium or potassium methyl, -ethyl, -propyl, -benzyl, -isobutyl or Oxen higher alkali metal alkyls. However, it is also possible to use complex compounds of these alkali metal alkyls with organic compounds of aluminum, magnesium or zinc, for example according to the Swedish patent 159 804 and the Belgian patent specification 534 792, e.g. with aluminum trialkyls or alkylaluminum halides. Finally, complex compounds of alkali metal hydrides with organic compounds of aluminum, magnesium or zinc can also be used. According to the invention, for example, associations with. the formulas Na [Al (CA) 4], Li [Al (C118) 2112], Na [Al (CO11r,) 3H] and Mg [Al (C21-1) 4] 2.

De beskrivna, metallorganiska foreningarna anvandas enligt uppfinningen tillsammans med foreningar av overgangsmetaller i grupperna 4-6 i det periodiska systemet, inkl. torium och uran. Silunda kan man exempelvis anvanda f8reningar av titan, zirkonium, hafnium, torium, uran, vanadin, niob, tantal, krom, molybden och wolfram. Salter av titan, zirkonium eller krom dro sarskilt lampliga. Sasom foreningar av de ndmnda metallerna lampa sig halogenider, t. ex. klorider eller bromider, oxihalogenider, t. ex oxiklorider, komplexa halogenider, t. ex. komplexa: fluorider, nyfallda oxider eller hydroxider eller organiska foreningar, t. ex. alkoholat, acetat, bensoat eller acetylacetonat. En sdrskilt verksam katalysator enligt uppfinningen erhdlles, om man blandar exempelvis titan- eller zirkoniumtetraklorid, -oxiklorid: eller -acetylaceton.at med organiska alkalifOreningar. En. sit- — —3 dan katalysator overfOr mycket snabbt eten till hogmelekylart polyeten redan vid lagt tryck under 100 atm och vid en. temperatur under 100° C. The described organometallic compounds are used according to the invention together with compounds of transition metals in groups 4-6 of the periodic table, incl. thorium and uranium. For example, compounds of titanium, zirconium, hafnium, thorium, uranium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten can be used. Salts of titanium, zirconium or chromium were particularly suitable. As compounds of the aforementioned metals lamp halides, e.g. chlorides or bromides, oxyhalides, eg oxychlorides, complex halides, e.g. complex: fluorides, newly precipitated oxides or hydroxides or organic compounds, e.g. alcoholate, acetate, benzoate or acetylacetonate. A particularly effective catalyst according to the invention is obtained by mixing, for example, titanium or zirconium tetrachloride, oxychloride or acetylacetone with organic alkali compounds. One. The catalyst transfers very quickly ethylene to high molecular weight polyethylene even at pressures below 100 atm and at one. temperature below 100 ° C.

De kanda hogtrycksforfarandena ha dessutom den olagenheten, att endast en relativt ringa mangd, namligen ungefar 15-20 %, av det tillforda etenet omvandlas till polyeten under varje forsoksforlopp. Enligt uppfin- ningendaremot en mycket vasent- lig del av den tillforda etenmangden under varje forsoksfOrlopp. Vidare behover det enligt uppfinningen anvanda etenet icke vara like rent som vid de tidigare kanda Effierandena. In addition, the known high-pressure processes have the disadvantage that only a relatively small amount, namely about 15-20%, of the supplied ethylene is converted to polyethylene during each test run. According to the invention, on the other hand, a very significant part of the amount of ethylene supplied during each test run. Furthermore, the ethylene used according to the invention need not be as pure as in the previous known efficiencies.

Polymerisationsforfarandet enligt uppfinningen kan genomfOras vid ett jamfarelsevis lagt tryck av ungefar 10 till lop,. atm. Man kan aven arbeta vid ett tryck under 10 atm. till och med vid atmosfarstryck eller forminskat tryck. Givetvis forblir verkan or de nya katalysatorerna pa etenet i princip ofOrandrad, nar trycket hojes till en godtycklig fran teknisk synpunkt fortfarande möj hg niva. The polymerization process of the invention can be carried out at a comparatively applied pressure of about 10 lbs. atm. You can also work at a pressure below 10 atm. even at atmospheric pressure or reduced pressure. Of course, the effect of the new catalysts on the ethylene remains basically unchanged, when the pressure is raised to an arbitrary from a technical point of view still possible high level.

De nya polymerisationskatalysatorerna aro verksamma redan vid rumstemperatur eller darunder. Det är lampligt att arbeta vid forhojd temperatur, sarskilt over 50° C. Daremot är det icke lampligt att arbeta vid en tenaperatur Over 250° C, eftersom katalysatorerna i vasentlig grad sonderdelas vid denna temperatur. The new polymerization catalysts are already active at room temperature or below. It is suitable to work at elevated temperature, especially above 50 ° C. On the other hand, it is not suitable to work at a temperature above 250 ° C, since the catalysts are significantly subdivided at this temperature.

I stallet for rent eten kan man vid utforande av fOreliggande forfarande aven an.-vanda etenhaltiga gasblandningar, sasom gager, vilka bildas vid krackning av mattade kolvaten, t. ex. etan eller propan, eller av petroleum och dess fraktioner, eller vid pa lampligt satt ledda Fischer-Tropsch-synteser och vilka eventuellt am o befriade frail andra olefiner. Instead of pure ethylene, in carrying out the present process, ethylene-containing gas mixtures can also be used, such as gags, which are formed by cracking of the matt carbonates, e.g. ethane or propane, or of petroleum and its fractions, or by appropriately conducted Fischer-Tropsch syntheses and which may have liberated other olefins.

Harvid och Oxen i andra fall kan det vara larnpligt .att arbeta i narvaro av lOsningsmedel. Dessa 18sningsmedel fa emellertid icke beframja en dissociation av metallforeningarna. I enlighet harmed ifragakommer icke vatten, metanol eller andra losningsmedel med h8g dielektricitetskonstant. Dessutom skulle sadana lOsningsmedel forstora de organiska alkaliforeningarna. Man maste i stand aavanda inerta losningsmedel, 1 vilka metallsalterna aro olosliga och icke dissociera. sasom lampliga losningsmedel av delta slag ma namna.s alifatiska och hydroaromatiska kolvaten, I. ex. pentan, hexan, cyklohexan, tetrahydronaftalen, dekahydronaftalen, hog-re, vid reaktionstemperaturen flytande paraffiner, aromatiska kolvaten, t. ex. bensen eller xylen, halogenerade, aromatiska kolvaten, t. ex. o-diklorbensen eller klorerade naftalener, etrar, t. ex. dibutyleter, dioxan eller tetrahydr ofuran. Harvid and Oxen in other cases may be obliged to work in the presence of solvents. However, these solvents must not promote a dissociation of the metal compounds. Accordingly, water, methanol or other solvents with a high dielectric constant are not used. In addition, such solvents would enlarge the organic alkali compounds. Inert solvents must be used, in which the metal salts are insoluble and do not dissociate. as suitable solvent solvents of the delta type called aliphatic and hydroaromatic hydrocarbons, i.e. pentane, hexane, cyclohexane, tetrahydronaphthalene, decahydronaphthalene, higher, reaction temperature liquid paraffins, aromatic hydrocarbons, e.g. benzene or xylene, halogenated aromatic hydrocarbons, e.g. o-dichlorobenzene or chlorinated naphthalenes, ethers, e.g. dibutyl ether, dioxane or tetrahydride ofuran.

Losningsmedlet anvandes i sadan mangd, att en omroring ay reaktionsblandningen natt och jamnt ar mojlig vid slutet av reaktion.en. allmanhet kan reaktionsblandningen annu omroras, nar den vid slutet av reaktionen innehaller 10-% polyeten. Enligt vad som ovan angivits finnas endast granser med hansyn till forfarandets ekonomiska genomforande i praktiken. The solvent is used to such an extent that stirring of the reaction mixture overnight and evenly is possible at the end of the reaction. In general, the reaction mixture can be stirred even when it contains 10% polyethylene at the end of the reaction. According to what has been stated above, there are only limits with regard to the economic implementation of the procedure in practice.

Uppfinningen askadliggores narmare me-deist foljande exempel. The invention is further illustrated by the following examples.

Exempel 1. Av 12 g natriumaluminiumtetrametyl [framstalld pa samma salt som nat. riumaluminiumtetraetyl enligt Journal of Organic Chemistry, 5, (1940), sid. 111] framstalldes med 80 ml hexan en fin suspension genom en timmes maiming i en kulskakkvarn utan lufttilltrade. Suspensionen forsattes sedan droppvis under omraring med 4 g titantetraklorid i 20 ml hexan, varvid suspensionen blev svartfargad och en gas utvecklades. Denna svarta, fine suspension infordes sedan i en 200 ml autoklav, varpa 40 g eten inpressades och autoklaven uppvarmes till 100° C under skakning. Trycket steg darvid till en. borjan frau 50 till 80 atm och foil mom 20 timmar till 25 .atm. Efter avkylning avdrogos 7 g eten. Autoklaven inneholl 30 g av ett med katalysator grasvartfargat, i hexan finfordelat polyeten, som for rening befriades fran lesningsmedlet genom filtrering och sedan urkokades med metanolisk saltsyra. Efter uttvattning med metanol och aceton samt torkning vid 80-100° C erholls en rent vit, finpulveriserad produkt. Example 1. Of 12 g of sodium aluminum tetramethyl [prepared on the same salt as nat. aluminum aluminum tetraethyl according to the Journal of Organic Chemistry, 5, (1940), p. 111] was prepared with 80 ml of hexane a fine suspension by one hour maiming in a ball shaker without air conditioning. The suspension was then continued dropwise with stirring with 4 g of titanium tetrachloride in 20 ml of hexane, whereby the suspension became black and a gas evolved. This black, fine suspension was then introduced into a 200 ml autoclave, whereupon 40 g of ethylene were pressed and the autoclave was heated to 100 ° C with shaking. The pressure then rose to one. starting from 50 to 80 atm and foil mom 20 hours to 25 .atm. After cooling, 7 g of ethylene were removed. The autoclave contained 30 g of a catalyst black grass-colored, hexane-finely divided polyethylene, which for purification was freed from the reading agent by filtration and then boiled with methanolic hydrochloric acid. After dilution with methanol and acetone and drying at 80-100 ° C, a pure white, finely powdered product is obtained.

Exempel 2. 100 g av en av krackolefiner erhallen blandning av aluminiumtrialkyler med en genomsnittlig sammansattning, motsvarande aluminiumtridodecyl, lostes under kvavgasatmosfar i 200 ml dehydrerad FischerTropsch-dieselolja med kokpunkten 2002300 C och uppvarmdes under intensiv omroring med g natrium till 130-150° C. Liisningen blev morkfargad p0. grund av utskilt aluminium och genom att en del av natriumet gick i lOsniing. Aluminiumet hopklumpades vid langsam avkylning av blandningen till cirka 90° C med overskottet natrium, varvid losningen blev klar och kunde befrias frail den fa:sta bottensatsen genom dekantering. I mot-sets till natriumaluminiumtetrametyl enligt exempel 1 forblev den komplexa foreningen, som hade den genomsnittliga sammansattningen Na(Cl2H)4A1, lost i dieseloljan. 50 ml portioner av losningen anvandes sedan fOr foljande forsok: a) Till 50 ml av oven beskrivna losning sattes 600 ml dehydrerad Fischer-Tropsch-diesel- olja, varefter den erhallna losningen infordes i ett glaskarl med en volym av 1 liter. Darefter infOrdes droppvis under omroring och utan lufttilltrade en losning av 1 g titantetra- klorid i 50 ml dieselolja, varvid lOsningen blev svartfargad under utskiljning av en finfOrde- lad fanning. Eten inleddes sedan under omroring vid 70-90° C och polymeriserade 1 — — reaktionskarlet till polyetentradar och tradknippen, vilka langsamt utskildes ur losningsmedlet. Etentillforseln reglerades s, att det icke polymeriserade etenet endast svagt par-lade genom blasraknaren i utloppsledningen. Efter fern minuter avbrots forsoket och det bildade polyetenet upparbetades sasom i exempel 1. Pa detta satt erh011os 75 g av ett rent vitt, mycket finpulveriserat polyeten. 50 ml av ovan beskrivna losning forsattes med 3 g torium-IV-acetylacetonat och den gulfargade losningen utspaddes med 30 ml dehydrerad Fischer-Tropsch-dieselolja. Hela lOsningen infordes nu under kvavgas i en 200 ml autoklav och 33 g eten inpressades. Autoklaven uppvarmes under skakning till 90° C, varvid trycket steg till 50 atm. Efter 15 timmar hade trycket sjunkit till 15 atm. Efter avsvalning och utslappning av det joke polymeriserade etenet (totalt 8 g) aterstod i autoklaven 22 g, i hexan suspenderat, pulverformigt polyeten som upparbetades pa sedvanligt, i exempel 1 beskrivet salt. 50 ml losning av det beskrivna slaget utspaddes med 350 nil dehydrerad FischerTropsch-dieselolja och maldes intensivt tva timmar i en kulskakkvarn med 2 g zirkoniumtetraklorid. Den bildade, morkbruna suspensionen infordes under kvavgas i en rarautoklav med 1 liters volyrn och upphettades under ett konstant etentryck av 10 atm till 90° C. Efter 10 timmar avbrots forsoket och overskottet eten avdrogs. Efter avskiljning av dieseloljan upparbetades det i autoklaven kvarvarande polyetenet pa sedvanligt salt. 85 g rent vitt, finpulveriserat polyeten erholls. 50 ml komplexsaltlosning forsattes med 150 ml dehydrerad Fischer-Tropseh-dieselolja och 1,5 g krom-III-bromid samt maldes intensivt tva timmar i en kulskakkvarn. Den bildade, svarta suspensionen forsattes sedan under kvavgas i en 500 ml autoklav med 65 g eten. Beg'ynnelsetrycket var 45 atm och steg till 100 atm vid uppvarmning till 100° C under skakning. Efter 40 timmar hade trycket sjunkit till 25 atm. Autoklaven fick svalna och 11 g eten utblastes. I autoklaven aterstod en i dieselolja fint suspenderad grin av etenpolymerer, som efter sedvanlig rening gay g av ett vitt, fint polyetenpulver. Example 2. 100 g of a mixture of cracked olefins obtained from crackle olefins with an average composition, corresponding to aluminum tridodecyl, were dissolved under a nitrogen atmosphere in 200 ml of dehydrated FischerTropsch diesel oil with a boiling point of 200230 DEG C. and heated with intensive stirring with sodium g to 130 DEG-150 DEG C. The lysis became dark colored p0. due to secreted aluminum and because some of the sodium went into solution. The aluminum was lumped together with slow cooling of the mixture to about 90 ° C with the excess sodium, whereby the solution became clear and could be freed from the solid precipitate by decantation. In contrast to the sodium aluminum tetramethyl of Example 1, the complex compound having the average composition Na (Cl 2 H) 4A1 remained dissolved in the diesel oil. 50 ml portions of the solution were then used for the following experiments: a) To 50 ml of the solution described above was added 600 ml of dehydrated Fischer-Tropsch diesel oil, after which the resulting solution was introduced into a glass vessel with a volume of 1 liter. Then a solution of 1 g of titanium tetrachloride in 50 ml of diesel oil was introduced dropwise with stirring and without air, whereby the solution became black while precipitating a finely divided solution. Ethylene was then started with stirring at 70-90 ° C and polymerized the 1 - - reaction vessel to polyethylene radar and bundles, which were slowly separated from the solvent. The ethylene supply was controlled so that the non-polymerized ethylene was only weakly beaded through the blast furnace in the outlet line. After four minutes, the experiment was stopped and the polyethylene formed was worked up as in Example 1. 75 g of a pure white, very finely powdered polyethylene were obtained. 50 ml of the solution described above was continued with 3 g of thorium IV acetylacetonate and the yellow solution was diluted with 30 ml of dehydrated Fischer-Tropsch diesel oil. The whole solution was now introduced under nitrogen into a 200 ml autoclave and 33 g of ethylene were pressed. The autoclave is heated with shaking to 90 ° C, whereby the pressure rises to 50 atm. After 15 hours, the pressure had dropped to 15 atm. After cooling and draining the joke polymerized ethylene (8 g in total), 22 g of hexane-suspended polyethylene, suspended in hexane, were worked up in the autoclave and worked up into the usual salt described in Example 1. 50 ml of solution of the type described was diluted with 350 ml of dehydrated FischerTropsch diesel oil and intensively ground for two hours in a ball shaker with 2 g of zirconium tetrachloride. The resulting dark brown suspension was introduced under nitrogen into a 1 liter volumetric crucible and heated under a constant ethylene pressure of 10 atm to 90 ° C. After 10 hours, the experiment was stopped and the excess ethylene was removed. After separating the diesel oil, the polyethylene remaining in the autoclave was worked up on ordinary salt. 85 g of pure white, finely powdered polyethylene are obtained. 50 ml of complex salt solution was continued with 150 ml of dehydrated Fischer-Tropseh diesel oil and 1.5 g of chromium-III bromide and ground intensively for two hours in a ball shaker. The black suspension formed was then continued under nitrogen in a 500 ml autoclave with 65 g of ethylene. The initial pressure was 45 atm and rose to 100 atm when heated to 100 ° C with shaking. After 40 hours, the pressure had dropped to 25 atm. The autoclave was allowed to cool and 11 g of ethylene were blown out. In the autoclave remained a grin of ethylene polymers finely suspended in diesel oil, which after customary purification gay g of a white, fine polyethylene powder.

Exempel 3. 29,3 g aluminium-tri-n-butyl, som losts i 35 ml hexan, forsattes under omraring med 13,4 ml av en 11-N-natriumhydridsuspension i hexan. Vid uppvarmning av blandningen gick natriumhydriden kvantitativt i losning. Den erhallna losningen, som vid avkylning forblev klar och ur vilken inga kristaller utfollo, befriades fran hexan genom indunstning i vakuum, varvid man sasom aterstod erholl dot kristalliserade komplexsaltet natriumaluminiumtributylhydrid. 10,5 g av den salunda framstallda natriumaluminium-tributylhydriden lostes i 250 ml hexan, varefter en losning av 4 g titantetra klorid i 20 ml hexan tillsattes droppvis. Losningen blev darvid svartfargad. Kontaktblandningen omrtirdes 30 minuter vid 40-60° C och utspaddes med 2,2 liter Fischer-Tropschdieselolja. Eten inleddes i blandningen och efter tre timmars reaktionstid vid 60-90° C hade en grotartad suspension av bildat polyeten i Fischer-Tropsch-dieseloljan bildats. Reaktionshlandningen befriades fran suspensionsmedlet genom avsugning och polyetenet behandlades tva timmar med hutanolisk saltsyra vid 90-100° C for rening, varvid de i polyetenet ingaende katalysatorresterna utlostes. Produkten tvattades sedan med metanol och aceton samt torkades, varvid 215 g polyeten erhollos. Example 3. 29.3 g of aluminum tri-n-butyl, dissolved in 35 ml of hexane, were added while stirring with 13.4 ml of an 11-N-sodium hydride suspension in hexane. Upon heating the mixture, the sodium hydride was quantitatively dissolved. The resulting solution, which remained clear on cooling and from which no crystals precipitated, was liberated from hexane by evaporation in vacuo to give the crystallized complex sodium sodium tributyl hydride. 10.5 g of the thus prepared sodium aluminum tributyl hydride were dissolved in 250 ml of hexane, after which a solution of 4 g of titanium tetrachloride in 20 ml of hexane was added dropwise. The solution was then blackened. The contact mixture was stirred for 30 minutes at 40-60 ° C and diluted with 2.2 liters of Fischer-Tropsch diesel oil. Ethylene was introduced into the mixture and after a reaction time of 60 hours at 60-90 ° C, a coarse suspension of polyethylene formed in the Fischer-Tropsch diesel oil had formed. The reaction mixture was freed from the suspending agent by suction and the polyethylene was treated for two hours with hutanolic hydrochloric acid at 90-100 ° C for purification, releasing the catalyst residues containing the polyethylene. The product was then washed with methanol and acetone and dried to give 215 g of polyethylene recovered.

Exempel 4. I 500 ml till kokning upphettad, vattenfri toluen infordes droppvis 250 ml av en 2-N etylmagnesiumkloridlasning i eter under kraftig omroring. Grignard-foreningen utfoil darvid i form av ett vitt pulver, medan etern avdestillerade. Efter avdrivning av toluenen i vakuum erholls den eterfria grignardforeningen. 9 g av den salunda framstallda, eterfria etylmagnesiumkloriden upphettades sex timmar tillsammans med 11,5 g, aluminiumtrietyl och 25 ml hexan i en 200 ml autoklav under stark skakning vid en temperatur av 100° C. Efter avsvalning erhallos vid indunstning av den avcentrifugerade hexanlosningen 7,5 g av komplexforeningen magnesium-dialuminiumoktetyl i form av en tjock olja (sammansattning: 7,6 % Mg, 17,0 % Al; beraknat for IvIg[Al(C2H„)4]2 : Mg 7,84 %, Al 17,4 %. Erhallen magnesiumdialuminium-oktetyl (7,5 g) lostes i 100 ml hexan och forsattes droppvis vid 60-80° C, under kraftig ontroring med en losning av 4,5 g titantetraldorid i 50 ml hexan. Kontaktblandningen overfordes under kvavgas till en 500 ml autoklav, varefter 75 g eten inpressades och autoklaven upphettades till 100° C under skakning. Trycket sjonk inom 10 timmar till 5 ato. Efter avsvalning utblastes 5 g: eten. Autoklaven, inneholl en i hexan tint suspenderad grat av etenpolymerer, som efter sedvanlig rening gay 66 g av ett vitt polyetenpulver. Example 4. In 500 ml of boiling anhydrous toluene, 250 ml of a 2-N ethylmagnesium chloride solution in ether were introduced dropwise with vigorous stirring. The Grignard compound then formed in the form of a white powder, while the ether distilled off. After evaporation of the toluene in vacuo, the ether-free grignard compound is obtained. 9 g of the thus prepared ethereal ethylmagnesium chloride were heated for six hours together with 11.5 g of aluminum triethyl and 25 ml of hexane in a 200 ml autoclave under strong shaking at a temperature of 100 ° C. After cooling, evaporation of the centrifuged hexane solution was obtained. , 5 g of the complex compound magnesium-dialuminum octetyl in the form of a thick oil (composition: 7.6% Mg, 17.0% Al; calculated for IvIg [Al (C2H2) 4] 2: Mg 7.84%, Al17 The obtained magnesium dialuminum-octetyl (7.5 g) was dissolved in 100 ml of hexane and continued dropwise at 60 DEG-80 DEG C., with vigorous stirring with a solution of 4.5 g of titanium tetraloride in 50 ml of hexane. to a 500 ml autoclave, after which 75 g of ethylene were pressed in and the autoclave was heated to 100 ° C with shaking. The pressure dropped within 10 hours to 5 atoms. After cooling, 5 g of ethylene were blown out. The autoclave contained a batch of ethylene polymers suspended in hexane. as after customary purification gay 66 g of one white polyethylene powder.

Exempel 5. 6 g zinkdietyl [framstalld enligt det i Ann. 152, sid. 321 (1869) beskrivna forfarandet], lost i 50 ml heptan, forsattes. droppvis under kraftig omroring och under kvavgas med en losning av 5,8 g aluminiumtrietyl i 50 ml heptan, varefter blandningen upphettades en timme till losningsmedlets kokpunkt. Efter avkylning maldes blandning, en. tillsammans med 4 g zirkoniumtetraklorid tva timmar i en kulskakkvarn, varpa den. bildade, svarta suspensionen under kvavgas. infordes i en 500 ml autoklav, 6g eten in-- pressades och autoklaven skakades 15 timmar. vid 90° C, varvid trycket foil till 22 ato. Efter avsvalning utblastes 9 g eten. Autoklaven in-. neholl en grOtartad suspension ay polyeten i. — — heptan, vilken. efter sedvanlig rening gay 52 g vitt polyeten. Example 5. 6 g of zinc diethyl [prepared according to Ann. 152, p. 321 (1869) described procedure], dissolved in 50 ml of heptane, was continued. dropwise with vigorous stirring and under nitrogen with a solution of 5.8 g of aluminum triethyl in 50 ml of heptane, after which the mixture was heated for one hour to the boiling point of the solvent. After cooling, the mixture was ground, a. together with 4 g of zirconium tetrachloride two hours in a ball shaker, warp it. formed, the black suspension under nitrogen. was introduced into a 500 ml autoclave, 6 g of ethylene was pressed in and the autoclave was shaken for 15 hours. at 90 ° C, the pressure foil to 22 atm. After cooling, 9 g of ethylene are blown out. Autoclaves in-. neholl a large suspension ay polyethylene i. - - heptane, which. after usual purification gay 52 g white polyethylene.

Exempel 6. 50 g aluminiumtrihexyl lostes under kvavgas i en 200 ml genomhydrerad Fischer-Tropsch-dieselolja med kokpunkten 200-250° C och upphettades under intensiv omroring med 10 g kalium till 120-130° C. Losningen antog darvid genom utskilt aluminium en mark farg och en del av kaliumet gick i losning. Vid langsam avkylning utfoll aluminiumet med overskottet kalium„ varvid losningen blev klar och kunde dekanteras frtn den fasta bottensatsen. Den komplexa foreningen med ,sammansattningen KA1(C61-113) 4 var lost i dieseloljan. Example 6. 50 g of aluminum trihexyl was dissolved under nitrogen in a 200 ml of hydrogenated Fischer-Tropsch diesel oil with a boiling point of 200-250 ° C and heated with intensive stirring with 10 g of potassium to 120-130 ° C. color and some of the potassium went into solution. Upon slow cooling, the aluminum precipitated with the excess potassium, whereby the solution became clear and could be decanted from the solid base. The complex compound with, composition KA1 (C61-113) 4 was dissolved in the diesel oil.

Till 50 ml av den sMunda framstallda losningen sattes 600 ml genomhydrerad FischerTropseh-dieselolja, varefter hela Risningen infordes i ett 1 liters, glaskarl. I karlet infordes sedan droppvis under onnoring och utan luf ttilltrade en Riming av 2,5 g titantetraklorid i 50 ml dieselolja, varvid losningen antog svart ffirg. Eten inleddes under kraftig mu:raring vid 60-90° C. Efter 30 minuter var reaktionsblandningen grotartad genom att etenet hade polymeriserat till polyeten. Reaktionsblandningen upparbetades sfisom i exempel 1, varvid 153 g av ett rent vitt, mycket finpulveriserat polyeten erholls. To 50 ml of the solution prepared at the same time was added 600 ml of hydrogenated FischerTropseh diesel oil, after which the entire Risningen was introduced into a 1 liter glass vessel. A rhyme of 2.5 g of titanium tetrachloride in 50 ml of diesel oil was then introduced dropwise into the vessel during purification and without air, the solution taking on a black color. Ethylene was started under heavy masonry at 60-90 ° C. After 30 minutes, the reaction mixture was grotty because the ethylene had polymerized to polyethylene. The reaction mixture was worked up as in Example 1 to give 153 g of a pure white, very finely powdered polyethylene.

Exempel 7. 17,5 g av en enligt J. A. Wanklyn, Ann. 108 (1858), p. 67, framstalld komplexforening, natrium-zinktrietyl, maldes, med 4,4 g vanadinoxiklorid och 50 ml hexan under fern timmar i en kulskakkvarn. Den bildade morkbrun-svartfargade suspensionen fylldes under kvfivgas i en 200 ml autoklav, varefter 45 g eten inpressades. Autoklaven upphettades under skakning till 100° C, varvid trycket steg till 85--90 atm. Efter tio timmar avbrots forsoket. Eller avsvalning, utslappning av overskottet eten och rening av det bildade polyetenet genom filtrering och urkokning med metanolisk saltsyra erholls 8 g av ett pulverformigt, rent vitt polyeten. Example 7. 17.5 g of one of J. A. Wanklyn, Ann. 108 (1858), p. 67, prepared complex compound, sodium zinc triethyl, was ground, with 4.4 g of vanadium oxychloride and 50 ml of hexane for four hours in a ball shaker. The resulting dark brown-black suspension was filled under nitrogen into a 200 ml autoclave, after which 45 g of ethylene were pressed. The autoclave was heated with shaking to 100 ° C, the pressure rising to 85-90 atm. After ten hours, the attempt is interrupted. Or cooling, draining the excess ethylene and purifying the polyethylene formed by filtration and boiling with methanolic hydrochloric acid gave 8 g of a powdery, pure white polyethylene.

Exempel 8. 10 ml av en 6-molar litiumbutyllosning i bensen maldes 2 timmar tillsammans med., 1 g zirkoniumtetraklorid och 70 ml hexan i en kulskakkvarn under utestangande av luft. Den bildade, svartbruna suspensionen infordes under kvavgas i en 200 ml autoklav, varefter 40 g eten inpressades. Autoklaven upphettades under skakning till 100-110° C, varvid trycket steg till 80 atm. Redan efter fyra timmar hade trycket sjunkit till 25 atm och efter ytterligare 20 timmar till 10 atm. Efter 'avsvalning avdrogs 3 g eten. I autoklaven aterstod en tjock gra av polyeten i hex:an, som var graffirgad av katalysator rester. Efter filtrering kokades polyetenet for rening med metanolisk saltsyra, varvid de i polyetenet ingaende katalysatorresterna avlagsnades genom upplosning. Produkten tvatlades irked metanol och aceton f6r a.vskiljning av kvarvarande mangd saltsyra. 35 g pulverformigt, rent vitt polyeten erholls pa detta I stallet for zirkoniumtetraklorid kan man aven anvanda motsvarande mangd titantetraklorid, torium-IV-acetylacetonat eller kromIII-klorid, varvid reaktionen forloper pa analogt salt. Example 8. 10 ml of a 6-molar lithium butyl solution in benzene was ground for 2 hours together with 1 g of zirconium tetrachloride and 70 ml of hexane in a ball shaker while excluding air. The resulting black-brown suspension was introduced under nitrogen into a 200 ml autoclave, after which 40 g of ethylene were pressed. The autoclave was heated with shaking to 100-110 ° C, the pressure rising to 80 atm. Already after four hours the pressure had dropped to 25 atm and after another 20 hours to 10 atm. After cooling, 3 g of ethylene were removed. The autoclave contained a thick layer of polyethylene in the hexane, which was graphitized with catalyst residues. After filtration, the polyethylene was boiled for purification with methanolic hydrochloric acid, the catalyst residues containing the polyethylene being removed by dissolution. The product was washed with methanol and acetone to separate residual hydrochloric acid. 35 g of powdered, pure white polyethylene are obtained in this case. Instead of zirconium tetrachloride, a corresponding amount of titanium tetrachloride, thorium IV acetylacetonate or chromium III chloride can also be used, the reaction proceeding to analogous salt.

Exempel 9. 20 ml av en 6-molar litiumbutyllosning i bensen blandades tillsammans med 2,4 g aluminiumtrietyl och 80 ml bensen. Blandningen forsattes vid rumstemperatur med en losning av 2 g vanadintetraklorid 100 ml bensen Mom en halv timme. Den sd framstallda katalysatorblandningen utspaddes med 2 liter ben.sen och under ororning vid 40° C inleddes eten vid normalt tryck. Efter 2 timmars polymerisation hade 76 g polyeten bildats. For borttagning av katalysatorn frfin polyetenet rordes produkten med butanol vid 70-80° C under 30 minuter, varefter produkten tvatta:des med metanol och aceton och torkades. Example 9. 20 ml of a 6 molar lithium butyl solution in benzene was mixed together with 2.4 g of aluminum triethyl and 80 ml of benzene. The mixture was continued at room temperature with a solution of 2 g of vanadium tetrachloride 100 ml of benzene Mom for half an hour. The catalyst mixture thus prepared was diluted with 2 liters of benzene and, while stirring at 40 DEG C., ethylene was started at normal pressure. After 2 hours of polymerization, 76 g of polyethylene had formed. To remove the polyethylene catalyst, the product was stirred with butanol at 70-80 ° C for 30 minutes, after which the product was washed with methanol and acetone and dried.

Claims (1)

1. Patentansprik: Farfarande for framstallning av sasom plaster anvandbara, hogmolekylara polyetener genom polymerisation av eten i narvaro av en katalysator, vilken bestfir av organiska metallforeningar och av foreningar av overgfingsmetaller Iran grupp IV till Vii det periodiska systemet, kannetecknat darav, att man, eventuellt tillsammans med sasom bestandsdel dylika katalysatorer Hilda organiska foreningar av aluminium, magnesium eller zink, som organisk metallforening i katalysatorn anvander alkalimetallalkyler eller komplexforeningar antingen av organiska foreningar av aluminium och magnesium eller aluminium och zink eller av organiska foreningar av aluminium, magnesium eller zink med alkalimetallalkyler eller alkalimetallhydrider. Anforda publikationer: Patentskrifter Iran Storbritannien 587 475, 682 420.1. Patent claim: Process for the preparation of high-molecular-weight polyethylenes by the polymerization of ethylene in the presence of a catalyst, which consists of organometallic compounds and compounds of transfer metals Iran Group IV to Vii of the Periodic Table, characterized in that together with such a component such catalysts Hilda organic compounds of aluminum, magnesium or zinc, as organic metal compound in the catalyst use alkali metal alkyls or complex compounds either of organic compounds of aluminum and magnesium or aluminum and zinc or of organic compounds of aluminum, magnesium or zinc with alkali metal alkyls or alkali metal hydrides. Request publications: Patents Iran UK 587 475, 682 420.
SE1165455A 1954-12-27 1955-12-27 SE193558C1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEZ4628A DE1154634B (en) 1954-12-27 1954-12-27 Process for the production of high molecular weight polyethylenes

Publications (1)

Publication Number Publication Date
SE193558C1 true SE193558C1 (en) 1964-12-22

Family

ID=43499914

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1165455A SE193558C1 (en) 1954-12-27 1955-12-27

Country Status (7)

Country Link
AT (1) AT194608B (en)
BE (1) BE543913A (en)
DE (1) DE1154634B (en)
FR (1) FR68927E (en)
GB (1) GB829627A (en)
NL (1) NL105217C (en)
SE (1) SE193558C1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3075960A (en) * 1958-10-20 1963-01-29 Exxon Research Engineering Co Polymerization process with a complex metal hydride-aluminum trialkyl-titanium halide catalyst
US3017403A (en) * 1959-04-14 1962-01-16 Grace W R & Co Ethylene polymerization
US3134796A (en) * 1960-07-11 1964-05-26 Ethyl Corp Chromium and tin tetraalkylboron compounds and preparation thereof
US3098862A (en) * 1960-07-11 1963-07-23 Ethyl Corp Complex bimetallic organometallic compounds and method for their preparation
GB2008131B (en) * 1977-11-15 1982-06-30 Denki Kagaku Kogyo Kk Method of polymerzing olefins using zeigler-type catalysts

Also Published As

Publication number Publication date
DE1154634B (en) 1963-09-19
BE543913A (en) 1956-06-23
GB829627A (en) 1960-03-02
NL105217C (en) 1963-07-15
AT194608B (en) 1958-01-10
FR68927E (en) 1958-07-23

Similar Documents

Publication Publication Date Title
US3070549A (en) Polymerization catalysts
US4063009A (en) Polymerization of ethylenically unsaturated hydrocarbons
US3114743A (en) Method of preparing synthetic rubber
US4109071A (en) Process for the polymerization of olefins
US3644318A (en) Process for the polymerization of olefins
US3392162A (en) Polymerization of ethylenically unsaturated hydrocarbons
NO810984L (en) PROCEDURE FOR THE PREPARATION OF AN ALKENE POLYMERIZATION CATALYST
SU541439A3 (en) The method of producing polyethylene
NO158943B (en) PROCEDURE FOR THE PREPARATION OF A POLYMERIZER FOR POLYMERIZATION OF ALKENES, CATALYST SYSTEMS FOR POLYMERIZATION OF ALKENES AND USE OF THIS CATALYSTER SYSTEM.
RO106744B1 (en) Catalyst for polimerization of alfa-olefines, preparation process thereof, process of polimerization in the presence of this catalysts and polymer resulted
US4105585A (en) Polymerization catalyst
SE193558C1 (en)
US3063798A (en) Alpha olefin polymerization catalysts
US3422082A (en) Polymerization of vinyl chloride
SE448460B (en) PROCEDURE FOR REDUCING TRANSITION METAL ALCOXIDES
US4192772A (en) Solid catalyst and process for the preparation thereof
GB813797A (en) Improvements in or relating to the polymerisation of ethylene
KR100292790B1 (en) The use of the halogenated complex salt of the lanthanoid system and the polymerization reaction of the unsaturated monomer
US3173901A (en) Polymerization process and catalyst therefor
Wang et al. Polymerization of 2, 4‐hexadiene with neodymium catalysts and characterization of the resulting polymers
US3257367A (en) Polymers of branched chain monoolefinic hydrocarbons
US2976252A (en) Temperature-staged catalyst pretreatment
US3238145A (en) Method of preparing catalyst compositions from titanium tetrachloride and organoaluminum compounds
US3386980A (en) Polymerization of vinyl alkyl ethers with metal oxide-sulfuric acid complex catalysts
US3017401A (en) Ethylene polymerization with aluminum titanium tetrachloride catalysts