SE190822C1 - - Google Patents
Info
- Publication number
- SE190822C1 SE190822C1 SE190822DA SE190822C1 SE 190822 C1 SE190822 C1 SE 190822C1 SE 190822D A SE190822D A SE 190822DA SE 190822 C1 SE190822 C1 SE 190822C1
- Authority
- SE
- Sweden
- Prior art keywords
- fluid
- chamber
- vortex chamber
- flow
- amplifier according
- Prior art date
Links
- 239000012530 fluid Substances 0.000 description 113
- 230000000694 effects Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000001174 ascending effect Effects 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- KHOITXIGCFIULA-UHFFFAOYSA-N Alophen Chemical compound C1=CC(OC(=O)C)=CC=C1C(C=1N=CC=CC=1)C1=CC=C(OC(C)=O)C=C1 KHOITXIGCFIULA-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 235000021018 plums Nutrition 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15C—FLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
- F15C1/00—Circuit elements having no moving parts
- F15C1/16—Vortex devices, i.e. devices in which use is made of the pressure drop associated with vortex motion in a fluid
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Measuring Volume Flow (AREA)
Description
KLASS INTERNATIONELLSVENSK G OS b42r:4 PATENT- OCH REGISTRERINGSVERKET Ans. 1950/1962 inkom den 22/2 1962 utlagd den 16/12 1963 R E BOWLES, SILVER SPRING oca B M HORTON, KENSINGTON, MD, USA Fluidum-fOratarkare utan iörJiga delar FOreliggande uppfinning hanfor sig till en fluidumforstarkare utan rorliga delar och med fluidumtillforsel till en kammare atminstone nara dess periferi, vilken kammare har htminstone en axiell utloppsoppning. Denna anordning ãr avr sedd att utnyttja fluidets stromning och dess egenskaper ftir att forstarka en ineffektsignal. FluidumfOrstarkaren enligt foreliggande uppfinning kraver i huvudsak inga andra rorliga, mekaniska delar an sjalva det strommande fluidet. Detta är fordelaktigt, emedan anvandning av rOrliga, mekaniska delar begransar fluidumsystemets exakthet, palitlighet och anvandbarhet i en grad, som varierar med den speciella tilldmpningen, pa grund av de rorliga delarnas friktion, varmeutvidgning eller nothing, tillverkningstoleranser, monteringsproblem, tftighet eller vikt, reaktionstid och liknande. Det är salunda fordelaktigt att eliminera eller minska antalet mekaniskt rorliga delar med hansyn till forbattring av systemets driftsakerhet, stabilitet, lagringsduglighet, initialkostnader och Uppfinningen kannetecknas i huvudsak av aft kammaren Or av virveltyp, genom Aiken fluidet utan rotation strommar mot utloppsoppningen i franvaro av rotationsrorelse mellan kammaren och fluidet, och att kammaren Or forsedd med en anordning fOr att bibringa fluidet rotationsrorelse ,forhallande till virvelkammaren for astadkommande av en vertikal stromning i denna. Anordningen astadkommer en begynnande rotationshastighet, som Or en funktion av ett fOr matning eller detektering avsett fysiskt fenomen, varvid stromningens rotationshastighet fOrstarkes av den shlunda bildade virvelforstarkaren. CLASS INTERNATIONALSVENSK G OS b42r: 4 PATENT AND REGISTRATION AGENCY Ans. 1950/1962 was filed on 22/2 1962 published on 16/12 1963 RE BOWLES, SILVER SPRING and BM HORTON, KENSINGTON, MD, USA Fluidum feeder without external parts The present invention relates to a fluid booster without moving parts and with fluid supply to a chamber at least near its periphery, which chamber has at least one axial outlet opening. This device is intended to utilize the flow of the fluid and its properties to amplify an effect signal. The fluid booster of the present invention requires substantially no other movable mechanical parts than the flowing fluid itself. This is advantageous because the use of movable mechanical parts limits the accuracy, reliability and usability of the fluid system to a degree which varies with the special application, due to the friction of the movable parts, thermal expansion or nothing, manufacturing tolerances, mounting problems, toughness or weight, reaction time and similar. It is thus advantageous to eliminate or reduce the number of mechanically movable parts with a view to improving the operational reliability, stability, storage capacity, initial costs and The invention can be characterized mainly by the vortex type chamber Or, through the Aiken fluid without rotation flows towards the outlet opening in the absence of rotational movement between the chamber and the fluid, and that the chamber Or is provided with a device for imparting rotational movement to the fluid, relative to the vortex chamber for effecting a vertical flow therein. The device provides an incipient rotational speed, which is a function of a physical phenomenon intended for feeding or detection, the rotational speed of the flow being amplified by the vortex amplifier thus formed.
Foreliggande uppfinning utnyttjar rotations-node, rotationsfritt flode, fludiumflodesfordelning, transportegenskaper, gransskikteffekter, tryckfordelning, ledskenor, avlankningsorgan, ytegenskaper, fluidumegenskaper, hydrostatiska och dynamiska faktorer for att man skall uppnh uppfinningens andamal. Anordningen kan betraktas Dupi. Id. 47 g: 21/10; 47 g: 39/03 som en forstarkare, .emedan den reglerade energin Or storre On den reglerande. Det anvanda fluidet kan utgoras av en vatska, gas, fluidumblandningar eller en kombination darav, dar olika flui der anvandas i olika delar av Virvelforstarkaren. The present invention utilizes rotation node, rotation free flow, fluid flow distribution, transport properties, boundary layer effects, pressure distribution, guide rails, deflection means, surface properties, fluid properties, hydrostatic and dynamic factors in order to achieve the spirit of the invention. The device can be considered Dupi. Id. 47 g: 21/10; 47 g: 39/03 as an amplifier, .while the regulated energy Or greater On the regulating. The fluid used may be a liquid, gas, fluid mixtures or a combination thereof, where different fluids are used in different parts of the vortex booster.
Man kan utga fan fallet med en cirkular skal, som innehaller en vatska och Or forsedd med ett litet utloppshal vid bottnens centriun. Vatskans hojd i skalen resulterar i alt hydrostatiskt tryck som soker pressa ut vatskau genom det centrala utloppshalet. Om flOdet ager rum utan rotation, strommar vatskan radiellt mot och genom utloppshalet. Om fluidet Or okomprimerbart, Or stromningshastigheten omvant prop ortionell mot vatskans radiella lage. Om man studerar ett tvhdimensionellt node uLan rotation, t. ex. flodet till ett enkelt utloppshal, rider foljande samband mellan den radiella. hastigheten Vr och det radiella laget r enligt ekvationen (1) konstant Ora fluidet Or komprimerbart, maste man Oven taga hansyn till fluidets lokala densitet varvid ekvationen (1) kan skrivas konstant Vr —(2) r/e Om fluidet bibringas en tangentiell hastighetskomposant omedelbart intill skalens kant, kommer fluidumringen att rotera i sin helhet omkring utloppshalet som rotationsaxel, sh att flOclet blir roterande i stallet for icke roterande. I flera hand-bucker visas matematiskt, att denna ring krymper mot det centralt anbragta utloppet, varvid det enkla, roterande flodets tangentiella hastighetskomposant Vt beror ph det radiella laget enligt ekvationen (3). konstant Vr (1) V t = (3) 2— — Da fluidet avtappas fran skalen, okas salunda dess tangentiella hastighetskomposant Vt att Oka, dä det radiella avstandet minskas och d. fluidet ror sig fran kanten till det centralt placerade utloppshalet. Om man i idealfallet utgar fran en skal med diametern c:a 25 cm med ett centralt utloppshal med en diameter av c:a 0,25 mm, blir salunda den tangentiella hastighetskomposanten vid utloppshalet Via 1000 ganger den tangentiella hastighetskomposanten vid skalens kant Vte. Den tangentiella hastighetskomposanten forstarkes salunda. One can assume the case with a circular shell, which contains a liquid and Or provided with a small outlet hall at the bottom centriun. The height of the vatskan in the shells results in all hydrostatic pressure which seeks to push vatskau out through the central outlet tail. If the flow takes place without rotation, the liquid flows radially towards and through the outlet tail. If the fluid is uncompressible, or the flow rate is converted prop ortional to the radial layer of the liquid. If one studies a two-dimensional node without rotation, e.g. the river to a simple outlet hall, rides the following connection between the radial. the velocity Vr and the radial layer are according to equation (1) constant Ora the fluid Or compressible, one must also take into account the local density of the fluid whereby the equation (1) can be written constant Vr - (2) r / e If the fluid is imparted a tangential velocity component immediately adjacent the edge of the shells, the fluid ring will rotate in its entirety about the outlet tail as the axis of rotation, so that the fluid becomes rotating instead of non-rotating. In several hand-buckers it is shown mathematically that this ring shrinks towards the centrally arranged outlet, whereby the tangential velocity component Vt of the simple, rotating river depends on the radial layer according to equation (3). constant Vr (1) V t = (3) 2— - As the fluid is drained from the shells, its tangential velocity component Vt is increased to Oka, as the radial distance decreases and d. the fluid moves from the edge to the centrally located outlet tail. If, ideally, one starts from a shell with a diameter of about 25 cm with a central outlet tail with a diameter of about 0.25 mm, the tangential velocity component at the outlet tail Via thus becomes 1000 times the tangential velocity component at the edge Vte of the shell. The tangential velocity component is thus amplified.
Ovan har beskrivits en oppen skal innehallande vatska for att elementdrt beskriva virvelforstdrkarens verkan, men vid foredragna utforingsformer av uppfinningen anvandes en sluten behallare eller virvelkammare, i vilken fluidet icke behover vara en vatska utan kan utgoras av en fluidumblandning eller -kombination, medan det tryck, som fororsakar utpressning av fluidet genom utloppet icke behdver hero p. tyngdkraftens verkan utan kan astadkommas genom att virvelkammaren sdttes under tryck eller deformeras elastiskt. Fluidumtrycket kan awn alstras genom att energi -Mores virvelkammaren eller genom att ett eller flera fluider tillforas med en radie, som avviker fran utloppsradien. An open shell containing liquid has been described above to elementally describe the action of the vortex booster, but in preferred embodiments of the invention a closed container or vortex chamber is used, in which the fluid need not be a liquid but may be a fluid mixture or combination while which causes the fluid to be squeezed out through the outlet does not require the action of gravity but can be accomplished by placing the vortex chamber under pressure or elastically deforming. The fluid pressure can awn be generated by the energy -Mores vortex chamber or by supplying one or more fluids with a radius which deviates from the outlet radius.
Det huvudsakliga andamalet med foreliggande uppfinning är salunda att astadkomma en fluidumforstArkare, t. ex. forsedd med organ for fluidumtillforsel pa flera olika stallen med olika radiellt avstand fran en utloppsoppning. Uppfinningen avser ocksa att mata rotationshastigheten for fludiumflodet fran forstarkarens utloppsoppning. Ett ytterligare andamal med uppfinningen dr att astadkomma ett system for for-spanning av en virvelforstarkare respektive att astadkomma en virvelforstArkare med differentialverkan. Enligt en utforingsform av uppfinningen har fluidumfOrstarkaren flera inloppsoppningar pa olika radiella avstand, och en anordning kan finnas for att math bade rotationsriktningen och rotationshastigheten for fluidum, som utstrOmmar fran en fluidumforstarkares utloppsOppning. The main object of the present invention is thus to provide a fluid booster, e.g. provided with means for fluid supply in several different places with different radial distance from an outlet opening. The invention also intends to feed the rotational speed of the fluid flow from the outlet opening of the amplifier. A further object of the invention is to provide a system for biasing a vortex booster and to provide a vortex booster with differential action. According to an embodiment of the invention, the fluid booster has several inlet openings at different radial distances, and a device may be provided for measuring both the direction of rotation and the rotational speed of fluid flowing out of the outlet opening of a fluid booster.
Uppfinningen kommer i det foljande att beskrivas narmare med hanvisning till bifogade ritningar, vilka som exempel visa nagra utfOringsformer. Fig. 1 är en planvy av en fOrsta utforingsform av fluidumforstarkaren enligt uppfinningen. Fig. 2 dr ett snitt efter linjen 2-2 i fig. 1. Fig. 3 är en planvy av en modifikation av anordningen enligt fig. 1. Fig. 4 är ett snitt efter linjen 4-4 i fig. 3. Fig. 5 är en planvy av en tredje utforingsform. Fig. 6 ãr ett snitt efter linjen 6-6 i fig. 5. Fig. 7 är en planvy av en fluidumforstarkare med flera inlopp. Fig. 8 är ett snitt efter linjen 8-8 i fig. 7. The invention will be described in more detail below with reference to the accompanying drawings, which show, by way of example, some embodiments. Fig. 1 is a plan view of a first embodiment of the fluid booster according to the invention. Fig. 2 is a sectional view taken along line 2-2 of Fig. 1. Fig. 3 is a plan view of a modification of the device of Fig. 1. Fig. 4 is a sectional view taken along line 4-4 of Fig. 3. 5 is a plan view of a third embodiment. Fig. 6 is a sectional view taken along line 6-6 of Fig. 5. Fig. 7 is a plan view of a multi-inlet fluid booster. Fig. 8 is a sectional view taken along line 8-8 of Fig. 7.
I fig. 1 och 2 betecknas virvelkammarens 1 centrumlinje med CL. Virvelkammaren 1 har i stort sett formen av en sluten cylinder med en botten 2, ett tak 3 och en mantelvdgg 4, som forbinder bottnen 2 och taket 3. En utloppsoppfling 5 finnes i bottnen 2 och anbragt symmetriskt I denna, sa att oppningen är centrerad omkring virvelkammarens 1 centrumlinje CL. In Figs. 1 and 2, the center line of the vortex chamber 1 is denoted by CL. The vortex chamber 1 is substantially in the form of a closed cylinder with a bottom 2, a roof 3 and a casing wall 4, which connects the bottom 2 and the roof 3. An outlet bulge 5 is located in the bottom 2 and arranged symmetrically therein, so that the opening is centered around the 1 center line CL of the vortex chamber.
Inloppsoppningar 6 Oro anordnade med ungefailika vinkelavstand och med storsta mojliga radie I virvelkammarens 1 tak 3. Matarledningar 7 i form av rOr mynna i oppningarna 6 och stracka sig vinkelrdtt genom taket 3. Ledningarna 7 mata fluidum till virvelkammaren 1 genom oppningama 6, som dro vertikala i forhallande till taket 3, sa att ingen tangentiell hastighetskomposant infores i flodet. Det exakta antalet rot. 7 i en utforingsform enligt uppfinningen avpassas efter cmstandigheterna, men det an Onskvart att anvanda ett avsevart antal for att oregelbundet, tangentiellt flode skall undvikas. Den visade utforingsformen är forsedd med 24 sadana Mr 7. Dessa matas med fluidum genom matarledningar 8, vilka samtliga sta i forbindelse med en huvudledning 9. En alternativ ledning 10 leder fluidum till ytterligare en matarledning 11 pa mindre radiellt avstand fran centrum An matarledningarna 7. Fluidum ledes genom en installbar ventil 12 till huvudledningama 9 och 10 fran ett ror 13, SOM är forbundet med en tryckfluidumkalla, t. ex. en pump eller nagon annan lamplig, icke visad anordning. Ventilen 12 Or det mojligt att reglera fordelningen av det fluidum, som genom riiret 13 ledes till fordelarledningarna 9 och 10 och armed aven det relativa flodet genom ledningarna 7 och 11. Eftersom dessa ligga pA olika radiellt avstand, uppsta olika stromningshastighet vid centrumlinjen CL respektive utloppsOppningen 5, sa att fluidets rotationshastighet vid utloppsoppningen 5 kan regleras genom installning av ventilen 12 i beroende av nagot tangentiellt flode, som induceras i kammaren 1 pi nagot lampligt sdtt. Inlet openings 6 Concerns arranged at approximately angular distances and with the largest possible radius in the roof 3 of the vortex chamber 1. Feed lines 7 in the form of tubes open into the openings 6 and extend perpendicularly through the roof 3. The lines 7 supply fluid to the vortex chamber 1 through the openings 6, which draw vertical in relation to the roof 3, said that no tangential velocity component is introduced into the river. The exact number of roots. 7 in an embodiment according to the invention is adapted to the conditions, but it is advisable to use a considerable number in order to avoid irregular, tangential flow. The embodiment shown is provided with 24 such Mr 7. These are supplied with fluid through supply lines 8, all of which are connected to a main line 9. An alternative line 10 leads fluid to another supply line 11 at a less radial distance from the center of the supply lines 7. Fluid is passed through an installable valve 12 to the main lines 9 and 10 from a tube 13, which is connected to a pressure fluid source, e.g. a pump or other suitable, not shown device. Valve 12 Is it possible to control the distribution of the fluid which is led through the pipe 13 to the distributor lines 9 and 10 and armed by the relative flow through the lines 7 and 11. Since these are at different radial distances, different flow velocities arise at the center line CL and the outlet opening 5, so that the rotational speed of the fluid at the outlet opening 5 can be controlled by installing the valve 12 in dependence on some tangential flow, which is induced in the chamber 1 in a somewhat suitable manner.
Sa lange som ingen tangentiell eller roterande stromningskomponent infores i virvelkammaren 1, blir flodet riktat radiellt mot utloppsoppningen 5. Varje tangentiell stromningskomposant i kammaren 1, vilken komposant kan inforas pa godtyckligt Ott pa stone avstand frail linjen CL i kammaren 1, an oppningens 5 radie, medfor att ett forstarkt, roterande flode uppstar vid oppningen 5, dvs. flodet vid denna roterar hastigare An flodet pa nagot stalle inuti kammaren med storm radie an oppningen 5. As long as no tangential or rotating flow component is introduced into the vortex chamber 1, the flow is directed radially towards the outlet opening 5. Each tangential flow component in the chamber 1, which component can be inserted at any distance from the line CL in the chamber 1, on the radius of the opening 5. causes a pre-amplified, rotating flood to occur at the opening 5, i.e. the river at this rotates faster than the river at some point inside the chamber with a storm radius at the opening 5.
Oppningen 5 dr forbunden med ett Ha. 15 med ett ddri anordnat vinghjul, bestaende av plana vingar, som korsa varandra i en med CL sammanfallande linje. Vinghjulet 16 dr mekaniskt fen'. bundet med en liten likstrOmsgenerator 17, vans uteffektspanning beror pa. varvtalet och rotationsriktningen, men endast kraver obetydlig drivkraft. Generatom 17 dr fOrbunden med en matare 18, som kan utgoras av en voltmeter och salunda kan graderas i motsvarighet till vinghjulets 16 varvtal for att ange bade rotationsriktningen och -hastigheten. Vinghjulet 16 star stilla, sa. ldnge som flodet genom oppningen 5 dr radiellt, dvs. icke inneh'Aller nagon roterande komposant, sa att voltmetem 18 visar pa noll. SA snart som en roterande komposant upptrader, bringas vinghjulet 16 att rotera for att driva generatorn 17 — —3 med proportionell eller samma hastighet, och den av generatorn till voltmetern 18 angivna spanningen kan avldsas mot en skala, som Ur graderad i varvtalsenheter, varjamte spanningens polaritet bestammes av rotationsriktningen. The opening 5 dr connected with one Ha. 15 with a vane wheel arranged therein, consisting of flat wings which cross each other in a line coinciding with CL. The impeller 16 dr mechanically fen '. connected to a small DC generator 17, the output voltage of which depends on. speed and direction of rotation, but only requires insignificant driving force. The generator 17 is connected to a feeder 18, which can be constituted by a voltmeter and thus can be graded in correspondence with the speed of the impeller 16 to indicate both the direction and speed of rotation. The impeller 16 is still, said. ldnge as the river through the opening 5 dr radially, ie. does not contain any rotating component, so that voltmeter 18 indicates zero. As soon as a rotating component appears, the impeller 16 is caused to rotate to drive the generator 17-3 at a proportional or the same speed, and the voltage specified by the generator to the voltmeter 18 can be dissipated on a scale which is graded in speed units, and the voltage polarity is determined by the direction of rotation.
Virvelkammaren I enligt fig. 1 och 2 utgores matematiskt av en i huvudsak cirkular cylinder fOrsedd med en utloppsOppning 5 anordnad runt cylinderns langdaxel CL. Det avghende flodet roterar kring axeln CL med en tangentiell hastighetskomposant, som beraknas enligt ekvationen (3) och varje tangentiell, i virvelkammaren infbrd hastighetskomposant. Om denna tangentiella hastighetskomposant infores, da fluidet kommer in i kammaren som Vti eller initialkomposant for den tangentiella hastigheten, kan tillstandet vid utloppet Vtd beraknas enligt ekvationen (4). The vortex chamber I according to Figs. 1 and 2 is mathematically formed by a substantially circular cylinder provided with an outlet opening 5 arranged around the longitudinal axis CL of the cylinder. The outgoing flow rotates about the axis CL with a tangential velocity component, which is calculated according to equation (3) and each tangential velocity component introduced into the vortex chamber. If this tangential velocity component is introduced, when the fluid enters the chamber as Vti or initial component of the tangential velocity, the state at the outlet Vtd can be calculated according to equation (4).
VtdVti (S)(4) rd Harvid betecknas ri och rd inloppets och utloppets radier i forhallande till centrumlinjen CL och (S) är en icke linear modifikation, som beror pa viskosa krafter och är lika med 1, om viskositet saknas. VtdVti (S) (4) rd In this case, ri and rd denote the radii of the inlet and the outlet in relation to the center line CL and (S) is a non-linear modification, which depends on viscous forces and is equal to 1, if viscosity is lacking.
Tryckfludium ledes genom regledngsventilen 12 till huvudledningarna 9 och 10 och sedan till ledningarna 7 och 11. Oppningarna 6 och ledningens 11 mynning dro s. orienterade och for-made att de icke ge upphov till nagon hastighetskomposant, som roterar omkring virvelkammarens langdaxel CL. Fordelarledningen 8 och ledningarna 7 aro formade och kopplade for att undvika infOrande av en rotationskraft, dä fluidet kommer in i virvelkammaren 1. Man kan nu fOrutsatta, att tangentiella hastighetskomposanter inforas i fluidet pa nagot lampligt satt. Om r, är ledningarnas 7 radiella avstand och om rd är det radiella aystandet for det fluidum, som avgar frail virvelkammaren 1, racier foljande samband mellan de tangentiella hastighetskomposanterna Vt, och Vtd vid radierna r, och rd enligt foljande ekvation (5), dOr (S) är en modifikation, som beror pa viskOsa krafter V td T (S) V r rd Ett ytterligare inlopp 11 anordnas ph det radiella avstandet r„ lam virvelkammarens centrumlinje CL. Man kan naturligtvis anordna flera sh.dana inlopp. Om fluidum endast tillfores genom inlopp med det radiella avstandet r„ kan den tangentiella hastighetskomposanten beraknas enligt ekvationen (6) V td r6 Vt 6 Li Fluidet i virvelkammaren forutsattes nu 'angst bort fran centrumlinjen rotera med en konstant vinkelhastighet do =vsrb dt och medel anordnas for att avkanna den tangentiella hastighetskomposanten vid utloppet Vtd. Ett mycket enkelt satt att avkanna detta är att anbringa ett vinghjul 16 i utflOdet med vinghjulets rotationsaxel sammanfallande med virvel kammarens langdaxel CL och med vinghjulets vingar anordnade i plan genom vinghjulets rotationsaxel. Vinghjulets vinkelhastighet Wp kan dá beraknas i beroende av den tangentiella hastighetskomposanten i utloppet Vtd enligt ekvationen (8) K Vtd Wp =(radianer per sekund)(8) rd K är i huvudsak konstant och svarar mot ungefar 1. Pressure fluid is passed through the control valve 12 to the main lines 9 and 10 and then to the lines 7 and 11. The openings 6 and the mouth of the line 11 are oriented so that they do not give rise to any velocity component which rotates about the longitudinal axis CL of the vortex chamber. The manifold line 8 and the lines 7 are shaped and connected to avoid the introduction of a rotational force when the fluid enters the vortex chamber 1. It can now be assumed that tangential velocity components are introduced into the fluid in a somewhat suitable manner. If r, is the radial distance of the conduits 7 and if rd is the radial distance of the fluid emitting from the vortex chamber 1, the following relationship between the tangential velocity components Vt, and Vtd at radii r, and rd according to the following equation (5), dOr (S) is a modification which depends on viscous forces V td T (S) V r rd An additional inlet 11 is arranged ph the radial distance r „lam the center line CL of the vortex chamber. You can, of course, arrange several such inlets. If fluid is supplied only by inlet with the radial distance r „, the tangential velocity component can be calculated according to the equation (6) V td r6 Vt 6 Li The fluid in the vortex chamber was now assumed to rotate away from the center line at a constant angular velocity do = vsrb dt and means are provided to sense the tangential velocity component at the outlet Vtd. A very simple way to detect this is to place a impeller 16 in the outflow with the impeller rotation axis coinciding with the longitudinal axis CL of the vortex chamber and with the impeller wings arranged in plane through the impeller rotation axis. The angular velocity Wp of the impeller can then be calculated depending on the tangential velocity component in the outlet Vtd according to the equation (8) K Vtd Wp = (radians per second) (8) rd K is substantially constant and corresponds to approximately 1.
Om ventilen 12, som avger fluidum till virvelkammaren, fordelar alit fludium pa ledningarna 7, blir V t =r6Wb(9) Vtd =1 (S)r,Wb(10) rd Wp = (ay (s)Kwb(11) rd Eftersom vardena r, och ra aro fixa och vardena K och (S) dro i huvudsak konstanta, kan man, om (S) 1 K Alta r 2 A= () rd och Wp = AWbK I fig. 1 dr r, > rd, sá att A > 1 och amplituden for Wp > Wb. For en fackman Or det uppenbart, att utloppet kan ske genom en ring och att en modell kan konstrueras, dar r, Or mindre On rd, sh att A < 1. If the valve 12, which delivers fluid to the vortex chamber, distributes all fluid on the lines 7, V t = r6Wb (9) Vtd = 1 (S) r, Wb (10) rd Wp = (ay (s) Kwb (11) rd Since the values r, and ra aro fixa and the values K and (S) were drawn substantially constant, one can, if (S) 1 K Alta r 2 A = () rd and Wp = AWbK In Fig. 1 dr r,> rd , so that A> 1 and the amplitude for Wp> Wb. For a person skilled in the art, it is obvious that the outlet can be made through a ring and that a model can be constructed, where r, Or less On rd, sh that A <1.
Om den ventil 12, som avger fluidum till virvelkammaren, leder allt fluidum till inloppetl 1, finner man i analogi med ekvationen (11), att Wp beror ph inloppets radiella aystand r,, utloppets radiella avstand rd, koefficienten K, viskositetsmodifikationen inuti virvelkammaren (S), och fluidets vinkelhastighet vid radien r6Wb. = 12 Wp (— K(S)W, rd/ Wp = BWbK(S) Man kan shlunda anvanda utforingsformen enligt fig. 1 som en multiplicerande forstarkare och genom installning av det radiella avstand, ph ket fluidet infores, variera forstarkningskoeffieienten enligt ovan frail vardet A till vardet B eller pa samma salt till nagot annat fast varde. If the valve 12, which delivers fluid to the vortex chamber, directs all fluid to the inlet 1, it is found in analogy with equation (11) that Wp depends on the radial distance rd of the inlet r, the radial distance rd of the outlet, the coefficient K, the viscosity modification inside the vortex chamber ( S), and the angular velocity of the fluid at the radius r6Wb. = 12 Wp (- K (S) W, rd / Wp = BWbK (S) One can thus use the embodiment according to Fig. 1 as a multiplying amplifier and by installing the radial distance, where the fluid is introduced, vary the amplification coefficient according to the above frail the value A to the value B or on the same salt to something else fixed value.
Det Or aven mojligt att leda fluidum proportionellt till inlopp ph olika radiella avstand samtidigt. I sadana fall maste man beakta momentutbytet Indian fluidum, som infores ph ett radiellt avstand r„ och fludium, som infores ph ett mindre, radiellt avsthnd r,. () 1— 1.90822 — - Med ms betecknas massaflOdeshastigheten for fluidum, som infOres i r„ och med ms massaflodeshastigheten for fluidum, som infOres vid rs. It is also possible to direct fluid in proportion to inlets of different radial distances simultaneously. In such cases, one must consider the torque yield of Indian fluid, which is introduced at a radial distance, and fluid, which is introduced at a smaller radial distance. () 1— 1.90822 - - By ms is meant the mass flow rate of fluid, which is introduced in r „, and by ms, the mass flow rate of fluid, which is introduced in rs.
- Dá massan ms liarnatt det radiella avstandet rs, bar den en radiell hastighetskomposant beraknad enligt ekvationen (2) och massa enligt folj ande: th = eVA!(16) = em5,5Vr5 2ar5h(17) varvid e m5,5 är densiteten for m5 vid laget r„ V„ Or den radiella hastigheten vid rs, h r virvelkammarens hojd och A' är den radiella stromningsarean 2nr h. ri- Vr5 - (18) em5,5 2nr5h I laget r/(6 s) ett radiellt avstand, som är nagot storre an r, 1 ins V rs+,-L-- em56 , 2 h(19) I- Den tangentiella stromningshastigheten f6r rhs vid r(6 e) Or Vt(s+s) ==l(S1)r5 Wb(20) r, Hastigheten fOr rhs vid avstandet r/s +a Or salunda V(64-6) -= liVr :+e + Vt:+e(21) V(6 +4 -1/(firs 2+ irs2(S)Wil 2 (22) m5,6 20Th rsir, Den tangentiella momentkomposanten for rhs vid rs ± s är Pt56 = rils Vt6(23) P,„ = 1112 (S1) Wb(24) rs Den tangentiella hastigheten for rhs vid rs är Vt,, r,Wb(25) Det tangentiella momentet for rhs rs P166 lit,r6Wb(26) Det kombinerade, tangentiella momentet vid T6 - 8 Or Pt, Pt„ +P166(27) Wb Pt, — (m5(S1)r2 ria6r62)(28) rs Den tangentiella hastighetskomposanten for den kombinerade stromningen dr Vtc6-ei -(29) (m. 5+ no Pt, Wb (ins(S i)r? + fa6r62)(30) 1'2(1.115+ file) Med hj alp av ekvationerna (4) och (30) blir den tangentiella hastighetskomposanten vid utloppet Vtd Vtd = (ihs Ms) medan We beraknas enligt We - KWb(S),(1115(S1)r52+ + Ii16) ( (Si)r52 +1'22) (KWb(S)2 = ril°) (S) We =,KWb(S), (34) ms a- +1 varvid (S), representerar modifikationen pit grind av den ideella strommens viskositet mellan de radiella lagena 1.5 och rs, medan (S), representerar modifikationen pa grund av den ideella strommens viskosa krafter mellan de radiella lagena rs och rd. En jamforelse mellan ekvationerna (13) och (15) Or instruktiv. om = — ras lila(35) we phr(S), A + (S)2KWb(36) L far +1 I det forenklade fallet att (S)2=:_ 1 blir _Pb-rA- +131Kw,, L ihr + 1(37) eller wQ rri15A Ms 131 Kwi,(38) L th.5 +Its Det Or uppenbart, att en liknande analys latt kan genomforas, om fluidum infOres pa mer On tva radiella avstand. Det Or Oven uppenbart, att avtappningen kan she pa mer On ett radiellt avstand, om sit Onskas, for att minska det erforderliga antalet enheter i ett system. - When the mass ms liarnatt the radial distance rs, it carried a radial velocity component calculated according to equation (2) and mass according to the following: th = eVA! (16) = em5,5Vr5 2ar5h (17) where e m5,5 is the density for m5 at the layer r „V„ Or the radial velocity at rs, hr the height of the vortex chamber and A 'is the radial flow area 2nr h. ri- Vr5 - (18) em5,5 2nr5h In the layer r / (6 s) a radial distance, which is slightly greater than r, 1 ins V rs +, - L-- em56, 2 h (19) I- The tangential flow velocity for rhs at r (6 e) Or Vt (s + s) == l (S1) r5 Wb (20) r, The velocity fOr rhs at the distance r / s + a Or salunda V (64-6) - = liVr: + e + Vt: + e (21) V (6 +4 -1 / (firs 2+ irs2 (S) Wil 2 (22) m5,6 20Th rsir, The tangential moment component of rhs at rs ± s is Pt56 = rils Vt6 (23) P, „= 1112 (S1) Wb (24) rs The tangential velocity of rhs at rs is Vt ,, r, Wb (25) The tangential moment for rhs rs P166 lit, r6Wb (26) The combined tangential moment at T6 - 8 Or Pt, Pt „+ P166 (27) Wb Pt, - (m5 (S1) r2 ria6r62) (28) rs The tangential velocity component of the combined flow dr Vtc6-ei - (29) (m. 5+ no Pt, Wb (ins (S i) r? + Fa6r62) (30) 1'2 (1.115+ file) Using equations (4) and (30), the tangential velocity component at the outlet Vtd Vtd = ( ihs Ms) while We is calculated according to We - KWb (S), (1115 (S1) r52 + + Ii16) ((Si) r52 + 1'22) (KWb (S) 2 = ril °) (S) We =, KWb (S), (34) ms a- +1 where (S), the modification represents the gate gate of the viscosity of the non-profit current between the radial layers 1.5 and rs, while (S), represents the modification due to the viscous forces of the non-profit current between the radial laws rs and rd. A comparison between equations (13) and (15) Or instructive. om = - ras lila (35) we phr (S), A + (S) 2KWb (36) L far +1 In the simplified case that (S) 2 =: _ 1 becomes _Pb-rA- + 131Kw ,, L ihr + 1 (37) or wQ rri15A Ms 131 Kwi, (38) L th.5 + Its It is obvious that a similar analysis can be easily carried out, if fluid is infOres at more On two radial distances. It is also apparent that the drain can be spaced more radially, if desired, to reduce the number of units required in a system.
Aven i fig. 3 och 4 representerar CL centrumlinjen i en kammare 21 med en botten 22 och ett tak 23 forbundna genom en cylindrisk mantel 24 for att bilda en i huvudsak sluten, cylindrisk kammare. Tryckfluidum infOres i kammaren 21 genom ett radiellt ror 25, som slutar vid den cylindriska vaggen 24. Inuti kammaren 21 finnes en andra kammare 26, som bestar av ett skivliknande tak 27, vilket stracker sig parallellt med och nagot nedanfor taket 23, och en ringformig eller cylindrisk vagg 28, som stracker sig parallellt med kammarens 21 vagg 24, Den cylindriska vaggens 28 nedre kant vilar i ett ringformigt spar 29 pa insidan av kammarens 21 botten 22. Ringen 28 och dess tak 27 drivas av en motor M, som Or forbunden med takets 27 centrum. Motorn M Wb (S)15(S Ore + — — drives med variabelt varvtal frau en striimkalla 30 over en spdnnings- eller varvtalsregulator 31. Det fluidum, som tillfores genom roret 25, kommer in i den ringformiga kammaren mellan de cylindriska vaggama 21 och 28,. och alstrar ett tryck i denna kammare. En forbindelse astadkommes genom den ringformiga vaggen 28 frail den ringformiga fordelningskammare, som bildas av vaggarna 24 och 28, och den cylindriska virvelkammare, som ligger innanfOr den ringformiga vaggen 28, genom slitsar 32 och 33, som kunna bilda samma vinkel med en diametral linje, som forbinder slitsarnas utlopp 34. Slitsarna arc anordnade pa var sin sida om denna linje. Det fluidum, som kommerin i den inre kammaren genom slitsarna 32 och 33, har salunda en tangentiell hastighetskomposant. Eftersom slitsarna 32 och 33 bilda samma vinkel med den diametrala linjen och slitsarnas 32 och 33 mynningar ligga pa den diametrala linj en D, astadkommes ett vridmoment, som dr symmetriskt i ftirhallande till linjen CL. Also in Figs. 3 and 4, the CL represents the center line of a chamber 21 with a bottom 22 and a roof 23 connected by a cylindrical shell 24 to form a substantially closed, cylindrical chamber. Pressure fluid is introduced into the chamber 21 through a radial tube 25, which terminates at the cylindrical cradle 24. Inside the chamber 21 is a second chamber 26, which consists of a plate-like roof 27, which extends parallel to and slightly below the roof 23, and an annular or cylindrical cradle 28, which extends parallel to the cradle 24 of the chamber 21. The lower edge of the cylindrical cradle 28 rests in an annular groove 29 on the inside of the bottom 22 of the chamber 21. The ring 28 and its roof 27 are driven by a motor M, which Or connected with the roof 27 center. The motor M Wb (S) 15 (S Ore + - - is driven at variable speed from a cold source 30 over a voltage or speed regulator 31. The fluid supplied through the tube 25 enters the annular chamber between the cylindrical cradles 21 and 28, and produces a pressure in this chamber.A connection is made through the annular cradle 28 from the annular distribution chamber formed by the cradles 24 and 28 and the cylindrical vortex chamber located inside the annular cradle 28 through slots 32 and 33. , which can form the same angle with a diametrical line connecting the outlets 34 of the slots.The slots arc arranged on each side of this line.The fluid entering the inner chamber through the slots 32 and 33 thus has a tangential velocity component. the slits 32 and 33 form the same angle with the diametrical line and the mouths of the slits 32 and 33 lie on the diametrical line a D, a torque is produced which rotates symmetrically in nde to the line CL.
Ett utlopp 35 är anordnat i bottnen 22 symmetriskt i forhallande till linj en CL. Detta utlopp mynnar i en kammare 36 pa bottnens 22 undersida. En serie ringformiga appningar 37 stracka sig in i kammaren 36 ,och dro vanda mot utloppsOppningen 35. Dessa mottagande oppningar omfatta sasom visas en oppning 38, som star mitt for utloppet 35, och ytterligare oppningar 39-42, som ha successivt stOrre diameter och koncentriskt omge den centrala oppningen 38. Dessa mottagande bppningar 38-42 sta genom var sin ledning 43 i fOrbindelse med en manometer 44 av membrantyp. An outlet 35 is arranged in the bottom 22 symmetrically in relation to line one CL. This outlet opens into a chamber 36 on the underside of the bottom 22. A series of annular openings 37 extend into the chamber 36, and draw water towards the outlet opening 35. These receiving openings comprise, as shown, an opening 38, which is opposite the outlet 35, and further openings 39-42, which have successively larger diameters and concentric surround the central opening 38. These receiving openings 38-42 each pass through line 43 in communication with a diaphragm type manometer 44.
- I utforingsformen enligt fig 3 och 4 strommar det fluidum, ,som tillfores genom roret 25 till den ringformiga kammaren mellan vaggarna 24 och 28 fOr att sedan stronuna in i virvelkammaren genom slitsarna 32 och 33. Dessa Oro sa anordnade, att det fluidum, som kommer in i virvelkamma- ren, har en tangentiell hastighetskomposant pa grund av stromningshastigheten i slitsarna 32 och 33, Oven om dessa skulle sta stilla. En ytterligare tangentiell hastighetskomposant kan astadkommas genom att den ringformiga vaggen 28 och darmed aven slitsarna 32 och 33 drivas. Denna rotation astadkommes genom motorns M rota- tion och kan aga rum i godtycklig rotationsrikt- ning, om motorn M är omkastbar. Om ringen 28 roterar, verkar den som ett torsionstroghetsmo- meat betraffande stromningen frail den ring- formiga kammaren till virvelkammaren 21. Eftersom slitsarna 32 och 33 icke Oro raidiella, utgar strommen frail dessa med en hastighet, som icke Or radiell, varfOr en kraft verkar pO. strOmningsbanornas vaggar eller slitsar 32 och 33, vilken forsoker att fa. organet 28 i rotation eller Oka sin rotationshastighet kring centrumlinjen CL. Organets 28 varvtal iikar, tills fluidumutstromningen genom utloppet 35 har samma hastighetsvektorriktning som inloppsvektorriktningen for samma stromningsbana. Om salunda huvudmassan har en rotationshastighet Wb, fra.n vilken man kan bortse, forstdrkes salunda den tillfalliga, tangentiella hastighetskomposanten Vt7 vid radien r, (utloppsradien fOr stromningsbanorna 32 och 33), vilket beror pa att verkan av stromningen genom banorna 32 och 33 i organets 28 medelst strom- ningen genom virvelkammaren fOrstarkes till stone tangentiell hastighetskomposant i utloppsradien r. In the embodiment of Figures 3 and 4, the fluid supplied through the tube 25 to the annular chamber flows between the cradles 24 and 28 to then flow into the vortex chamber through the slots 32 and 33. These concerns provided that the fluid which enters the vortex chamber, has a tangential velocity component due to the flow velocity in the slots 32 and 33, although these should be stationary. An additional tangential velocity component can be provided by driving the annular cradle 28 and thus also the slots 32 and 33. This rotation is effected by the rotation of the motor M and can take place in any direction of rotation, if the motor M is reversible. If the ring 28 rotates, it acts as a torsional moment of motion with respect to the flow from the annular chamber to the vortex chamber 21. Since the slots 32 and 33 are not radial, the current flows from them at a speed which is not radial, for which a force acts. pO. the flow paths or slots 32 and 33 of the flow paths, which attempts to obtain. the means 28 in rotation or Oka its rotational speed about the center line CL. The speed of the member 28 increases until the fluid outflow through the outlet 35 has the same velocity vector direction as the inlet vector direction of the same flow path. Thus, if the main mass has a rotational speed Wb, which can be disregarded, the random tangential velocity component Vt7 is amplified at the radius r, (the outlet radius of the flow paths 32 and 33), which is due to the effect of the flow through the paths 32 and 33 in the means 28 by means of the flow through the vortex chamber is amplified to a stone tangential velocity component in the outlet radius r.
Vtd = —r,Vt,(39) rd Rotation V medurs forutsattes vara positiv i fig. 3 och vinkeln mellan stromningsbanornas 32 och 33 utlopp i kammaren 21 forutsattes vara a, varjamte motsvarande radiella avstand till centrumlinjen CL är r,. Virvelkammarens 23 hojd vid radien r, forutsattes vara h,. Om organet 28 Or tunt, blir ri-istga Vt7 =+2nr, v, (40) 2 n r7h dar tga är negativ for den orientering av stromningsbanorna 22, som visas i fig. 3. Vtd = —r, Vt, (39) rd Rotation V clockwise was assumed to be positive in Fig. 3 and the angle between the outlets of the flow paths 32 and 33 in the chamber 21 was assumed to be a, and the corresponding radial distance to the center line CL is r ,. The height of the vortex chamber 23 at the radius r was assumed to be h ,. If the means 28 becomes thin, ri-istga Vt7 = + 2nr, v, (40) 2 n r7h dar tga is negative for the orientation of the flow paths 22, shown in Fig. 3.
Organets 28 troghetsmoment i vinkelled forutsattes vara I. Det momentana tillstandet iden tifieras (la enligt foljande dW dt W = w5, flil3r7 [in ,tga + 2 n r7W6] dt (42) 12 ar,h r Vtd = r7n13 tga + 2 r, [W,, + ra 2 ar,h,o (Iii3tga27-a-,W,)] dt(43) 2 nr,h Liknande resultat erhalles, om ih, minskas, emedan organets 28 vinkelmoment infor en signal Vt7 i den minskade strOmningen lb. Om det minskade vardet pa M., Or noll, upptrader ingen stromning till utloppet 35. Utom forsvagning genom friktion och viskosa krafter lagras organets 28 vinkelmoment, tills stromningen rh3 aterupptas. The moment of inertia of the organ 28 in the angular joint was assumed to be I. The instantaneous state is identified (la according to the following dW dt W = w5, flil3r7 [in, tga + 2 n r7W6] dt (42) 12 ar, hr Vtd = r7n13 tga + 2 r, [W ,, + ra 2 ar, h, o (Iii3tga27-a-, W,)] dt (43) 2 nr, h Similar results are obtained, if ih, are reduced, because the angular moment of the member 28 in front of a signal Vt7 in the reduced the flow lb. If the reduced value of M., Or zero, no flow occurs to the outlet 35. Apart from weakening by friction and viscous forces, the angular moment of the member 28 is stored until the flow rh3 is resumed.
I vissa fall air det onskvart att bringa organet 28 i rotation genom en lamplig, mekanisk transmission fOr att infora ett varde pa Vt.?, som beror ph en ineffektsignal. Om icke annat anges, avses i detta sammanhang med »ineffektsignal» en fluidumsignal, som avsiktligt pdverkar systemet I Or att bringa detta att avge en onskad uteffektsignal. Denna ineffektsignal kan ha formen av variationer i avseende pa tiden eller tryckpa'verkan, densiteten, stromningshastigheten, massastrtimningshastigheten,fluidumsammansattningen, transportegenskaper eller andra termodynamiska egenskaper for det ingaende fluidet. Med »uteffektsignal» avses hdr en fluidumsignal, som systemet avger som sin uteffekt. Denna uteffektsignal kan ha formen av tids- eller rymdvariationer i tryck, (41) , 6— — densitet, stromningshastighet, massastromningshastighet, fluidumssammansattning, transportegenskaper eller termodynamiska egenskaper for det avgaende fluidet. In some cases it is difficult to bring the means 28 into rotation by a suitable mechanical transmission to introduce a value of Vt.?, Which depends on an effect signal. Unless otherwise stated, in this context, "input power signal" means a fluid signal which intentionally causes the system I Or to cause it to emit a desired output power signal. This effect signal may take the form of variations in time or pressure, density, flow rate, mass flow rate, fluid composition, transport properties or other thermodynamic properties of the input fluid. By "output power signal" hdr is meant a fluid signal, which the system emits as its output power. This output signal may be in the form of time or space variations in pressure, (41), 6 - density, flow rate, mass flow rate, fluid composition, transport properties or thermodynamic properties of the outgoing fluid.
Den hastighet, med vilken fluidet roterar dã det strommar frail utloppsOppningen 35, bestammer fluidets spridningsvinkel, efter att fluidet liar lamnat Oppningen 35. Om fluidet icke roterar, riktas alit fluidum eller nastan alit fluidum mot den centrala, mottagande oppningen 38, Ju snabbare fluidet roterar, desto storre blir fordelningen over de mottagande oppningarna 39-42. Visuell observation av manometrarna 44 kommer salunda att ge en upplysning om rotationen i det fluidum, som avgar fran oppningen 35. The rate at which the fluid rotates as it flows from the outlet orifice 35 determines the angle of diffusion of the fluid after the fluid has left the orifice 35. If the fluid does not rotate, all fluid or almost any fluid is directed toward the central receiving orifice 38, the faster the fluid rotates , the larger the distribution over the receiving openings 39-42. Visual observation of the manometers 44 will thus provide an indication of the rotation of the fluid exiting the orifice 35.
Om nu en rotationskomposant infOres i fluidet virvelkammaren i motsvarighet till flagon slags ineffektsignal, kan denna komposant balanseras genom att den ringformiga vaggen 28 pa lamp- ligIroterar. Om man nu kanner det varvtal, med vilket motorn M maste arbeta, for att astadkomma balans, kan man aven bestamma ineffektsignalens storlek. If now a rotational component is inserted into the fluid vortex chamber corresponding to the flake kind of effect signal, this component can be balanced by the annular cradle 28 on light-rotating. If you now know the speed at which the motor M must work, in order to achieve balance, you can also determine the magnitude of the input power signal.
Enligt detta alternativ kan systemet utnyttjas f Or att mata motorns M varvtal genom den massiva vinkel, som bildas av det roterande, fran Oppningen 35 avgaende fluidet, eftersom denna vinkel visas pa manometrarna 44. According to this alternative, the system can be used to feed the speed of the motor M through the solid angle formed by the rotating fluid leaving the opening 35, since this angle is shown on the manometers 44.
Systemet enligt fig. 5 och 6 omfattar en cylindrisk kammare 50 med en botten 51 och ett tak 52 forbundna genom en cylindrisk vagg 53 for att bilda en sluten, cylindrisk kammare. I denna finnes en poros, cylindrisk vagg 55, som Or anordnad innanfor den yttre vaggen 53 och straeker sig mellan bottnen 51 och taket 52 for aft bilda en ringformig kanal 56 Indian vaggens 55 utsida ()eh vaggens 53 insida. Tryckfluidum infOres 1 den ringformiga kanalen 56 genom ett ror 57, som Or forbundet med en fluidumkalla med lampligt tryck. Fluidet kan stremma genom den porlisa vaggen 55 till den kammare, som omges av densamma. Vaggen erbjuder emellertid sa Mgt mot-stand mot fluidets stromning, aft det fluidum, som tranger in i kammaren, vilken i fortsattningen benamnes virvelkammaren, icke liar nagon tangential hastighetskomposant utan en homogen, radiell hastighetskomposant. Bottnen 51 har en utloppsoppning 60 och taket 52 en utloppsoppning 61. Dessa oppningar Oro cirkulara och symmetriska i forhallande till centrumlinjen CL. Mellan oppningarna 60 och 61 finnes en archimedesskruv 63, vilken bildar en skruvformig ledskena, som medfor differentiell impedans i strommen genom oppningarna 60 och 61 med en roterande rorelsekomposant. Sã lange som den roterande rorelsekomposanten svarar mot gdngornas riktning i skruven 63, underlattar denna stromningen. Dâ striimningen liar motsatt rotationsriktning, hindras den daremot av skruven 63. Den mangd fluidum per tidsenhet, som passerar genom Oppmingarna 60 och 61, beror salunda ph den riktning, i vilken strOmmen roterar i virvelkammaTen. Om skruven forutsattes ha en stigningsriktming medurs Iran oppningen 60 till Oppningen 61, underlattas strommen medurs i riktning mot Oppningen 61 och hindras i riktning mot oppningen 60. Om daremot strommens rotationsriktning omkastas, dvs. omskruven Or hogergangad eller har medurs stigningsriktning fran oppningen 60 till Oppningen 61, blir stromningen vanstergangad fran oppningen 60 till oppningen 61, och skruven underlattar stromningen genom Oppningen 60 och hindrar stromningen genom Oppningen 61. Oppningen 60 Or genom en ledning 65 forbunden med en elastisk balg 66 med ett braddavlopp genom en trang kanal 67. Oppningen 61 Or pa samma satt genom en ledning 68 forbunden med en balg 69 med ett trangt braddavlopp 69'. Balgarna 66 och 69 dm forbundna genom en sting 70, sa att de verka mot varandra. Stangen 70 Or forsedd med en visare 71, som rOr sig Over en skala 72, sa att man genom observation av visarens 71 lage i forhallande till skalan 72 kan avlasa balgarnas 66 och 69 inbordes expansion. Visarens 71 loge utgor salunda ett matt pa fluidets rotationsriktning och rotationshastighet i virvelkammaren. The system of Figures 5 and 6 comprises a cylindrical chamber 50 with a bottom 51 and a roof 52 connected by a cylindrical cradle 53 to form a closed cylindrical chamber. In this there is a porous, cylindrical cradle 55, which Or is arranged inside the outer cradle 53 and extends between the bottom 51 and the roof 52 to form an annular channel 56 outside the inside of the cradle 55 and inside the cradle 53. Pressure fluid is introduced into the annular channel 56 through a tube 57, which is connected to a fluid source of suitable pressure. The fluid can flow through the porlisa cradle 55 to the chamber surrounded by the same. However, the cradle offers so much resistance to the flow of fluid, that the fluid which penetrates into the chamber, which is hereinafter referred to as the vortex chamber, does not have any tangential velocity component but a homogeneous, radial velocity component. The bottom 51 has an outlet opening 60 and the roof 52 an outlet opening 61. These openings are circular and symmetrical in relation to the center line CL. Between the openings 60 and 61 there is an Archimedean screw 63, which forms a helical guide rail, which carries differential impedance in the current through the openings 60 and 61 with a rotating rudder component. As long as the rotating motion component corresponds to the direction of the threads in the screw 63, this facilitates the flow. When the flow is in the opposite direction of rotation, on the other hand, it is obstructed by the screw 63. The amount of fluid per unit time which passes through the openings 60 and 61 thus depends on the direction in which the current rotates in the vortex chamber. If the screw was assumed to have a direction of inclination clockwise with the opening 60 to the opening 61, the current is left clockwise in the direction of the opening 61 and prevented in the direction of the opening 60. If, on the other hand, the direction of rotation of the stream is reversed, ie screwed Or upright or clockwise from the opening 60 to the Opening 61, the flow becomes left-handed from the opening 60 to the opening 61, and the screw facilitates the flow through the Opening 60 and prevents the flow through the Opening 61. The opening 60 Or through a conduit 65 connected to an elastic bellows 66 with a brad drain through a narrow channel 67. The opening 61 Or in the same way through a conduit 68 connected to a bellows 69 with a narrow brad drain 69 '. The bellows 66 and 69 dm connected by a stitch 70, said that they work against each other. The rod 70 Or provided with a pointer 71, which moves over a scale 72, said that by observing the position of the pointer 71 in relation to the scale 72 one can read the expansion of the bellows 66 and 69 inboard. The position of the pointer 71 thus forms a measure of the direction of rotation of the fluid and the speed of rotation in the vortex chamber.
Om archimedes-skruven 63 Or hogergangad fran Oppningen 60 till oppningen 61 och den roterande stromningen i virvelkammaren Or hogergangad, blir stromningen genom oppningen 61 och ledningen 68 stOrre On stromningen genom Oppningen 60 och ledningen 65, sa att balgen 69 star under hOgre tryck an balgen 66. Balgen 69 kommer da att pressa ihop balgen 66 och fOrskjuta visaren 71 nedat ett stycke, som utger ett matt pa strommens rotationshastighet i virvelkammaren. Om fluidumstrOmningen i denna Or rent radiell, dvs. icke innehaller flagon tangentiell eller roterande rorelsekomposant, blir skruven 63 neutral och lika stor stromning erhalles genom Oppningarna 60 och 61 till balgarna 66 och 69. I sadant fall avleda de tranga braddavloppen 67 och 69 lika mycket fluidum och balgarna alstra krafter, som Oro lika stora och m.otsatta. Visaren 71 kommer da aft stanna pa noll. If the Archimedes screw 63 is ascending from the opening 60 to the opening 61 and the rotating flow in the vortex chamber is ascending, the flow through the opening 61 and the conduit 68 becomes larger. The flow through the opening 60 and the conduit 65 is such that the bellows 69 is under higher pressure than the bellows. 66. The bellows 69 will then compress the bellows 66 and displace the pointer 71 down a distance, which is a measure of the rotational speed of the stream in the vortex chamber. If the fluid flow in this Or purely radial, i.e. does not contain the flake tangential or rotating rudder component, the screw 63 becomes neutral and equal flow is obtained through the openings 60 and 61 to the bellows 66 and 69. In such a case the narrow brad drains 67 and 69 divert as much fluid and the bellows generate forces equal to Oro. and opposite. The pointer 71 will then stop at zero.
UtanfOr kammaren 50 finnas tva ror 75 och 76, i vilka fluidum strommar i plums 77 och 78 riktningar. Ett pitotriir 80 Or \rant i uppstromsriktningen i reret 75 och ett pitotriir 81 vant i uppstromsriktningen i roret 76. Det fluidum, som strommar in i pitotroret 80, ledes till en fordelare 83, som fordelar detta fluidum like pa tva. ledningar 84 och 85, vilka m.ynna i oppningar i vaggen 55 diametralt mitt for varandra och betecknade med 90 och 91. Dessa oppningar Oro orienterade sa i forhallande till vaggen 55, att de in-Mira lika stora tangentiella stromningskomposanter. I virvelkammaren infores salunda en tangentiell stromningskomposant, vars storlek Or representativ for det tryck, som har malts med pitotroret 80. Outside the chamber 50 are two tubes 75 and 76, in which fluid flows in the plums 77 and 78 directions. A pitotrial 80 in the upstream direction of the tube 75 and a pitotrial 81 won in the upstream direction in the tube 76. The fluid flowing into the pitotror 80 is passed to a distributor 83, which distributes this fluid equally in two. lines 84 and 85, which open into openings in the cradle 55 diametrically opposite each other and denoted by 90 and 91. These openings, Oro oriented, said in relation to the cradle 55, that they in-Mira equal tangential flow components. A tangential flow component is thus introduced into the vortex chamber, the size Or of which is representative of the pressure which has been ground with the pitotror 80.
Pitotroret 81 Or pa samma satt genom en fordelare 92 forbundat med tva ledningar 93 och 94 for att fordela flodet lika ph dessa. Ledningarna 93 och 94 mynna i Oppningar 95 -och 96 i virvelkammarens vagg 55. Vid passagen genom vaggen 55 bilda ledningarna 93 och 94 en tangentiell vin- — —7 kel med vaggen for att infora ett tangentiellt flode. Eftersom mynningarna ligga diametralt mitt fOr varandra, infores ett kring centrumlinjen CL symmetriskt rotationsmoment. Oppningarna 95 och 96 infora en rotationsriktning, vilken ar motsatt den, vilken infores genom oppningarna 90 och 91. The pitotror 81 Or in the same way through a distributor 92 connected to two lines 93 and 94 to distribute the river equally ph these. The conduits 93 and 94 open in the openings 95 and 96 in the cradle 55 of the vortex chamber. Upon passage through the cradle 55, the conduits 93 and 94 form a tangential angle with the cradle to introduce a tangential flood. Since the orifices are diametrically opposite each other, a rotational moment symmetrical about the center line CL is introduced. The apertures 95 and 96 introduce a direction of rotation which is opposite to that introduced through the apertures 90 and 91.
De bagge paren oppningar 90, 91 och 95, 96 motverka salunda varandra, sá att fluidets nettorotation i virvelkammaren utgor ett matt pa tryckskillnaden mellan roren 75 och 76 matt med pitotroren 80 och 81. The rear pairs of openings 90, 91 and 95, 96 thus counteract each other, so that the net rotation of the fluid in the vortex chamber is a matte on the pressure difference between the tubes 75 and 76 matte with the pitot tubes 80 and 81.
I virvelkammaren finnas tva separata stromningshinder. Det ena av dessa har formen av cylindriska stavar 100, som kunna inforas olika djupt i virvelkammaren parallellt med dennas centrumlinje CL. Eftersom stavarna aro cylindriska och anordnade pa kortare radiellt avstand an inloppsoppningarna 90, 91 och 95, 96 med tangentiell stromningskomposant, infora stavarna 100 ett hinder for den radiella stromningen, som är lika stor i bagge rotationsriktningarna. Stavarna 100 aro anordnade pa samma, diametrala linje for att infora ett balanserat impedansmoment och forhindra turbulens, varjamte de aro monterade ph en gemensam fastplatta 101. I denna är fast en kuggstang 102, ingripande med ett kugghjul 103, som drives av en motor 104. Genom lamplig aktivering av denna kan kuggdrevet 103 bringas att rotera och darigenom forflytta kuggstangen 102 i vertikalled for att darigenom skjuta in impedansstavarna 100 mer eller mindre langt i virvelkammaren och salunda infora stone eller mindre motstand mot fluidumflodet i virveln. There are two separate flow barriers in the vortex chamber. One of these is in the form of cylindrical rods 100, which can be inserted at different depths in the vortex chamber parallel to its center line CL. Since the rods are cylindrical and arranged at a shorter radial distance from the inlet openings 90, 91 and 95, 96 with tangential flow component, the rods 100 introduce an obstacle to the radial flow which is equal in the direction of rotation. The rods 100 are arranged on the same, diametrical line in order to introduce a balanced impedance torque and prevent turbulence, and they are mounted ph a common fixed plate 101. In this is fixed a rack 102, engaging with a gear 103, which is driven by a motor 104. By suitable actuation thereof, the gear 103 can be caused to rotate and thereby move the rack 102 in the vertical direction, thereby pushing the impedance rods 100 more or less far into the vortex chamber and thus introducing stone or less resistance to the fluid flow in the vortex.
Anordningen är vidare forsedd med en andra typ av impedansapparat, som verkar i beroende av fluidets rotationsriktning i virvelkammaren. Denna impedans bestar av tva stavar 110 och 111, som Oro anordnade pa samma diametrala linje pa motsatta sidor om virvelkammarens centrumlinje CL och pa samma avstand fran denna. Stavarna 110 och 111 aro halvcirkelformiga i tvarsnitt med de konvexa ytorna vanda i samma riktning som fluidets rotation medurs, men erbjuda relativt lit et motstand mot rotation medurs pa grund av sin aerodynamiska form. DA fluidet roterar moturs, aro emellertid stavarna 110 och 111 konkava i forhallande till rotationsriktningen och medfora salunda relativt starkt hinder for stromningen. Liksom stavarna 100 aro aven stavarna 110 och 111 monterade pa en tvarplatta 112, som uppbar bagge stavarna 110 och 111 och ar fast i en kuggstang 113, vilken drives med ett kugghjul 114 fran en motor 115. The device is further provided with a second type of impedance apparatus, which operates depending on the direction of rotation of the fluid in the vortex chamber. This impedance consists of two rods 110 and 111, which Oro arranged on the same diametrical line on opposite sides of the center line CL of the vortex chamber and at the same distance from it. The rods 110 and 111 are semicircular in cross section with the convex surfaces moving in the same direction as the rotation of the fluid clockwise, but offer relatively little resistance to rotation clockwise due to their aerodynamic shape. As the fluid rotates counterclockwise, however, the rods 110 and 111 are concave in relation to the direction of rotation and thus cause relatively strong obstruction to the flow. Like the rods 100, the rods 110 and 111 are also mounted on a transverse plate 112 which carries the rear rods 110 and 111 and is fixed in a rack 113, which is driven by a gear 114 from a motor 115.
Stavarna 100 kunna anvandas for symmetrisk och stavarna 110 och 111 for osymmetrisk minskning av rotationen inuti virvelkammaren med atfOljande begransning av den maximala fOrskjutningen av visaren 71 genom att minska det totala omfanget for de tryck, som fortplantas till balgarna 66 och 69, sa att de bli relativt laga, medan trycken i Oren 75 och 76 kunna variera mom vida granser. The rods 100 can be used for symmetrical and the rods 110 and 111 for asymmetrical reduction of the rotation inside the vortex chamber with consequent limitation of the maximum displacement of the pointer 71 by reducing the total extent of the pressures propagated to the bellows 66 and 69, so that they become relatively low, while the pressures in Oren 75 and 76 can vary widely.
I anordningen enligt fig. 7 och 8 anvandes en virvelapparat med en yttre, cylindrisk behallare med botten 120 och ett parallellt tak 121, vilka aro forbundna genom en cylindrisk vagg 122 for att bilda en i huvudsak fullstandigt sluten, cylindrisk kammare. Inuti denna finnes en portis, cylindrisk vagg 123, som stracker sig mellan bottnen 120 och taket 121 innanfOr den cylindriska \Taggen 122, sa att en ringformig kanal 126 bildas, som kan anvandas for att leda tryckfluidum till virvelkammaren 124, vilken begransas av vaggens 123 insida, botten 120 och taket 121. In the device according to Figs. 7 and 8, a vortex apparatus is used with an outer, cylindrical container with a bottom 120 and a parallel roof 121, which are connected by a cylindrical cradle 122 to form a substantially completely closed, cylindrical chamber. Inside this is a portis, cylindrical cradle 123, which extends between the bottom 120 and the roof 121 within the cylindrical tag 122, so that an annular channel 126 is formed, which can be used to direct pressure fluid to the vortex chamber 124, which is bounded by the cradle 123 inside, bottom 120 and roof 121.
Fluidum ledes till den ringformiga kanalen 126 genom ett Or 127 och passerar genom den porosa vaggen 123 radiellt in i virvelkammaren 124 utan flagon tangentiell eller roterande rorelsekomposant. Ett for 130 genomstrOmmas av fluidum i den med pilen 131 angivna riktningen. Ett tryckmatningsror 132 stracker sig genom rorets 130 vagg i rat vinkel mot densamma och fortplantar salunda ett tryck, som ar lika med det statiska trycket i roret 130. Ett pitotror 133 ar vant uppstrains i ledningen 130 och utsattes salunda fOr det totala trycket i denna. Strommen i rOret 132, som representerar det statiska trycket i ledningen 130, delas pa lika delar med en fardelare 135 pa tva ledningar 136 och 137. Dessa sluta diametralt mitt emot varandra i virvelkammaren 124 pa samma avstand fran dess centrumlinje CL. Ledningarnas 136 och 137 mynningar Ore riktade mot varandra fOr att bringa fluidet i virvelkammaren 124 att rotera i samma riktning, dvs. moturs sett i fig. 7. Fluid is passed to the annular channel 126 through an Or 127 and passes through the porous rock 123 radially into the vortex chamber 124 without a tangential or rotating rudder component. A for 130 is flowed by fluid in the direction indicated by the arrow 131. A pressure feed tube 132 extends through the cradle 130 of the tube 130 at a right angle thereto and thus propagates a pressure equal to the static pressure in the tube 130. A pitotror 133 is accustomed upstream in the line 130 and is thus subjected to the total pressure therein. The current in the tube 132, which represents the static pressure in the line 130, is divided equally by a speed divider 135 on two lines 136 and 137. These terminate diametrically opposite each other in the vortex chamber 124 at the same distance from its center line CL. The mouths of conduits 136 and 137 are directed toward each other to cause the fluid in the vortex chamber 124 to rotate in the same direction, i.e. counterclockwise as shown in Fig. 7.
Pitotrorets 133 uteffekt ledes till en fordelare 140, som fOrdelar uteffekten lika pa tva separata ledningar 141 och 142. Dessa ha mynningar 143 och 144 anordnade diametralt mitt emot varandra i virvelkammaren 124 pa samma avstand frail centrumlinjen CL. Mynningarna 143 och 144 infOra fluidet i virvelkammaren 124 1 sadan riktning, att en rotation medurs astadkommes i denna. The output power of the pitotror 133 is led to a distributor 140, which distributes the output power equally on two separate lines 141 and 142. These have orifices 143 and 144 arranged diametrically opposite each other in the vortex chamber 124 at the same distance from the center line CL. The orifices 143 and 144 introduce the fluid into the vortex chamber 124 in such a direction that a clockwise rotation is effected therein.
Apparaten ar ansluten till en tryckfluidumkalla 150 Over en ventil 151 med en manometer 153. Det fluidum, som slappes fram av ventilen 151, fordelas lika i en fordelare 154 pa ledningar 155 och 156 med mynningar 157 och 158 anordnade sa, att fluidet i virvelkammaren 121 bringas att rotera medurs. Dessa mynningar aro orienterade pa lampligt satt harfor och anordnade diametralt mitt emot varandra pa samma avstand frail centrumlinjen. En andra tryckfluidumkalla 160 ar ansluten till en ventil 161 med en manometer 162. Det fluidum, som passerar genom ventilen 161, uppdelas i tva lika delar i en fOrdelare 163 pa ledningar 164 och 165 med mynningar 167 och 168 anordnade diametralt mitt emot varandra pa var sin sida om centrumlinjen CL. Avstandet mellan mynningarna 167 och 168 kan overensstamma med avstandet mellan mynningarna 157 och 158, som aro anslutna till ventilen 151. Avstandet mellan de mynningar, som Arc anslutna till pitotrtiret 133, och till tryckroret 132 kan vidare vara lika. Stromningen frail pitotroret f6rorsakar ro- 8- i90821 - tation medurs, medan det statiska trycket medfor rotation moturs. Dessa rotationsrorelser kunna balanseras med hjalp av fluidum, som infOres fran ventilerna 151 och 161, av vilka fluidet fran ventilen 151 astadkommer rotation medurs och fluidet fran ventilen 161 moturs. The apparatus is connected to a pressure fluid source 150 via a valve 151 with a manometer 153. The fluid released by the valve 151 is evenly distributed in a distributor 154 on lines 155 and 156 with orifices 157 and 158 arranged so that the fluid in the vortex chamber 121 caused to rotate clockwise. These orifices are suitably oriented and arranged diametrically opposite each other at the same distance from the center line. A second pressure fluid source 160 is connected to a valve 161 by a manometer 162. The fluid passing through the valve 161 is divided into two equal parts in a distributor 163 on lines 164 and 165 with orifices 167 and 168 arranged diametrically opposite each other on each other. its side of the center line CL. The distance between the orifices 167 and 168 may correspond to the distance between the orifices 157 and 158, which are connected to the valve 151. The distance between the orifices, which Arc connected to the pitotrite 133, and to the pressure pipe 132 may furthermore be equal. The flow from the pitotror causes rotation clockwise, while the static pressure causes rotation counterclockwise. These rotational motions can be balanced by means of fluid introduced from the valves 151 and 161, of which the fluid from the valve 151 causes rotation clockwise and the fluid from the valve 161 counterclockwise.
Den totala rotationen i virvelkammaren 124 kan matas med samma system som enligt fig. 5 och 6, om sa onskas. Enligt den. utforingsform, som visas i fig. 7 och 8, har emellertid skru.ven enligt fig. 5 och 6 utelamnats och i stand anvandas tvh vertikala utloppsledningar 170 och 171, som Aro anordnade symmetriskt i forhallande till centrumlinjen CL och som i inloppsOppningen ha en skovel for att slappa fram strOmmen i ena riktningen och stoppa strommen i motsatt riktrang. Utloppsoppningarna sta i forbindelse med balgar liksom enligt fig. 5 och 6. Denna del av anordningen enligt fig. 7 och 8 behover salunda lake fOrklaras ytterligare. The total rotation in the vortex chamber 124 can be fed by the same system as in Figs. 5 and 6, if desired. According to it. embodiment, shown in Figs. 7 and 8, however, the screw of Figs. 5 and 6 has been omitted and capable of using two vertical outlet conduits 170 and 171, which Aro arranged symmetrically in relation to the center line CL and which in the inlet opening have a vane to release the current in one direction and stop the current in the opposite direction. The outlet openings are in connection with bellows as in Figs. 5 and 6. This part of the device according to Figs. 7 and 8 thus needs to be further explained.
Anordningen enligt fig. 7 och 8 mater antingen det totala trycket eller det statiska trycket eller skillnaden mellan dessa genoin tillforsel av balanserande forspanningar flan ventilerna 151 och 161. Dessa ventiler kunna installas for att minska den totala rotationen i virvelkammaren till noll, varefter trycken avlasas pa manometrarna 153 och 162, sit att man kan fa en uppfattning am arten eller storleken av trycken i ledningen 130. The device according to Figs. 7 and 8 measures either the total pressure or the static pressure or the difference between them genoin supply of balancing biases from the valves 151 and 161. These valves can be installed to reduce the total rotation in the vortex chamber to zero, after which the pressures are read on manometers 153 and 162, so that one can get an idea of the nature or magnitude of the pressures in the line 130.
De ovan beskrivna utforingsformerna kunna modifieras, utan att uppfinningens ram darfor overskrides. The embodiments described above can be modified without exceeding the scope of the invention.
Claims (18)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE190822T |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| SE190822C1 true SE190822C1 (en) | 1964-01-01 |
Family
ID=38410971
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| SE190822D SE190822C1 (en) |
Country Status (1)
| Country | Link |
|---|---|
| SE (1) | SE190822C1 (en) |
-
0
- SE SE190822D patent/SE190822C1/sv unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3276259A (en) | Fluid amplifier | |
| Oertel | Prandtl’s essentials of fluid mechanics | |
| Rutherford et al. | Hydrodynamic characteristics of dual Rushton impeller stirred vessels | |
| US3474670A (en) | Pure fluid control apparatus | |
| Wilson et al. | Turbulent wall jets with cylindrical streamwise surface curvature | |
| KR900002822A (en) | Centrifugal Separation and Fluid Level Control Systems | |
| SE466114B (en) | REGLERKAEGLA | |
| US2378632A (en) | Apparatus for separating solids from liquids | |
| Fage | On the static pressure in fully-developed turbulent flow | |
| SE439676B (en) | DEVICE FOR SETTING THE FLOW CROSS FOR A VALVE | |
| US3308662A (en) | Meters for measuring the mass flow of fluids | |
| Kumar et al. | Flow visualization studies of a swirling flow in a cylinder | |
| SE190822C1 (en) | ||
| US3413995A (en) | Fluid amplifier | |
| US3190112A (en) | Ultrasonic inspection probe | |
| SE442378B (en) | GRAVITY CIRCULATION MIXER | |
| US3446078A (en) | Fluid amplifier | |
| US3427896A (en) | Variable counterweight system | |
| US3417624A (en) | Fluid vortex transducer | |
| CN110243756B (en) | Resistance testing arrangement based on mud | |
| RU2381952C2 (en) | Method to convert centrifugal force into driving force | |
| GB1027291A (en) | Improvements in or relating to apparatus for measuring the mass flow of fluids | |
| US3371540A (en) | Fluid gyrometer | |
| Perissinotto et al. | Visualization of oil droplets within ESP impellers | |
| Makarenko et al. | Kinematics of flow in a dead end part of a vortex chamber |