SE184068C1 - - Google Patents

Info

Publication number
SE184068C1
SE184068C1 SE184068DA SE184068C1 SE 184068 C1 SE184068 C1 SE 184068C1 SE 184068D A SE184068D A SE 184068DA SE 184068 C1 SE184068 C1 SE 184068C1
Authority
SE
Sweden
Prior art keywords
chlorine
reduction
chlorination
hot
iron
Prior art date
Application number
Other languages
Swedish (sv)
Publication date
Publication of SE184068C1 publication Critical patent/SE184068C1/sv

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B15/00Other processes for the manufacture of iron from iron compounds
    • C21B15/006By a chloride process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/08Chloridising roasting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Uppfinnare: R Nowak och W Schuster Prioritet begdrd fem den 28 september 1960 (Forbundsrepubliken Tgskland) FOreliggande uppf inning avser ett kemiskttekniskt fOrfaringssatt for storindustriell utvinning av rent jarn ur jarnmalmer, aven mindervardiga, medelst en halogenidmetallurgisk process. Inventors: R Nowak and W Schuster Priority requested on 28 September 1960 (Federal Republic of Germany) The present invention relates to a chemical engineering procedure for large-scale industrial extraction of pure iron from iron ores, even minor ones, by means of a halide metallurgical process.

FOrhyttning av jdrnmalmer i schaktugnar eller roterande rorugnar till tackjarn genom direkt eller indirekt reduktion dr kand. Preheating of iron ores in shaft furnaces or rotary rudder furnaces to pig iron by direct or indirect reduction dr kand.

Schaktugnsprocesserna hava den nackdelen att reduktionen och smdttprocessen sker i samma rum och att till RIO harav forutom jarnoxid aven andra oxider delvis medreduceras och darmed utvinnes ett starkt fororenat jam i form av tack-jam. Detta liar i sin tur den nackdelen, att tackjarnet vid doss forbearbetning till jam eller stal maste underkastas langvariga och dyrbara reningsoch forddlingsprocesser, t. ex. fdrskning enligt Thomas- och Bessemerprocesserna. The shaft furnace processes have the disadvantage that the reduction and the smelting process take place in the same room and that in addition to iron oxide, other oxides are also partially co-reduced and thus a strongly contaminated jam is extracted in the form of tack jam. This, in turn, has the disadvantage that the pig iron must be subjected to lengthy and expensive purification and refining processes during dosing pre-processing into jam or steel, e.g. research according to the Thomas and Bessemer processes.

Yid farskning nedbringas joke blott halter' av joke onskyd.rda element, sasom kok mangan, silicium och fosfor i stalet utan ocksa en del av jarnet oxideras, som gar forlorat i form av en bran, tjock rok. Denna rok ãr en av de oangenamaste fOreteelserna i jarnverken, dd. den — bortsett frau jarnfOrlusterna — forstOr luftens renhet, och utgor ett for narvarande mycket akut problem. Yid refreshment is reduced joke only levels' of joke onskyd.rda elements, such as boil manganese, silicon and phosphorus in the steel without also part of the iron is oxidized, which is lost in the form of a fire, thick smoke. This smoke is one of the most unpleasant phenomena in the ironworks, dd. it - apart from the iron losses - increases the purity of the air, and is currently a very acute problem.

De roterande rorugnarna Oro endast lampade for hogprocentiga, i mojligaste man rena jammalmer for framstallning av jdrnsvamp, bortsett frail rannforfarandet och andra forfaringssatt, vid vilka aven endast orent tackjarn utvinnes. The rotary rowing furnaces Oro were only lamped for high percentages, as far as possible pure iron ores for the production of iron fungus, apart from the rann process and other processes, in which only impure pig iron is extracted.

Den klassiska masugnen, som alltjamtbeharskar den storsta delen av varldsproduktionen av tack-jam, krOver tryck-, fall- och notningsbestandig hyttkoks, jarnrika, styckefonniga, joke sondersmulande jarnmalmer och avgiver en oerhOrd mangd masugnsgas, vars tillvaratagande nOdvOndiggOr ett jattekomplex av apparater och rorledninubar, bortsett frail reningen av masugnsgasen med darmed sammanhangande problem, sasom tillvaratagandet av masugnsgasslammet, tvattvattencirkulationen i vattenfattiga trakter etc. The classic blast furnace, which still masters the largest part of the world's production of tack-jam, requires pressure-, fall- and groove-resistant cabin coke, iron-rich, piece-shaped, jokes smoldering iron ores and emits an enormous amount of blast furnace gas, the utilization of which apart from the purification of the blast furnace gas with related problems, such as the recovery of the blast furnace gas sludge, the wash water circulation in water-poor areas, etc.

Lander, sasom Jugoslavien ocb. Indien, som hava betydande forekomster av jarnmalm och brunkol men ingen eller endast obetydlig tillgang pa stenkol, Oro tvungna att imp ortera hyttkoks eller att anvanda lagschaktugnsforfaranden eller att forsoka utexperimentera nya metoder for framstallning av en fast hyttkoks av brunkol. Lander, sasom Yugoslavia ocb. India, which has significant deposits of iron ore and lignite but no or only insignificant supply of hard coal, is concerned about importing cabin coke or using legal shaft kiln procedures or trying to experiment with new methods of producing a solid lignite coke.

FOrenta Staterna med sina jatteforekomster av takonit (30-35% Fe) och Brasilien med sina itabiriter maste Oka jarnhalten hos dessa malmer medelst dyrbara anrikningsmetoder. Man har vidare redan utexperimenterat gasreduktionsvirvelskiktforfaranden. Reduktionen tar emellertid mycket lang tid i ansprak, emedan diffusionshastigheterna i de sma jarnpartiklarna aro sma och forfarandena Oro darfor oekonomiska. The United States with its tachonite giant deposits (30-35% Fe) and Brazil with its itabirites must increase the iron content of these ores by expensive enrichment methods. Furthermore, gas reduction fluidized bed processes have already been experimented with. However, the reduction takes a very long time, because the diffusion rates in the small iron particles are small and the processes are therefore uneconomical.

For att undga nackdelarna hos de ovan beskrivna forfaringssatten har man slagit in pa nya vagar. Man liar darvid efterstravat att direkt utvinna rent jarn ur jarnmalm under undvikande av en fororenad mellanprodukt sasom tackjarn. sa satt framkommo de olika halogenidmetallurgiska forfarandena, som grunda sig pa att jarnet avskiljes frail malmen i form av en gasformig halogenforening. Vid de fiesta forfarandena overfOres jarnet till gasformig ferriklorid (FeCl3) eller ferroklorid (FeC12) och ur dessa klorider atvinnes jam genom reaktion med syre eller vattenanga. I de fiesta fall foreslas att anvanda kloren och klorvatet i cirkelprocess. In order to avoid the disadvantages of the procedures described above, new scales have been used. Efforts are made to extract pure iron directly from iron ore while avoiding a contaminated intermediate product such as pig iron. thus emerged the various halide metallurgical processes, which are based on the iron being separated from the ore in the form of a gaseous halogen compound. In most processes the iron is transferred to gaseous ferric chloride (FeCl3) or ferrochloride (FeCl2) and from these chlorides is obtained jam by reaction with oxygen or water vapor. In most cases, it is proposed to use chlorine and chlorine water in a circular process.

Principen for dessa forfaranden fOrefaller vid forsta betraktande mycket enkel och ekonomisk. De fbrsta forslagen framkommo redan for omkring 40 Or tillbaka. Trots detta utvinnes annu icke jarn i storm mangder enligt nagot halogenidmetallurgiskt forfarande. Masugnarna producera alltefter storlek 10-100 ton tackjarn per timme. The principle of these procedures seems at first sight very simple and economical. The first proposals appeared about 40 years ago. Despite this, iron is not yet recovered in storm quantities according to any halide metallurgical process. The blast furnaces produce depending on size 10-100 tons of pig iron per hour.

De halogenidmetallurgiska fOrfarandena grunda sig pa avskiljandet av jarnet i form av FeCl, eller FeC12 och leda till Fe20, eller Fe. Dessa forfaranden kunna sammanfattas i fyra grupper: 2— — Malmklorering med klor, Malmklorering med klorvate, Reducerande malmklorering med kol och klorvate och Reducerande malmklorering med klor och kol eller kolmonoxid. The halide metallurgical processes are based on the separation of the iron in the form of FeCl, or FeCl2 and lead to Fe2O, or Fe. These processes can be summarized in four groups: 2— - Ore chlorination with chlorine, Ore chlorination with chlorine cotton, Reducing ore chlorination with carbon and chlorine cotton and Reducing ore chlorination with chlorine and carbon or carbon monoxide.

Vid de fiesta forfarandena enligt grupperna 13 fir varmebehovet till folid av de starkt endotermiska reaktionerna Fe20 ,(s)3C12(g) = 2FeC13(g) + .2(g)(1) och Fe203(s) 6HC1(g) = 2FeC13(g) 3H20(g) (2) alltfOr stort och amnesomsattningen till folid av ogynnsam termodynamisk jamnvikt for liten, varf Or forfarandena aro oekonomiska. In most groups according to groups 13 the heat demand for foliage of the strongly endothermic reactions Fe20, (s) 3Cl2 (g) = 2FeCl3 (g) + .2 (g) (1) and Fe2O3 (s) 6HCl (g) = 2FeCl3 (g) 3H 2 O (g) (2) too large and the amnesic conversion to foliage of unfavorable thermodynamic equilibrium too small, whereas the procedures are uneconomical.

Gynnsammare fOrefalla de pa reducerande klorering med kol eller kolmonoxid och klor baserade forfarandena enligt grupp 4, som grunda sig pa exotermiska reaktioner: Fe203(s) 3C(s) 3C12(g) = 2FeC12(g) 3C0(g) (3) och/eller Fe203(s) 3C0(g) 3C12(g) = 2FeC13(g) 3C 02(g)(4) Dessa forfaranden hava emellertid icke slagit igenom. Kombinationen av reduktion och klorering verkar namligen sã energiskt, att jamte jamn aven andra metaller i gangarten kloi eras. More favorable are those based on reducing chlorination with carbon or carbon monoxide and chlorine based processes according to group 4, which are based on exothermic reactions: Fe 2 O 3 (s) 3 C (s) 3 Cl 2 (g) = 2 FeC12 (g) 3 CO (g) / or Fe 2 O 3 (s) 3CO (g) 3Cl 2 (g) = 2FeCl 3 (g) 3C 02 (g) (4) However, these procedures have not been successful. The combination of reduction and chlorination seems so energetic that other metals in the gait are also cloned.

Vid hoga temperaturer aro reaktionstiderna korta men det bildas sadana stora mangder av icke Onskade klorider, att en mycket stor mangd klor gar ferlorad frau cirkelprocessen. Vid anvandning av laga temperaturer uppsta visserligen ringare mangder icke onskvarda klorider, men de erforderliga reaktionstiderna fram till fullstandigt franskiljande av jarnet aro for langa. Till ftilj d av klorforlusterna vid de hogre temperaturema och de langa reaktionstiderna vid de lagre aro oven .dessa forfaranden oekonomiska. At high temperatures the reaction times are short, but such large amounts of undesired chlorides are formed that a very large amount of chlorine is lost from the circular process. When low temperatures are used, although minor amounts of undesirable chlorides are formed, the required reaction times until complete separation of the iron are too long. Due to the chlorine losses at the higher temperatures and the long reaction times at the lower ones, these processes are also uneconomical.

Foreliggande uppfinning har till andamal att astadkomma ett storindustriellt och ekonomiskt gynnsamt forfarande for direkt utvinning av rent jam ur jarnmalm, aven jarnfattig maim, pa halogenidmetallurgisk vag med undvikande av nackdelarna vid de kanda hyttforfarandena och de halogenidmetallurgiska forfarandena. The object of the present invention is to provide a large-scale industrial and economically favorable process for the direct extraction of pure iron from iron ore, even low-iron ore, on halide metallurgical scale, while avoiding the disadvantages of the known cab processes and the halide metallurgical processes.

Enligt uppfinningen kloreras malmen vid hoga temperaturer. Reaktionshastigheten Or till foljd harav m.ycket stor. Trots den hoga temperaturen vid kloreringen undvikes i stor utstrackning bildandet av icke onskade klorider och klorid- farlusten blir mycket lag. Den hittills skadliga fosfom i jarnmalmen utvinnes sasom biprodukt i form av vardefull fosforsyra. Fosforfattiga eller fosforfria malmer kunna forsattas med fosforthaltiga amnen. Det vid forfarandet frigjorda varmet tillvatatages och utnyttjas. Malmen be-hover icke vara i styckeform. Sa.som reduktionsmedel lampar sig varje kokssort, till och med Oven koks fran brunkol. According to the invention, the ore is chlorinated at high temperatures. The reaction rate Or as a result is very large. Despite the high temperature during chlorination, the formation of undesired chlorides is largely avoided and the chloride loss becomes very low. The hitherto harmful phosphome in iron ore is extracted as a by-product in the form of valuable phosphoric acid. Phosphorus-poor or phosphorus-free ores can be continued with phosphorus-containing substances. The heat released during the process is utilized and utilized. The ore does not have to be in piece form. As a reducing agent, every type of coke, even Oven coke, is lignified from lignite.

Sasom kant uppstar vid den reducerande kloreringen av jarnmalm jamte ferriklorid aven siliciumtetraklorid, aluminiumklorid, titantetraklorid, kloriderna av fosfor, svavel etc. As the edge arises in the reducing chlorination of iron ore and ferric chloride also silicon tetrachloride, aluminum chloride, titanium tetrachloride, the chlorides of phosphorus, sulfur etc.

Det bar nu visat sig att jarnoxid (Fe203) vid temperaturer mellan 800 och 1200° C reagerar med siliciumtetraklorid (SiC14), aluminiumklorid (A1C13), titantetraklorid (TiC14) och fosforpentaklorid (PC1) och de hada svavelkloriderna (S2C12, SC12) och fosfortriklorid (PC13) i ndrvaro av klor (C12) under bildande av ferriklorid (FeC13). Dar- vid uppstaoxiderna avsilicium (Si02), av aluminium (A1203), av titan (TiO2) och av svavel (SO2) och fosforoxiklorid (POC13). It has now been found that iron oxide (Fe 2 O 3) at temperatures between 800 and 1200 ° C reacts with silicon tetrachloride (SiCl 4), aluminum chloride (AlCl 3), titanium tetrachloride (TiCl 4) and phosphorus pentachloride (PC1) and the had sulfur chlorides (S2Cl2, (PC13) in the presence of chlorine (C12) to form ferric chloride (FeCl3). In addition, the oxides of silicon (SiO2), of aluminum (Al2 O3), of titanium (TiO2) and of sulfur (SO2) and phosphorus oxychloride (POCl3) are formed.

Omsattningen sker endast i franvaro av reducerande dmnen. Reaktionerna dro exotermiska, reaktionshastigheterna stora och omsattningen praktiskt taget kvantitativ. Sales take place only in the absence of reducing domains. The reactions were exothermic, the reaction rates were high and the turnover was practically quantitative.

For att undvika de vid anvandning av de kanda forfarandena uppkomna klorforlusterna bringas enligt uppfinningen i ett reaktionsrum (reduk- tionskloreringsrum) klor till reaktion med en blandning nv krossad maim och ett sonderdelat kolhaltigt reduktionsmedel vid en temperatur mellan 800 och 1200° C och sedan bringas de gasformiga reaktionsprodukterna tillsammans med med klor i ett annat rum (oxidationsklorerings- rum) i beroring med maim — dock i franvaro av ett reduktionsmedel — likaledes vid en tempera- tur av mellan 800 och 1200° C. Efter avslutad reaktion uttages den jarnfria gangarten frail reduktionskloreringsrummet och detta beskickas med maim frau oxidationskloreringsrurnmet och kolhaltiga reduktionsmedel, under det att i oxidationskloreringsrummet infores ny maim. Den i kloreringsrummet tillfOrda kolmangden mot- svarar stOkiometriskt jarnoxidema och eventuellt fbrefintliga fosfat i malmen for att de skola kunna reduceras och kloreras till FeCl3 och POCI,. Den i reduktionskloreringsrummet inledda klormangden motsvarar stokiometriskt jdrnhalten i vattenhalten has reduktionsmedlet och halten fosfor i malmen och reduktionsmedlet for att FeCl, och POC13 skall kunna bildas. Darvid maste man. alltid taga i betraktande den i reduktionskloreringsrummet inkommande mangden reduktionsmedel och den i oxidationskloreringsrummet inforda malmmfingden. In order to avoid the chlorine losses resulting from the known processes, chlorine is reacted according to the invention in a reaction chamber (reduction chlorination chamber) with a mixture of crushed milk and a probe-containing carbonaceous reducing agent at a temperature between 800 and 1200 ° C and then the gaseous reaction products together with chlorine in another room (oxidation chlorination room) in contact with maim - but in the absence of a reducing agent - also at a temperature of between 800 and 1200 ° C. and this is charged with maim frau oxidation chlorination tube and carbonaceous reducing agents, while introducing new maim into the oxidation chlorination chamber. The amount of carbon fed into the chlorination chamber corresponds to the stoichiometric iron oxides and any phosphates present in the ore so that they can be reduced and chlorinated to FeCl3 and POCl3. The amount of chlorine introduced into the reduction chlorination chamber corresponds stoichiometrically to the iron content of the water content of the reducing agent and the content of phosphorus in the ore and the reducing agent so that FeCl4 and POCl3 can be formed. Darvid maste man. always take into account the amount of reducing agent entering the reduction chlorination chamber and the ore finger introduced into the oxidation chlorination chamber.

Den i oxidationskloreringsrummet bildade gasformiga reaktionsprodukten innehaller praktiskt taget endast ferriklorid, kolsyra och klorvate. Klorvalet Midas till folid av vdtehalten i reduktionsmedlet. For att erhalla sa litet klorvate som mojligt maste reduktionsmedlet vara mycket fattigt pa vate. DA t.ex. lagtemperaturkoks (Schwelkoks) innehaller mycket mera vdte an koksverkskoks (Kokereikoks) dr det fordelaktigt att upphetta lagtemperaturkoks till c:a 1200° C, innan den anvandes for den reducerande kloreringen. Harvid avgasas lagtemperaturkoksen och dess vatehalt blir vasentligt minskad. Forbran- ningsvarmet has den bortgaende gasen Or tillrackligt for upphettningen, torkningen och av- gasningen av lagtemperaturkoksen. Avgasningen av lagtemperaturkoksen kan till foli d harav genomfOras genom forbranning av dess egna — —3 flyktiga bestandsdelar. Kloridgasblandningen avkyles efter ldmnandet av oxidationsklorerings- rummet till c:a 320° C och befrias fran medryckt stoft for att detta vid den fortsatta nedkylningen icke skull kunna inkomma i den sig avskiljande fasta ferrikloriden (Fe2C16). Ur den stoftfria gasformiga blandningen avskiljes sedan vid en ternperatur av mellan 110 och 140° C i en »Fe2C1,- kondensor» ferriklorid i fast form. The gaseous reaction product formed in the oxidation chlorination chamber contains practically only ferric chloride, carbon dioxide and hydrochloric acid. Chlorine choice Midas to folide of the moisture content of the reducing agent. In order to obtain as little chlorine water as possible, the reducing agent must be very poor in water. DA e.g. layer temperature coke (Schwelkoks) contains much more moisture than coke plant coke (Kokereikoks) where it is advantageous to heat layer temperature coke to about 1200 ° C, before it is used for the reducing chlorination. The layer temperature coke is degassed and its water content is significantly reduced. The heat of combustion has the effluent gas Or sufficient for the heating, drying and degassing of the layer temperature coke. The degassing of the layer temperature coke can be carried out as a result of combustion of its own volatile constituents. The chloride gas mixture is cooled after cooling the oxidation chlorination chamber to about 320 ° C and freed from entrained dust so that during further cooling it should not be able to enter the separating solid ferric chloride (Fe2C16). From the dust-free gaseous mixture is then separated at a temperature of between 110 and 140 ° C in a "Fe2Cl2" condenser »ferric chloride in solid form.

Forkylningen av den gasformiga reaktionsprodukten till c:a 320° C efter lananandet av oxidationskloreringsrummet sker ldmpligen under samtidig stoftfranskiljning, t. ex. i en kylcyklon. Darvid avskiljes eventuellt narvarande sma mangder tungflytande klorider, t. ex. MnCl„ CoC12 och CrCl„ De aterforas tillsammans med stoftet fran kylcyklonen och fly maim till oxidationskloreringsrummet. Hdr forangas de Ater, sá aft mellan oxidationskloreringsrummet och kylcyklonen uppstar en intern cirkelprocess. Bildandet av storre mangder svarflyktiga klorider verka emellertid mot de numera i gasformig blandning forefintliga partialtrycken hos dessa klorider. Ddrigenom forhindras fororeningen av ferrikloriden genom icke jarnmetaller. The pre-cooling of the gaseous reaction product to about 320 ° C after the oxidation of the oxidation chlorination chamber takes place, typically during simultaneous dust separation, e.g. in a cooling cyclone. This removes any present small amounts of heavy liquid chlorides, e.g. MnCl „CoCl 2 and CrCl„ They are re-fed together with the dust from the cooling cyclone and escape maim to the oxidation chlorination chamber. Hdr evaporates the Ater, so aft between the oxidation chlorination chamber and the cooling cyclone an internal circular process arises. However, the formation of larger amounts of volatile chlorides counteracts the partial pressures of these chlorides now present in gaseous mixtures. This prevents the contamination of the ferric chloride by non-ferrous metals.

Den klorvd.te och kolsyra innehallande restgasen tvattas i en absorptionsapparat med vatten, varvid HC1 absorb eras, under det att CO, lamnar anlaggningen. The hydrochloric acid and carbon dioxide containing the residual gas are washed in an absorption apparatus with water, whereby HCl is absorbed, while CO, leaves the plant.

Den vidtvattningen erhallna saltsyran elektro - lyseras, varvid klor atervinnes. Tvd.ttvattnet anvandes lampligen i cirkelprocess mellan elektrolysbren och absorptionsapparaten. Da. HC1-absorptionen ãr starkt exotermisk och gasblandningen sjalv inkommer i absorptionsapparaten med en temperatur av c:a 130° C maste denna kylas. Givetvis kan klorvatet aven pa kemisk vdg omsdttas Lill klor. The hydrochloric acid obtained by dewatering is electrolysed, whereby chlorine is recovered. The TV water was suitably used in a circular process between the electrolysers and the absorber. Yes. The HCl absorption is strongly exothermic and the gas mixture itself enters the absorption apparatus at a temperature of about 130 ° C and must be cooled. Of course, chlorine water can also be converted to chemical chlorine by chemical means.

Den fasta ferrikloriden fran Fa2C1„-kondensorn forbrannes med syre till jarnoxid (Fe202) och kior (C12) vid en temperatur av 700-800° C. The solid ferric chloride from the Fa2Cl2 condenser is combusted with oxygen to iron oxide (Fe2O2) and chlorine (C12) at a temperature of 700-800 ° C.

Syret bringer man med en temperatur av 800-950° C tillsammans med den fasta c:a 120° C heta ferrikloriden. Den forangas och forbrannes samtidigt, varvid en fOrbranningstemperatur av mellan 700 och 800° C installer sig. Man kan emellertid awn upphetta ferrikloriden till c:a 310° C, varvid den smatter och sedan forbranna den med c:a 400° C hett syre. Kloren avskiljes fran jarnoxiden och aterinledes tillsammans med den vid HC1-elektrolysen atervunna kloren in i reduktionsklareringsrummet. The oxygen is brought to a temperature of 800-950 ° C together with the solid approximately 120 ° C hot ferric chloride. It is evaporated and incinerated at the same time, whereby a combustion temperature of between 700 and 800 ° C settles. However, the ferric chloride can be heated to about 310 ° C, then smashed and then combusted with about 400 ° C hot oxygen. The chlorine is separated from the iron oxide and re-introduced together with the chlorine recovered during the HCl electrolysis into the reduction clearance chamber.

Den vid forbranningen uppstaende jdrnoxiden reduceras i ett rum (reduktionsrum) med reducerande gaser, t. ex. generatorgas, vattengas eller jordgas, till vilka det vid HC1-elektrolysen bildade vatet tillsdttes, pa kant salt till rent jam. Delta kan utvinnas sasom pulver eller smaltas i anslutning till reduktionen. Vid smaltningen kan man inlegera andra element och pa sã salt framstalla varje godtyckligt stal, fritt fran icke onskvarda fororeningar. The iron oxide arising during combustion is reduced in a room (reduction room) with reducing gases, e.g. generator gas, water gas or natural gas, to which the water formed by the HCl electrolysis was added, on the edge of salt to pure jam. Delta can be extracted as a powder or melted in connection with the reduction. During the melting, other elements can be alloyed and in this salt any steel can be produced, free from undesirable impurities.

Sasom kant innehalla tekniska, reducerande gaser for det mesta gasformiga svavelforeningar. Such as edge contain technical, reducing gases mostly gaseous sulfur compounds.

For att undvika fororening av jarnet genom svavel bringas de reducerande gaserna forst i beroring med jarnpulver, som borttager svavlet ur gaserna. Forst darefter anvdndes gaserna for reduktion av jamoxiden. Det svavelhaltiga jdrnpulvret tillf Ores tillsammans med koksen till reduktionskloreringsrummet, sá att ej nagon jdrnforlust uppstar vid processen. To avoid contamination of the iron by sulfur, the reducing gases are first brought into contact with iron powder, which removes the sulfur from the gases. Only then were the gases used to reduce the jam oxide. The sulfur-containing iron powder is added to Ores together with the coke to the reduction chlorination chamber, so that no iron loss occurs during the process.

FOr kloreringen kan i stallet for ett fast kolhaltigt reduktionsmedel kolmonoxid anvdndas, som man tillsammans med kloren infor i reduk- tionskloreringsrummet.Kolmonoxidmangden maste sá avpassas, att jamte de gasformiga reaktionsproduktema och kloren praktiskt taget en-dust koldioxid inkommer i oxidationskloreringsrummet. For the chlorination, carbon monoxide can be used instead of a solid carbonaceous reducing agent, which is introduced together with the chlorine into the reduction chlorination chamber.

Mest ekonomiskt är anvandningen av fasta, kolrika reduktionsmedel, emedan elementdrt kol reducerar dubbelt sa mycket jarnoxid som den ekvivalenta mangden kolmonoxid. Ren kolmonoxid är Mr dyr for foreliggande andamal. I generatorgas, vattengas eller koksverksgas är kolmonwdden visserligen billigare men är genom CO, och N, sá starkt utspddd, att reaktionshastigheten vid malinkloreringen minskas och dessutom maste stoma mdngder inerta gaser medtransporteras sasom ballastgaser. Vidare reagera vale och vattenanga hos dessa industrigaser vid kloreringen till klorvdte, sa att en stor del av den anvanda kloren gar forlorad for kloreringen. The most economical is the use of solid, carbon-rich reducing agents, because elemental carbon reduces twice as much iron oxide as the equivalent amount of carbon monoxide. Pure carbon monoxide is Mr expensive for the present andamal. In generator gas, water gas or coking plant gas, the carbon monoxide is admittedly cheaper, but is so strongly emitted by CO, and N, that the reaction rate during maline chlorination is reduced and in addition large amounts of inert gases must be transported as ballast gases. Furthermore, the whale and water vapor of these industrial gases react during the chlorination to chlorine tea, so that a large part of the chlorine used is lost to the chlorination.

For forbrdnning av ferrikloriden kan i stallet for syre anvandas luft. Emellertid kommer dâ tillsammans med den vid forbranningen bildade kloren luftens kvave in i kloreringsrummet, varigenom Ater till foljd av utspd.dningen reaktionshastigheten nedsdttes och den totala gasmangden vasentligt iikas. Air can be used to burn the ferric chloride in the stable for acid. However, then, together with the chlorine formed during combustion, the nitrogen of the air enters the chlorination chamber, whereby the reaction rate is reduced as a result of the dilution and the total amount of gas is substantially equalized.

Vidare har befunnits att den gasformiga fosforwdkloriden (POC13) vid temperaturer av mellan 110 och 1° C med vatten eller vattenanga kvantitativt omsdttes till fosforsyra och klorvate: POC13 3H20 = H3PO4 3HC1(5) Vid reducerande klorering av fosforhaltiga jarnmalmer bildas i reduktionskloreringsrummet forutom ferriklorid och andra klorider aven gasformig fosfortriklorid jamte ringa mangder fosforpentaklorid. I oxidationskloreringsrummet omsdttas dessa klorider till gasformig ferriklorid och gasformig fosforoxiklorid. Furthermore, it has been found that the gaseous phosphorus chloride (POCl 3) at temperatures of between 110 and 1 ° C with water or water vapor is quantitatively converted to phosphoric acid and hydrochloric acid: POCl 3 H 2 O = H 3 PO 4 3HCl (5) other chlorides including gaseous phosphorus trichloride and small amounts of phosphorus pentachloride. In the oxidation chlorination chamber, these chlorides are converted to gaseous ferric chloride and gaseous phosphorus oxychloride.

I anslutning till kylningen och avstoftningen av den gasformiga reaktionsblandningen efter kloreringen och efter avskiljandet av fast ferriklorid tillsattes enligt uppfinningen till den frail Fe2C16-kondensorn bortgaende gasformiga blandningen vatten eller vattenanga. Darvid reagerar fosforoxikloriden till fosforsyra och klorvate. Fosforsyran bildas i form av en dimma, som pa kant sat absorberas i varm fosforsyra. In connection with the cooling and dusting of the gaseous reaction mixture after the chlorination and after the separation of solid ferric chloride, according to the invention, the gaseous mixture leaving water or water vapor was added to the frail Fe 2 C 16 condenser. In doing so, the phosphorus oxychloride reacts to phosphoric acid and chlorine. The phosphoric acid is formed in the form of a mist, which is absorbed on the edge in hot phosphoric acid.

Fran den kvarblivande gasen uttvattas det frail valet hos reduktionsmedlet och det vid H,POrbildningen uppstaende klorvatet med vatten eller utspadd saltsyra. From the residual gas, the frail choice of the reducing agent and the chlorine water arising in the H, PO formation are diluted with water or dilute hydrochloric acid.

Genom utvinningen av fosforsyra i enlighet med — uppfinningen forbattras forfaringssattets ekonomi vasentligt. Pa grund harav dr det fOrdelaktigt att vid utvinning av jam frau fosforfattiga eller fosforfria jdrnmalmer inblanda fosforhaltiga amnen, t. ex. rafosfat frail Florida eller Marocko med c:a 14,5 % fosfor. By the recovery of phosphoric acid in accordance with the invention, the economy of the process is substantially improved. Due to this, it is advantageous that in the extraction of jam from phosphorus-poor or phosphorus-free iron ores, phosphorus-containing substances are mixed, e.g. rafosphate frail Florida or Morocco with about 14.5% phosphorus.

F6rlusten av sma mangder klor, som mekaniskt och kemiskt bindas i gAngarten och tillsammans med denna bortfores ur reduktionskloreringsrummet, ãr oundviklig. The loss of small amounts of chlorine, which are mechanically and chemically bound in the corridor and removed with it from the reduction chlorination chamber, is inevitable.

Enligt uppfinningen ersattes klorforlusten ddrigenom, att medelst alkalikloridelektrolysutvunnen klor tillsammans med den vid Fe2C16-forbranningen. och vid HC1-elektrolysen erhallna kloren inledes i reduktionskloreringsrummet. According to the invention, the chlorine loss is replaced by the chlorine recovered by alkali chloride electrolysis together with that in the Fe 2 C 16 combustion. and the chlorine obtained in the HCl electrolysis is introduced into the reduction chlorination chamber.

Det vid alkalielektrolysen bildade vatet inblandas dvensom vatet Iran HC1-elektrolysen i den. reducerande gasen, som anvandes for reduktion av jarnoxiden. Forutom klor och vdte bildas vid alkalikloridelektrolysen aven alkalihydroxid. Denna kan antingen utvinnas och forsdljas som biprodukt eller anvandas Mom processen for anrikning av vArdefulla tunga metaller ur gangarten och darvid regenereras till alkaliklorid. Detta uppRas genom tvattning av gangarten med en utspddd losning av den frdn elektrolysen hdrrorande alkalihydroxiden, varvid erhalles en alkalisk losning av alla gAngartens klorider. Denna losning behandlas med CO, eller med avgasen frail HC1-absorptionsapparaten, som innehaller avsevdrda mangder CO, CO, reagerar med kloriderna i den alkaliska losningen, varvid ett karbonatslam utfaller, som innehaller alla de metaller, som finnas i gangarten i form av svdrflyktiga klorider, t. ex. mangan, krom. Efter franskiljningen av slammet innehaller losningen endast alkaliklorid, som Aterfores till elektrolysen. Ur karbonatslammet kunna eventuellL vardefulla icke-jdrnmetaller utvinnas. The water formed in the alkali electrolysis is mixed with the Iran HCl electrolysis in it. reducing the gas used to reduce the iron oxide. In addition to chlorine and hydrogen, alkali hydroxide is also formed in the alkali chloride electrolysis. This can either be extracted and distributed as a by-product or used in the process of enriching valuable heavy metals from the gait and thereby regenerating into alkali chloride. This is accomplished by washing the gait with a dilute solution of the alkali hydroxide curing the electrolysis, thereby obtaining an alkaline solution of all the chlorides of the gait. This solution is treated with CO, or with the exhaust gas from the HCl absorption apparatus, which contains considerable amounts of CO, CO, reacts with the chlorides in the alkaline solution, whereby a carbonate sludge precipitates, which contains all the metals present in the gait in the form of volatile chlorides. , e.g. manganese, chromium. After separation of the sludge, the solution contains only alkali chloride, which is etherified to the electrolysis. Any non-ferrous metals can be recovered from the carbonate sludge.

Det for den elektrolytiska klorntvinningen erforderliga energibehovet kan helt tAckas av det vid processen avgd.ende varmet. The energy requirement required for electrolytic chlorine recovery can be completely offset by the heat emitted during the process.

For detta dndamal omvandlas det vid kloreringen av malmen, vid forbranningen av ferrikloriden och vid HC1-absorptionen frigjorda och det vid kylningen av de gasformiga reaktionsprodukterna efter malmkloreringen, av gangarten, av kloren och av avgaserna frail reduktionsbehandlingen av jarnoxiden utvunna varmet i elektrisk energi, som anvandes f6r den elektrolytiska klorutvinningen. For this purpose it is converted in the chlorination of the ore, in the combustion of the ferric chloride and in the HCl absorption liberated and in the cooling of the gaseous reaction products after the ore chlorination, of the gait, of the chlorine and of the exhaust gases from the reduction treatment of the iron oxide. was used for the electrolytic chlorine extraction.

Vid forfaringssdttet enligt uppfinningen upphettas mald koks medelst hettkva-ve o ch. mald malm medelst heta rokgaser och torkas, en blandning av maid maim och koks behandlas med klor och maid maim ensamt med en kloridgasblandning, kvave upphettas vid den heta gangarten och oxidstoft reduceras genom gaser till pm. For sAdana processer kan man anvanda de mest olika kanda anordningar, sasom enkla behallare, roterande rorugnar eller virvelskikttorn. In the process according to the invention, ground coke is heated by means of hot nitrogen and. ground ore by hot flue gases and dried, a mixture of maid maim and coke is treated with chlorine and maid maim alone with a chloride gas mixture, nitrogen is heated at the hot gait and oxide dust is reduced by gases to pm. For such processes, the most diverse known devices can be used, such as simple containers, rotary rowing furnaces or fluidized bed towers.

Anldggningar besthende av flera behallare, som innehalla fasta amnen, som genomstrommas av en gas, Arc forut kanda. Harvid transporteras enligt kaskadprincipen det fasta amnet fran den forsta till den sista behallaren och gasen frau den sista till den fOrsta. Dessa forfaringssatt dro omstandliga och anldggningarna hava i jamfOrelse med deras storlek forhdllandevis liten kapacitet. Dessutom fdr strOmningshastigheten has gaserna i behollarna icke bverskrida ett visst mdtt, emedan annars fasta partiklar i otilAtligt stora mangder medryckas. liven vid roterande rorugnar, i vilka man kontinuerligt bringar fasta dmnen i beroring med gaser, fdr stromningshastigheten hos gaserna icke vara sd stor att mycket stoft medryckes. Nar exempelvis vid en. kemisk process I. ex. malmreduktionen, eller en fysikalisk process, I. ex. torkning eller upphettning av ett finmalet fast dmne, for behandlingen av det fasta dmnet forlallandevis mycket gas erfordras, naste den roterande rorugnen hava en mycket stor inre vidd for att strOmningshastigheten hos gasen skall bliva tillrAckligt liten. Plants consisting of several containers, which contain solid substances, which are permeated by a gas, Arc before kanda. In this case, according to the cascade principle, the solid substance is transported from the first to the last container and the gas from the last to the first. These procedures are cumbersome and the plants, in comparison with their size, have a relatively small capacity. In addition, before the flow rate, the gases in the containers do not exceed a certain extent, because otherwise solid particles in excessively large amounts are entrained. the life of rotary kilns, in which solids are continuously brought into contact with gases, before the flow rate of the gases is not so great that a lot of dust is entrained. When, for example, at a. chemical process I. ex. the ore reduction, or a physical process, I. ex. drying or heating of a finely ground solid blank, for the treatment of the solid blank a considerable amount of gas is required, almost the rotating tube furnace having a very large internal width for the flow rate of the gas to be sufficiently small.

Vid tillfOrandet av vdrine vid endotermiska processer eller vid utvinning av det avgaende vdrmet vid exotermiska reaktioner dro vdrmeoverledningarna i behallarna dAliga. Vdrmeforlusterna Arc darvid stora, emedan de erforderliga uppehallstiderna for de fasta amnena arc lAnga i dessa apparater. During the supply of hydrine in endothermic processes or in the recovery of the effluent in exothermic reactions, the hydrothermal vents in the containers drew. The heat losses are therefore large, because the required residence times for the solid substances are long in these devices.

De i flera steg forlopandevirvelskiktf orfarandena tillAta visserligen utmdrkt vdrmeoverforing mellan gas och fast dmne men Oxen virvelskikttornen (bestaende av flera virvelbaddar) maste ofta hava stor inre vidd, for att gaserna endast skola astadkomma virvlingen och icke kunna fora de fasta dmnena uppat. De finaste stoffpartiklarna medfOras dock alltid av gasen, vilket kan leda till forstoppning av stromningsbottnarna. The multi-stage vortex layer processes admittedly allow for excellent heat transfer between gas and solid matter, but the Oxen vortex tower towers (consisting of several whirlpools) must often have a large internal width, so that the gases will only cause the vortex and not be able to feed the solid matter. However, the finest dust particles are always carried by the gas, which can lead to blockage of the flow bottoms.

Vid det i del foregaende beskrivna forfaringssdttet mdste halten av mycket fint stoft i de fasta amnena vara i mojligaste grad liten f Or att inga stora forluster skola uppkomma och flagon kostnadskravande avstoftningsanordning vara obehovlig. In the process described in the foregoing procedure, the content of very fine dust in the solid substances must be as small as possible in order for no large losses to occur and for the costly dusting device to be unnecessary.

Enligt uppfinningen undvikas de forutnamnda oldgenheterna och ekonomien hos forfaringssattet fOrbattras vdsentligt, cm gaserna i cyklonbatterier av kant slag kontinuerligt bringas till inverkan och energiskt blandas med stoftfint sOnderdelad koks, maim och jarnoxid kvensom med gAngarten enligt motstromsprincipen. Blandningarna kunna snabbt :uppvarmas och avkylas. Vdrmeovergangen mellan gas och det stoftfina materialet dr utmdrkt och vdrmeforlusterna dro mycket 16.ga. Reaktionshastigheterna Arc utomordentligt stora och till fOlj d hdrav reaktionstiderna overraskande korta. Med relativt smd anldggningar kan hog produktionskapacitet uppnas. According to the invention, the aforementioned antiquities and economics of the process are substantially improved, since the gases in cyclone batteries of the edge type are continuously brought into effect and energetically mixed with dust-fine decomposed coke, maim and iron oxide as with the countercurrent principle. The mixtures can be quickly: heated and cooled. The heat transfer between gas and the dust-fine material is excellent and the heat losses dragged a lot 16.ga. The reaction rates Arc are extremely large and, consequently, the reaction times are surprisingly short. With relatively small plants, high production capacity can be achieved.

Principen for cyklonbatterierna innebar att flera cykloner (centrifugalstoftavskiljare) anvdndas sasom reaktionskammare och forbindas med varandra pa sd satt, att i anordningen i dess helhet enligt motstromsprincipen kemiska och fysikaliska processer Aga rum och samtidigt i de enskilda cyklonerna separeringsprocesser. The principle of the cyclone batteries meant that several cyclones (centrifugal dust separators) were used as reaction chambers and connected to each other in such a way that in the device as a whole according to the countercurrent principle chemical and physical processes Aga space and at the same time in the individual cyclones separation processes.

Cyklonbatterier anvandas Mom cementindu- -- — strien for att upphetta margelstoft (Mergelstaub) Or klinkerbranningen medelst heta avgaser. De enskilda cyklonerna besta av en keramisk infodring med platmantel. For kalcinering av ledjord hava cyklonbatterier tidigare foreslagits. Aven enskilda cykloner anvandas sasom reaktionskammare, sasom t. ex. de kanda cyklonbrannarna, som invandigt hava ett hiigeldfast foder, som är omgivet av en av kylror bestaende mantel, som utat ãr varmeisolerad och bekladd med plat. Cyclone batteries are used in the Mom cement industry to heat the marl dust (marl dust) or the clinker combustion by means of hot exhaust gases. The individual cyclones consist of a ceramic lining with a plate jacket. For calcination of joint soil, cyclone batteries have previously been proposed. Individual cyclones are also used as reaction chambers, as e.g. the known cyclone fires, which internally have a refractory lining, which is surrounded by a mantle consisting of coolers, which are externally heat-insulated and covered with plate.

De for forfaringssattet enligt uppfinningen anvanda cyklonbatterierna best a av flera cykloner, vilkas antal givetvis är beroende av reaktionshastigheten, alltsa av temperaturen, kornstorleken och andra faktorer. The cyclone batteries used for the process according to the invention consist of several cyclones, the number of which of course depends on the reaction rate, i.e. on the temperature, the grain size and other factors.

For den reducerande och oxiderande kloreringen som dr exotermisk, byggas cyklonerna dubbelvaggiga eller omgivas av rOr och utat med ett varmeisolerande skikt. Genom dubbelmantlarna eller riiren ledes vatten eller anga, som upptager det frigjorda varmet fran de kemiska reaktionerna. FOr skydd mot hetta och kemiska angrepp genom klor och klorider forses insidorna av cyklonerna med varmebestandiga, vfirmeisolerande och kemiskt motstandskraftiga inkladningar. Sjalvfallet skyddas aven rorledningarna mellan cyklonerna analogt sat mot hetta och kemiska angrepp och omgivas med dubbelmantlar eller ror samt varm eisoleras. For the reducing and oxidizing chlorination which is exothermic, the cyclones are built double-walled or surrounded by pipes and externally with a heat-insulating layer. Water or steam is passed through the double jackets or pipes, which absorb the heat released from the chemical reactions. For protection against heat and chemical attack by chlorine and chlorides, the inside of the cyclones are provided with heat-resistant, heat-insulating and chemically resistant charges. Of course, the pipelines between the cyclones are protected analogously to heat and chemical attack and are surrounded by double jackets or pipes and heat insulated.

For att eventuellt fiirlanga uppehallstiden for blandningarna i anordningen utan att vasentligt Oka antalet av cykloner inbuggas virvelkammare i de blandningen ledande rorledningarna mellan cyklonerna, i vilka — alit efter inre vidden och ldngden hos dessa kammare — reaktionsblandningarna uppehalla sig en viss tid, innan de inkomma i nasta cyklon och dar separeras. In order to possibly prolong the residence time of the mixtures in the device without substantially increasing the number of cyclones, vortex chambers are embedded in the mixture conducting pipelines between the cyclones, in which - depending on the internal width and length of these chambers - the reaction mixtures remain for a certain time. next cyclone and there are separated.

Sasom redan omnamnts anvandes dven f Or re-disk tionen av jdrnoxiden och for upphettning av kvavet med gangartstoftet cyklonbatterier. Dessa varmeisoleras for att varmefOrlusterna skola bliva I mojligaste man sma. As already mentioned, the cyclone batteries were also used for the reduction of the iron oxide and for heating the nitrogen with the gait dust. These are heat insulated so that the heat losses will be as small as possible.

Verkningssattet hos ett cyklonbatteri enligt uppfinningen forklaras narmare under hanvisning till fig. 1 a bifogade ritning. 1 den vanstra dnden av cyklonbatteriet infores ldor och i den hogra anden blandningen av stoftfin koks och maim. Framfor varje enskild cyklon blandas stoft och gas forst med varandra och transporteras in i cyklonen, varest de separeras fran varandra och na cyklonen i motsaLL riktning. Till foljd av motstromsprincipen och den stora, hogaktiva ytan hos det fina stoftet, den utmarkta varmeovergangen mellan virvlande gaser och stoftformiga fasta amnen 0 ena sidan och den mycket goda varmeOvergangen mellan dessa blandningar i virvlande tillstand och vaggama hos cyklonerna andra sidan och den praktiskt taget fullstandiga termiska tillslutningen utat av anordningen är saval amnesomsdttningen som Oven den termiska verkningsgraden overraskande hog hos processen enligt uppfinningen. The mode of operation of a cyclone battery according to the invention is explained in more detail with reference to the drawing of Fig. 1a. In the left end of the cyclone battery, lead is introduced and in the right end the mixture of dusty coke and maim. In front of each individual cyclone, dust and gas are first mixed with each other and transported into the cyclone, where they are separated from each other and reach the cyclone in the opposite direction. Due to the countercurrent principle and the large, highly active surface of the fine dust, the marked heat transfer between swirling gases and dusty solids on one side and the very good heat transition between these swirling mixtures and the cradles of the cyclones on the other hand and the practically complete the thermal closure outside the device is as well as the thermal efficiency of the process according to the invention.

Utforingsexempel I. Embodiment Example I.

Fig. 2 visar en schematisk framstallning av principen for en anlaggning fbr genomfOrandet av forfaringssattet enligt uppfinningen. Anlaggningen (50 ton rent jam per timme) bestar i huvudsak air foljande delar: 1 — Sdnderdelningsanordning for koks 2 — Torkanordning for den sOnderdelade koksen (280° C) 3 — Sonderdelningsanordning f Or jdrnmalm 4 — Torkanordning for den sOnderdelade malmen (800° C) — Cyklon for torkningsavgaserna (vdrmeisolerad) 6 — Tvattanlaggning for torkningsavgaserna 7 — Reduktionskloreringsrum (800° C) 8 — Oxidationskloreringsrum (800° C) 9 — Riirledning for de 800° C heta gasformiga reaktionsprodukterna efter kloreringen — Kylcyklon for de 800° C heta gasformiga reaktionsprodukterna alter kloreringen 11 — Rdrledning for de 320° C heta gasformiga reaktionsprodukterna efter kloreringen 12 — Varmgasfilter (320° C) 13 — Fe2C16-kondensor (120° C) 14 — HaPOrreaktor (140° C) — HG1-absorberare -16 — HO-elektrolysrbr 17 — Luftsonderdelningsanordning- 18 — Forbranningsanordning for Fe2C16 (730° C) 19 — Rorledning La. den 730° C heta Fe20 — Reduktionsrum (1000° C) 21 — Kylcyklon for kylning av den heta C12 och for Fe202-avskiljningen 22 — Finstoftfilter for Fe203-Cl-separeringen (30° G) 23 — Rorledning for aterforande av klor 24 — Transportledning for den varma gangarten (280° C) — N2-upphettare (280° G) 26 — Rorledning for kall N, 27 — Kylare for den varma gangarten 28 — Rorledning for den 280° C varma N2 .29 — NaCl-elektrolysor — Rorledning for elektrolytiskt utvunnen Cl 31 — Gasgenerator 32 — Rorledning f Or H2 frail NaCl-elektrolysoren 33 — Rorledning for H2 frau HC1- och NaClelektrolysorerna 34 — Forbindning mellan gasgenerator och reduktionsrum — Kyleyklon for den 1000° C heta avgasen frau. Fe20,-reduktionen 36 — Florledning for den kalla avgasen flan Fe20 rreduktionen 37TvattanIdggning for den kalla avgasen fran Fe20 a-reduktionen 38 — Smaltugn (1000° C) for det rena jarnet 3902-upphettare (860° C) Med ledning av denna anlaggning med en produktion av 50 ton rent jarn per timme som exempel beskrives i det foljande utvinningen av 1 ton jam enligt uppfinningen. Fig. 2 shows a schematic representation of the principle of a plant for carrying out the process set according to the invention. The plant (50 tonnes of pure jam per hour) mainly consists of the following parts: 1 - Separation device for coke 2 - Drying device for the decomposed coke (280 ° C) 3 - Separation device for iron ore 4 - Drying device for the decomposed ore (800 ° C ) - Cyclone for the drying exhaust gases (heat-insulated) 6 - Washing plant for the drying exhaust gases 7 - Reduction chlorination room (800 ° C) 8 - Oxidation chlorination room (800 ° C) 9 - Pipeline for the 800 ° C hot gaseous reaction products after chlorination - Cooling cyclone for the 800 ° C the gaseous reaction products alter the chlorination 11 - Pipeline for the 320 ° C hot gaseous reaction products after the chlorination 12 - Hot gas filter (320 ° C) 13 - Fe2C16 condenser (120 ° C) 14 - HaPOr reactor (140 ° C) - HG1 absorber -16 - HO Electrolyser 17 - Air subdivision device- 18 - Combustion device for Fe2C16 (730 ° C) 19 - Pipeline La. the Fe20 hot 730 ° C - Reduction room (1000 ° C) 21 - Cooling cyclone for cooling the hot C12 and for the Fe2 O2 separation 22 - Fine dust filter for the Fe203-Cl separation (30 ° G) Transport line for the hot aisle (280 ° C) - N2 heater (280 ° G) 26 - Pipeline for cold N, 27 - Cooler for the hot aisle 28 - Pipeline for the 280 ° C hot N2 .29 - NaCl electrolyzer - Pipeline for electrolytically recovered Cl 31 - Gas generator 32 - Pipeline for H2 frail NaCl electrolyser 33 - Pipeline for H2 frau The HCl and NaCl electrolysers 34 - Connection between gas generator and reduction chamber - Kyleyclone for the 1000 ° C hot exhaust gas frau. Fe20, --reductionen 36 - Flow line for the cold exhaust flan Fe20 rreductionen 37TwattenIdggning for the cold exhaust gas from the Fe20 a -reductionen 38 - Narrow furnace (1000 ° C) for the pure iron 3902 -heater (860 ° C) Based on this plant with a production of 50 tons of pure iron per hour as an example is described in the following recovery of 1 ton of jam according to the invention.

— — Sammansattningen hos jarnrnalmen: Fe 30,0 % A1203 8,0 % Mn 0,2% Ca0 4,0% 0,5% MgO 2,0% SiO2 25,0 °,/,, H20 10,0 % Sasom reduktionsmedel anvandes brunkollagtemperaturkoks (Braunkohlenschwelkoks): Sammansattningen av brunkollagtemperaturkoksen: 16% s1% 1120 20% H2% aska15% 0 + N 1% 285 kg brunkollagtemperaturkoks finfordelas i sonderdelningsanordningen 1 arida till kornstorlek av 0,05 mm och torkas i motstriim torkanordningen 2 med det genom rorledningen 28 kommande 280° C varma kvavet. 3,333 kg jarnmalm finfordelas i siinderdelningsanordningen 3 likaledes ned till kornstorlek av maximalt 0,05 mm och torkas i torkanordningen 5 medelst en oljebrannare och upphettas till 800° C. Torkningsavgaserna fran torkanordningarna 2 och 4 befrias Iran stoft i den varmeisolerade cyklonen 5 och tvattas i tvattanlaggningen 6, sa att de Minna anlaggningen stoftfria. - - The composition of the iron ore: Fe 30.0% Al 2 O 3 8.0% Mn 0.2% CaO 4.0% 0.5% MgO 2.0% SiO 2 25.0 °, / ,, H 2 O 10.0% Sasom brown collar temperature coke (Braunkohlenschwelkoks) was used: The composition of the brown collar temperature coke: 16% s1% 1120 20% H2% ash15% 0 + N 1% 285 kg brown collar temperature coke is finely divided in the probe dividing device 1 arida to a grain size of 0.05 mm and dried in the opposite direction through the pipeline 28 coming 280 ° C hot suffocation. 3,333 kg of iron ore is finely atomized in the separating device 3 also down to a grain size of a maximum of 0.05 mm and dried in the drying device 5 by means of an oil burner and heated to 800 ° C. The drying exhaust gases from the drying devices 2 and 4 are released 6, said that the Minna plant is dust-free.

Den 280° C varma stoftfina koksen fran torkanordningen 2 och den stoftfina koks-malm-bland.ningen Iran. cyklonen 5 komma in i reduktionskloreringsrummet 7. Fran kylcyklonen 10 infOres det dari avskilda stoftet tillsammans med den. 800° C varma stoftfina malmen i oxidationskloreringsrummet S. Den stoftfina malmen transporteras genom oxidationskloreringsrummet 8 till reduktionskloreringsrummet 7, varest den blandas med den. stoftfina koksen. Fran. reduktionskloreringsrummet 7 bortfores den jarnfria gangarten och koksaskan genom transportledningen 21. Genom rorledningen 23 inledes 690 NM? (= 2 226 kg) klor med en temp eratur av 30°C i reduktionskloreringsrummet 7 och uppvarmes till fOlj d av beroring med gangarten i motstrom till 800° C, varvid gangarten avkyles till 280° C., I de hada kloreringsrummen 7 och 8 frigores till foljd av exotermiska reaktioner varme, som tillvaratages genom kylning. The 280 ° C hot dusty coke from the dryer 2 and the dusty coke-ore mixture Iran. the cyclone 5 enters the reduction chlorination chamber 7. From the cooling cyclone 10 the dust separated therein is introduced together with it. 800 ° C hot dusty ore in the oxidation chlorination chamber S. The dusty ore is transported through the oxidation chlorination chamber 8 to the reduction chlorination chamber 7, where it is mixed with it. dusty coke. Fran. the reduction chlorination chamber 7 removes the iron-free gait and the coke ash through the transport line 21. 690 NM? (= 2,226 kg) chlorine with a temperature of 30 ° C in the reduction chlorination chamber 7 and is heated as a result of contact with the gait in the countercurrent to 800 ° C, whereby the gait is cooled to 280 ° C. is released as a result of exothermic heat reactions, which are recovered by cooling.

Kloren genomstrommar reduktionskloreringsrummet 7 och oxidationskloreringsrummet 8 i en riktning, som an motsatt den hos stoftet. De gasformiga reaktionsprodukterna lamna oxidationskloreringsrummet 8 genom rorledningen 9, befrias i kylcyklonen 10 fran stoft och avkyles darvid till 320° C och stromma genom rorledningen 11 till varmgasfiltret 12 fOr finavstoftning. The chlorine flows through the reduction chlorination chamber 7 and the oxidation chlorination chamber 8 in a direction opposite to that of the dust. The gaseous reaction products leave the oxidation chlorination chamber 8 through the pipeline 9, are freed of dust in the cooling cyclone 10 and are thereby cooled to 320 ° C and flow through the pipeline 11 to the hot gas filter 12 for fine dusting.

I Fe2C16-kondensorn 12 avskiljes Iran den rena gasformiga blandningen vid 120° C fast ferriklorid. Den kvarblivande gasformiga blandningen kornmer Iran Fe2C16-kondensorn 13 in i H3P0 creak-torn 14, i vilken 294: kg kallt vatten insprutas i dimform. Vattnet forangas och bildar med fosforoxiklorid 617 kg 86%-ig fosforsyra i form av en areosol, som absorberas i ungefar 86%-ig fosforsyra. Vid bildandet av fosforsyran av fosfor oxikloriden stiger temperaturen i H3PO4-reaktorn fran 120 till 140° C. In the Fe2C16 condenser 12, Iran separates the pure gaseous mixture at 120 ° C solid ferric chloride. The remaining gaseous mixture granulates the Iran Fe2C16 condenser 13 into the H3PO cracker 14, into which 294 kg of cold water is injected in mist form. The water evaporates and forms with phosphorus oxychloride 617 kg of 86% phosphoric acid in the form of an areosol, which is absorbed in approximately 86% phosphoric acid. During the formation of the phosphoric acid of the phosphorus oxychloride, the temperature in the H3PO4 reactor rises from 120 to 140 ° C.

Den praktiskt taget endast CO, och HC1 innehallande 140° C varma gasblandningen strommar Iran H,POrreaktorn 14 in i KC1-absorptionsapparaten 15, dar klorvate absorberas.Absorptionen sker med kall c:a 10%-ig HC1 i motstrOm. Det vid HC1-absorptionen frigjorda och det av gaserna avgivna varmet tillvaratages i HC1-absorptionsapparaten 15 genom kylning. The practically only CO, and HCl containing 140 ° C hot gas mixture flows Iran H, the PO reactor 14 into the KCl absorber 15, where chlorine water is absorbed. The absorption takes place with cold about 10% HCl in countercurrent. The heat released during the HCl absorption and the heat given off by the gases are recovered in the HCl absorption apparatus 15 by cooling.

Den bildade ungefar 33%-iga saltsyran ledes Iran HC1-absorptionsapparaten 15 till HC1-elektrolysen,varest 81 Nm3 263kg) klor och 82 Nm3 irate utvinnes. Efter elektrolysen anvandes den ungefar 10%-iga saltsyran Ater für HC1-absorption i HC1-absorptionsapparaten 15. 1500 Nm3 luft uppdelas i luftsonderdelningsanordningen 17 1300 Nm3 syre och 1200 Nm3 kvave. 300 Nm3 syre uppvarmes i 0 rupphettaren 39 medelst en oljebrannare till 860° C. The formed approximately 33% hydrochloric acid is passed to the HCl electrolyzer 15 in the HCl electrolysis, whereby 81 Nm3 (263 kg) of chlorine and 82 Nm3 of irate are recovered. After the electrolysis, the approximately 10% hydrochloric acid Ater für HCl absorption was used in the HCl absorber 15. 1500 Nm3 of air is divided in the air subdivision device 17 1300 Nm3 oxygen and 1200 Nm3 nitrogen. 300 Nm3 of oxygen is heated in the furnace heater 39 by means of an oil burner to 860 ° C.

Fran Fe2C1„-kondensorn 13 transporteras (exempelvis genom en snacka) den 120° C varma fasta ferrikloriden till fOrbranningsanordningen 18, dar den sammantraffar med det heta syret. Ferrikloriden forangas och forbrannes till jiirn- oxidldor, varvid en forbranningstemperatur av 730° C installer sig. From the Fe 2 Cl 2 condenser 13, the 120 ° C hot solid ferric chloride is transported (for example by means of a snack) to the combustion device 18, where it collides with the hot oxygen. The ferric chloride is evaporated and incinerated into iron oxide particles, whereby a combustion temperature of 730 ° C is established.

Den storsta delen av den heta jarnoxiden (c:a 90%) separeras i fOrbranningsanordningen 18 Iran Idol% Den 7° C varma kloren avkyles i kylcyklonen 21 till 30° C, varest den avgiver ytterligare en del jarnoxid och befrias slutligen i finstoftfiltret 22 fran de finare jarnoxidresterna. Jarnoxiden fran fOrbranningsanordningen 18, kylcyklonen 21 och finstoftfiltret 22 transporteras genom rorledningen 19 in i reduktionsrummet 20. Most of the hot iron oxide (about 90%) is separated in the incinerator 18 Iran Idol% The 7 ° C hot chlorine is cooled in the cooling cyclone 21 to 30 ° C, whereupon it releases some more iron oxide and is finally freed in the fine dust filter 22 from the finer iron oxide residues. The iron oxide from the combustion device 18, the cooling cyclone 21 and the fine dust filter 22 is transported through the pipeline 19 into the reduction chamber 20.

I forbranningsanordningen 18 bildas 1425 kg Fe,O, och 590 Nm3 (= 1903 kg) klor. I NaClelektrolysOren 29 utvinnes ur 100 kg natriumklorid elektrolytiskt 68 kg natriumhydroxid, 19 Nm3 (= 60,5 kg) klor och 19 Nm3 irate. Kloren fOrenas genom rorledningen 30 tillsammans med kloren fran HC1-elektrolysoren 16 i rorledningen 23 med den fran forbranningsanordningen 18 kommande kloren och inledes i reduktionskloreringsrummet 7 (i motstrom mot den heta, jarnfria gangarten). In the combustion device 18, 1425 kg of Fe, O, and 590 Nm3 (= 1903 kg) of chlorine are formed. In NaCl electrolyzer 29, 68 kg of sodium hydroxide, 19 Nm3 (= 60.5 kg) of chlorine and 19 Nm3 of irate are recovered electrolytically from 100 kg of sodium chloride. The chlorine is combined through the pipeline 30 together with the chlorine from the HCl electrolyzer 16 in the pipeline 23 with the chlorine coming from the combustion device 18 and is introduced into the reduction chlorination chamber 7 (opposite to the hot, iron-free gait).

Fran luftsonderdelningsan.ordningen 17 ledes 700 Nm3 kvdve genom riirledningen 26 till Nr upphettaren 25, varest kvavet upphettas av den heta gangarten i motstr6m till 280° C och gangarten avkyles till 120° C. Det heta kvavet ledes sedan genom rorledningen 28 till torkanordningen 2 for torkning av brunkollagtemperaturkoksen. 1613 kg av blandningen gangart och koksaska komma frail Nrupphettaren 25 med en temperatur av 120° C in i kylaren 27, varest den avkyles till 20° C. Det kalla pulvret Wires till varphogen, men kan t. ex. anvandas for framstallning av byggnadsamnen eller for utvinning av dari forefintliga vardefulla metaller. From the air subdivision device 17, 700 Nm3 of nitrogen is passed through line 26 to No. heater 25, where the nitrogen is heated by the hot aisle countercurrent to 280 ° C and the aisle is cooled to 120 ° C. drying of the brown collage temperature coke. 1613 kg of the mixture gait and coke ash come frail Nrupphettaren 25 with a temperature of 120 ° C into the cooler 27, where it is cooled to 20 ° C. The cold powder Wires to the warp heap, but can e.g. used for the production of building materials or for the extraction of precious metals present therein.

I gasgeneratorn 31 alstras av 530 kg brunkollagtemperaturkoks, luft och vattenanga 1800 Nm3 - -7, generatorgas och ledes med en temperatur av 10000 G till reduktionsrummet 20. 101 Nm3 vate fran NaCI-elektrolysoren 29 tillsattes genom rOrledningen 32 och frau HC1-elektrolysoren 16 genom rorledningen 33 till generatorgasen. Den reducerande gasblandningen (1901 Nm3) kommer genom ledningen 34 in i reduktionsrummet 20, varest 1425 kg jarnoxid reduceras till 1 ton rent jam vid 1000° C. Avgaserna frail jarnoxidreduktionen ledes fran reduktionsrummet 20 genom kylcyklonen 35, rorledningen 36 och tvattanlaggningen 37 at i det fria. In the gas generator 31, 530 kg of brown collage temperature coke, air and water vapor 1800 Nm3 - -7, generator gas is generated and passed at a temperature of 10000 G to the reduction chamber 20. 101 Nm3 pipeline 33 to the generator gas. The reducing gas mixture (1901 Nm3) enters the reduction chamber 20 through line 34, where 1425 kg of iron oxide is reduced to 1 ton of pure jam at 1000 ° C. free.

Jarnet utvinnes sasom rent jarnpulver eller smaltes i smaltugnen 38. Jarnpulvret kan under reduktionen uppkolas medelst en pa kolmoncocid eller kolvaten, t. ex. metan rik gas. Man erhaller ett pulver av renaste kolstal, som är av star betydelse f Or framstallning av foremal pa pulveroch sintermetallurgisk vdg. The iron is extracted as pure iron powder or melted in the smelting furnace 38. The iron powder can be carbonized during the reduction by means of a carbon monoxide or the hydrocarbons, e.g. methane rich gas. A powder of the purest carbon steel is obtained, which is of great importance for the preparation of molds on powder and sinter metallurgical vehicles.

Man kan emellertid aven av den rena jarnsmaltan framstalla vane godtyckligt stal, i det att man tillsatter de erforderliga elementen, t. ex. kol, silicium, mangan, krona och nickel. However, even from the pure iron malt, one can produce the habit of arbitrary steel, by adding the required elements, e.g. carbon, silicon, manganese, crown and nickel.

Medelst det i de olika delarna av anlaggningen genom kylning tillvaratagna varmet alstras anga, som anvandes for utvinning av elektrisk energi. De utvunna varmemangderna av c:a 3 350 000 kilogramkalorier giva 880 kilowattimmar. Denna energimangd Ar tillracklig for drift av HC1- och NaCl-elektrolyserna. Vid HC1-elektrolysen forbrukas 660 kilowattimmar och vid NaCl-elektrolysen 200 kilowattimmar. By means of the heat recovered in the various parts of the plant by cooling, the steam is used, which is used for the extraction of electrical energy. The extracted heat quantities of approximately 3,350,000 kilograms of calories give 880 kilowatt hours. This amount of energy is sufficient for the operation of the HCl and NaCl electrolyses. The HCl electrolysis consumes 660 kilowatt hours and the NaCl electrolysis 200 kilowatt hours.

UtfOringsexempel 2. ;liven detta exempel hAnfOr sig till en anlaggning med en renjarnproduktion av 50 ton per timme och beskriver ett forfaringssatt for atvinning av 1 ton rent jarn av titanomagnetit. DA I detta fall ej flagon fosforsyra utvinnes, erfordras icke H3PO4-reaktorn (fig. 2). EXAMPLE 2 This example relates to a plant with a reindeer iron production of 50 tonnes per hour and describes a process for the recovery of 1 tonne of pure titanium magnetite iron. In this case, if the flake phosphoric acid is not recovered, the H3PO4 reactor is not required (Fig. 2).

Sammansattning av malmen: TiO2 16,70 % (10,00 % Ti) FeO 20,72 % (16,10 % Fe) Fe202 12,74 % (8,92 % Fe) SiO, 23,07 °A AI,02 17,80 % MnO 3,13 % CaO 2,21 % MgO 1,04 % Alkalioxid 2,19 % H20 0,% Sasom reduktionsmedel anvandes koksverkskoks: Sammansattning av koksen: 81,00 % aska8,00 % H208,00 % 0 N1,60 % 0,90 % 0,50 %. 156 kg koks finfordelas i sOnderdelningsanordningen 1 till kornstorlek av maximalt 0,05 mm och torkas i torkanordningen 2 med det genom. rorledningen 28 i motstrom kommande 520° C, varma kvavet. 4000 kg titanomagnetit finfOrdelas i sonder-- delningsanordningen 3 likaledes till kornstorlek av maximalt 0,05 mm ochtorkas i torkanordningen 4 medelst en oljebrannare och uppheitas till 800°C. Torkningsgaserna &An torkanordningarna 2 och 4 befrias fran stoft i den varmeisolerade cyklonen 5 och tvattas i tvattanlaggningen 6, sa att de lamina anlaggningen stoftfria. Composition of the ore: TiO 2 16.70% (10.00% Ti) FeO 20.72% (16.10% Fe) Fe 2 O 2 12.74% (8.92% Fe) SiO 2, 23.07 ° A Al, 02 17.80% MnO 3.13% CaO 2.21% MgO 1.04% Alkaloxide 2.19% H 2 O 0.% As a reducing agent coke plant coke was used: Composition of the coke: 81.00% ash 8.00% H 2 O8.00% 0 N1.60% 0.90% 0.50%. 156 kg of coke is finely divided in the decomposition device 1 to a grain size of a maximum of 0.05 mm and dried in the drying device 2 with it through. pipeline 28 in countercurrent coming 520 ° C, hot stuffed. 4000 kg of titanium magnetite is finely divided in the probe dividing device 3 likewise to a grain size of a maximum of 0.05 mm and dried in the drying device 4 by means of an oil burner and heated to 800 ° C. The drying gases & The drying devices 2 and 4 are freed from dust in the heat-insulated cyclone 5 and washed in the washing plant 6, so that the lamina plant is dust-free.

Det 520° C varma koksstoftet fran torkanordningen 2 och koks-malm-stoftblandningen fran cyklonen 5 komma in i reduktionskloreringsrummet 7. Fran kylcyklonen 10 infores det dari franskilda stoftet tillsammans med det 800° C varma malinstoftet i oxidationskloreringsrummet 8. Malmstoftet transporteras genom oxidationskloreringsrummet 8 till reduktionskloreringsrummet 7, varest det blandas med koksstoftet. Fran reduktionskloreringsrummet 7 bortfOres den jarnfria gangarten och koksaskan genom transportledningen 24. Genom rorledningen 23 inledes 610 Nm3 (= 1963 kg) klor med en temperatur av 30° C in i reduktionskloreringsrummet 7 och uppvarmes till foljd av beroringen med gangarten i motstrom till 800° C, varvid gangarten nedkyles till 520° C. I de hada kloreringsrummen 7 och 8 frigores till foljd av exotermiska reaktioner varme, som utvinnes genom kylning. The 520 ° C hot coke dust from the dryer 2 and the coke-ore-dust mixture from the cyclone 5 enter the reduction chlorination chamber 7. From the cooling cyclone 10 the separated dust is introduced together with the 800 ° C hot mill dust into the oxidation chlorination chamber 8. The ore dust is transported to the oxidation chamber the reduction chlorination chamber 7, where it is mixed with the coke dust. From the reduction chlorination chamber 7, the iron-free gait and coke ash are removed through the transport line 24. 610 Nm3 (= 1963 kg) of chlorine with a temperature of 30 ° C is introduced into the reduction chlorination chamber 7 and heated to 800 ° C as a result of the contact with the gait in countercurrent. , the gait being cooled to 520 ° C. In the hot chlorination rooms 7 and 8, heat is recovered as a result of exothermic reactions, which is recovered by cooling.

Kloren genomstrommar reduktionskloreringsrummet 7 och oxidationskloreringsrummet 8 i en riktning, som dr motsatt mot den hos det stoftformiga materialet. De gasformiga reaktionsprodukterna lamna oxidationskloreringsrummet 8 genom rorledningen 9, befrias i kylcyklonen 10 fran stoft och avkylas ddrvid till 320° C och strOmma genom rorledningen 11 i varmgasfiltret 12 for finavstoftning. The chlorine flows through the reduction chlorination chamber 7 and the oxidation chlorination chamber 8 in a direction opposite to that of the dusty material. The gaseous reaction products leave the oxidation chlorination chamber 8 through the pipeline 9, are freed of dust in the cooling cyclone 10 and are thereby cooled to 320 ° C and flow through the pipeline 11 into the hot gas filter 12 for fine dusting.

I Fe3C16-kondensorn 13 avskilj es ur den renade gasformiga blandningen vid 120° C fast ferriklorid. Den kvarblivande gasformiga blandningen, som praktiskt taget endast innehaller CO2 och HC1, kemmer till HC1-absorp Lionsapparaten 15, varest klorvate absorberas. Absorptionen sker i motstrOm med kall c:a 10%-ig HC1. Det vid HC1- absorptionen friblivande och det av gaserna avgivna varmet utvinnes has HC1-absorptionsapparaten 15 genom kylning. In the Fe3C16 condenser 13, solid ferric chloride is separated from the purified gaseous mixture at 120 ° C. The remaining gaseous mixture, which contains practically only CO2 and HCl, goes to the HCl absorber Lions apparatus 15, whereby chlorine cotton is absorbed. The absorption takes place in countercurrent with cold about 10% HCl. The heat released during the HCl absorption and the heat given off by the gases are recovered by the HCl absorption apparatus 15 by cooling.

Den bildade ungefar 33%-iga saltsyran ledes frAn HC1-absorptionsapparaten 15 till HChelektrolysoren 16, varest 9 Nm3 klor och 9 Nm3 vate utvinnes. Efter elektrolysen anvandes Ater den ungefar 10%-iga saltsyran for HC1-absorption i absorptionsapparaten 15. 1500 Nina luft uppdelas i luftsonderdelningsanordningen 17 i 300 Nm3 syre och 1200 Nm3 kvave. De 300 Nms syre upphettas i 0 rupphetttaren 39 medels en oljebrdnnare till 860° G. The formed approximately 33% hydrochloric acid is passed from the HCl absorber 15 to the HC electrolyzer 16, whereby 9 Nm3 of chlorine and 9 Nm3 of hydrogen are recovered. After the electrolysis, the approximately 10% hydrochloric acid was again used for HCl absorption in the absorber 15. 1500 Nina air is divided in the air subdivision device 17 into 300 Nm3 oxygen and 1200 Nm3 nitrogen. The 300 Nms of oxygen is heated in the furnace heater 39 by means of an oil burner to 860 ° G.

Fran Fe2C16-kondensorn 13 transporteras (exempelvis genom en snacka) den 120° C varma fasta ferrikloriden till fdrbranningsanordningen 18, S— — wrest den sammantraffar med det heta syret. :Ferrikloriden forangas och forbrannes till j arm- oxid och klor, varvid en forbranningstemperatur .av 730° C installer sig. Den storsta delen av den varma jarnoxiden (c:a 90%) separeras i forbranningsanordningen 18 fran klor. Kloren avkyles i kylcyklonen 21 till .30° C, varest den avgiver en ytterligare del jarnoxid, och befrias slutligen i finstoftfiltret 22 frail de finaste resterna av jarnoxid. Jarnoxiden Iran forbranningsanordningen 18, kylcyklonen 21 och finstoftfiltret 22 transporteras genom rorledningen 19 till reduktionsrummet 20. From the Fe2C16 condenser 13 the solid ferric chloride (120 ° C) is transported (for example by means of a snack) to the combustion device 18, where it collides with the hot oxygen. : The ferric chloride is evaporated and combusted to iron oxide and chlorine, whereby a combustion temperature of 730 ° C is established. Most of the hot iron oxide (about 90%) is separated in the combustor 18 from chlorine. The chlorine is cooled in the cooling cyclone 21 to .30 ° C, whereupon it releases an additional part of iron oxide, and is finally released in the fine dust filter 22 from the finest residues of iron oxide. The iron oxide Iran combustor 18, the cooling cyclone 21 and the fine dust filter 22 are transported through the pipeline 19 to the reduction chamber 20.

I forbranningsanordningen 18 bildas 1425 kg Fe203 och 590 Nm3 (= 1903 kg) klor. I NaClelektrolysoren 29 utvinnes av 53,3 kg natriumklorid elektrolytiskt 36,5 kg natriumhydroxid, 11 Nm3 (= 32,3 kg) klor och 11 Nm3 vale. Kloren forenas genom rorledningen 30 tillsammans med kloren frail HC1-elektrolysoren 16 i rOrledningen 23 med den Iran forbranningsanordningen 18 kommande kloren och inledes i reduktionskloreringsrummet 7 (i motstrom mot den heta, jarnfria gangarten). In the combustion device 18, 1425 kg of Fe2 O3 and 590 Nm3 (= 1903 kg) of chlorine are formed. In the NaCl electrolyzer 29, 53.3 kg of sodium chloride electrolytically recover 36.5 kg of sodium hydroxide, 11 Nm3 (= 32.3 kg) of chlorine and 11 Nm3 of vale. The chlorine is combined through the tubing 30 together with the chlorine frail HCl electrolyzer 16 in the tubing 23 with the chlorine coming from the Iran combustion device 18 and is introduced into the reduction chlorination chamber 7 (opposite to the hot, iron-free gait).

Fran luftsonderdelningsanordningen 17 ledes 200 Nm3 kvave genom rorledningen 26 in i upphettaren 25, varest kvavet av den heta gang- arten upphettas i motstrom till 520° C och gangarten avkyles till 474° C. Det varrna kvavet ledes Sedan genom rorledningen 28 till torkanordningen 2 for torkning av koksen. 2684 kg av blandningen gangart och koksaska komma Iran Nrupphettaren 25 med en temperatur av 474° C in i kylaren 27, varest den avkyles till 24° C. Den fullkomligt jarnfria blandningenav gangart och koksaska innehaller 400 kg titan (c:a 15%), och anvan des sasom vardefullt utgangsmaterial for utvinning av titan. From the air subdivision device 17, 200 Nm3 of nitrogen is passed through the pipeline 26 into the heater 25, where the nitrogen of the hot gangue is heated in countercurrent to 520 ° C and the gangue is cooled to 474 ° C. drying of the coke. 2684 kg of the mixture of gait and coke ash enter the Nrupphetter 25 with a temperature of 474 ° C into the cooler 27, where it is cooled to 24 ° C. The completely iron-free mixture of gait and coke ash contains 400 kg of titanium (approx. 15%), and was used as a valuable starting material for the recovery of titanium.

I gasgeneratorn 31 alstras 1882 Nm° vattengas, 'som med en temperatur av 1000° C ledes till reduktionsrummet 20. 20 Nm3 vate fran NaClelektrolysiiren 29 tillsattes genom rorledningen 32 och Iran HC1-elektrolystiren 16 genorn rorledningen 33.till vattengasen. Den redu cerande gasblandningen (1902 Nm3) kommer genom ledningen 34 in i reduktionsrummet 20, varest 1425 kg jarnoxid reduceras till 1 ton rent jam vid 1000° C. In the gas generator 31, 1882 Nm ° of water gas is generated, which at a temperature of 1000 ° C is led to the reduction chamber 20. 20 Nm3 of water from the NaCl electrolyzer 29 was added through the pipeline 32 and the Iran HCl electrolyte 16 through the pipeline 33 to the water gas. The reducing gas mixture (1902 Nm3) enters the reduction chamber 20 through line 34, where 1425 kg of iron oxide is reduced to 1 ton of pure jam at 1000 ° C.

Medelst det i de olika delarna av anlaggningen genom kylning utvunna varmet alstras anga, som anvandes for utvinning av elektrisk energi. Den utvunna varmemangden av c:a 2 656 -000 kilogramkalorier gem 700 kilowattimmar. Darav forbrukas 180 kilowattimmar vid HCI- och NaClelektrolysen (70 resp. 110 kilowattimmar), sa att alma 520 kilowattimmar sta. till forfogande for andra andamal. By means of the heat recovered in the various parts of the plant by cooling, the steam is used, which is used for the extraction of electrical energy. The recovered amount of heat of about 2,656 -000 kilograms of calories saves 700 kilowatt hours. Of this, 180 kilowatt hours are consumed in the HCl and NaCl electrolysis (70 and 110 kilowatt hours, respectively), so that a total of 520 kilowatt hours is required. available for other purposes.

Forfaringssattet enligt uppfinningen betyder gentemot teknikens nuvarande standpunkt ett obestridligt framsteg. Malmer med ringa hallfasthet, som man till foljd av forstoppningsfaran icke anvander i masugnar, aro mycket val lampade fOr fOrfaringssattet enligt uppfinningen,i alla fall varje malm finfordelas, och vid dessa malmer bliva sonderdelningskostnaderna mindre an vid harda malmer Da saval kravet pa en speciell styckestorlek som aven sorteringen av malmerna bortfalla, blir malmpriset lagre. Jarnfattiga malmer med exempelvis 30 % Fekunnantannagon anriktning direkt fOrarbetas till rent jam. Den hittills ogynnsamma fosforhalten i jammalm Or enligt uppfinningen till fordel for ekonomien vid jarnutvinningen. Jarnhaltiga titanmalmer kunna za. ekonomiskt satt fullstandigt befrias fran jam. Aven ur andra jarnhaltiga material, sasom t. ex. frail avfallet vid utvinning av icke jarnmetaller, kan jam utvinnas. Lander, som icke ago stenkol titan brunkol, kunna enligt uppfinningen producera rent jam och hogrena stal i stordrift ph ekonomiskt satt. Produktionskostnaderna for det vid fOrfaringssattet enligt uppfinningen framstallda rena jarnet eller darav framstallt hogvardigt stal Oro va.sentligt lagre an de for stal, som framstalles enligt hittills kanda mete der. The method according to the invention means an undeniable progress compared to the current state of the art. Ore with low half-strength, which is not used in blast furnaces due to the danger of constipation, is a great choice for the method according to the invention, in any case each ore is finely divided, and in these ores the probing costs are less than in hard ores. as even the sorting of the ores lapses, the ore price is saved. Poor iron ores with, for example, 30% Fekunnantannagon orientation are directly processed into pure jam. The hitherto unfavorable phosphorus content of jammalm Or according to the invention in favor of the economy of iron extraction. Ferrous titanium ores can za. economically completely freed from jam. Also from other ferrous materials, such as e.g. frail waste in the extraction of non-ferrous metals, jam can be recovered. According to the invention, land which does not ago hard coal titanium lignite can produce pure jam and high-grade steel on a large scale economically. The production costs of the pure iron produced from the process according to the invention or the high-quality steel produced therefrom are significantly lower than those for steel produced according to hitherto known methods.

Claims (9)

Patentanspra.k:Patentanspra.k: 1. Forfaringssatt f Or utvinning av rent jam och/ eller jarnoxid genom malmklorering, atervinning av klor genom forhranning av bildad jarnklorid och reduktion av vid forbranningen bildad jamoxid till jam, kannetecknat clarav, att i ett reduktionskloreringsrum klor bringas till reaktion med en blandning av sonderdelad maim och eft soliderdelat kolhaltigt reduktionsmedel vid en temperatur mellan 800 och 1200° C, att de gasformiga reaktionsprodukterna och klor Iran reduktionskloreringsrummet bringas i berOring med maim cch eventuellt fosfater i franyaro av ett reduktionsmedel i ett oxidationskloreringsrum vid en temperatur mellan 800 och 1200° C, att den jamfria gangarten bortfores frail reduktionskloreringsrummet, att malmen fran o2ddationskloreringsrummet blandad med det sonherdelade kolhaltiga reduktionsmedlet inf Ores i reduktionskloreringsrummet, att oxidationskloreringsrummet beskickas med maim, att de oxidationskloreringsrummet lamnande gasformiga reaktionsprodukterna avkylas till nngefar 320° Cock samtidigt befrias Iran medryckt stoft, som aterf Ores till oxidationskloreringsrummet, att ur de stoftfria gasformiga reaktionsprodukterna vid en temperatur mellan 110 och 1° C i en Fe3C16-kondensor avskiljes ferriklorid i fast form, att den Fe2C16-kondensom lamnande gasblandningen tvattas med vatten, att ur det saltsyrehaltiga tvattvattnet klor utvinnes elektrolytiskt, att ferrikloriden forbrannes med syre vid en temperatur mellan 700 och 800° C till jarnoxid och klor, -vilken klor tillsammans med den elektrolytiskt utvunna kloren inledes i reduktionskloreringsrummet och att den vid f Orbranningen bildade jarnoxiden med reducerande gaser och det vid den elektrolytiska klorutvinningen frigjorda valet reduceras till jarn.Procedure For the recovery of pure jam and / or iron oxide by ore chlorination, the recovery of chlorine by preheating of formed iron chloride and the reduction of jam oxide formed in the combustion to jam, can clarified that in a reduction chlorination chamber chlorine is reacted with a mixture of , and after solid carbonaceous reducing agent at a temperature between 800 and 1200 ° C, that the gaseous reaction products and chlorine Iran reduction chlorination chamber are brought into contact with maim and possibly phosphates in franyaro of a reducing agent in an oxidation chlorination chamber at a temperature between 800 and 1200 ° C, that the free-flowing gait is removed from the reduction chlorination chamber, that the ore from the oxidation chlorination chamber mixed with the son-cured carbonaceous reducing agent is introduced into the reduction chlorination chamber, that the oxidation chlorination chamber be charged with gas, that the oxidation chlorination chamber paralyze gaseous reaction products to At the same time, Iran is entrained with entrained dust, which is returned to the oxidation chlorination chamber, to separate ferric chloride from the dust-free gaseous reaction products at a temperature between 110 and 1 ° C in a Fe3C16 condenser, so that the Fe2C16 condenser-leaving gas mixture is washed. with water, that chlorine is electrolytically recovered from the hydrochloric acid-containing water water, that the ferric chloride is combusted with oxygen at a temperature between 700 and 800 ° C to iron oxide and chlorine, which chlorine is introduced into the reduction chlorination chamber together with the electrolytically recovered chlorine. the iron oxide with reducing gases and the choice released in the electrolytic chlorine extraction is reduced to iron. 2. FOrfaringssatt enligt patentanspraket 1, kannetecknat darav, aft i reduktionskloreringsrummet i stallet for ett fast kolhaltigt reduktionsmedel inf Ores kolmonoxid. — —92. A process according to claim 1, characterized therefrom, aft in the reduction chlorination chamber in the stable of a solid carbonaceous reducing agent inf ores carbon monoxide. - —9 3. Forfaringssatt enligt patentanspraken 1 och 2, kannetecknat ddrav, att den i Fe2C16-kondensorn avskilda 110 till 140° C varma ferrikloriden bringas i beroring med 800 till 950° C varmt syre och forbrannes vid 700 till 800° C.3. A process according to claims 1 and 2, characterized in that the 110 to 140 ° C hot ferric chloride separated in the Fe2C16 condenser is brought into contact with 800 to 950 ° C hot oxygen and incinerated at 700 to 800 ° C. 4. Forfaringssatt enligt patentanspraken 1 till 3, kannetecknat dray, att for forbranning av ferrikloriden i stallet fOr syre anvandes luft.4. A process according to claims 1 to 3, characterized in that air is used for the combustion of the ferric chloride instead of oxygen. 5. Forfaringssatt enligt patentanspraken 1 till 4, kannetecknat darav, att till den Fe,C16-kondensom lamnade gasblandningen vid en temperatur mellan 110 och 140° C tillsattes vatten eller vattenanga, att bildad fosforsyradimma absorberas i varm fosforsyra och att ur de efter absorptionsbehandlingen kvarblivande gaserna klorvdte uttvdttas med vatten eller utspadd saltsyra.Process according to claims 1 to 4, characterized in that water or water vapor added to the Fe, C16 condenser laminated gas mixture at a temperature between 110 and 140 ° C, that formed phosphoric acid mist is absorbed in hot phosphoric acid and that from those remaining after the absorption treatment the chlorinated gases are washed with water or dilute hydrochloric acid. 6. Forfaringssatt enligt patentanspraken 1 till 5, kannetecknat darav, att till malmen fore intradet i oxidationskloreringsrummet inblandas fosfathaltiga dinnen.Process according to Claims 1 to 5, characterized in that phosphate-containing pads are mixed into the ore before entering the oxidation chlorination chamber. 7. Forfaringssatt enligt patentanspraken 1 till 6, kannetecknat darav, att medelst alkalikloridelektrolys utvinnes alkalihydroxid, vdte och klor, och att detta tillsammans med kloren frail Fe2C18- fOrbranningen och kloren Iran HC1-elektrolysen ledes in i reduktionskloreringsrummet.7. A process according to claims 1 to 6, characterized in that by alkali chloride electrolysis alkali hydroxide, hydrogen and chlorine are recovered, and that this together with the chlorine frail Fe2C18 combustion and the chlorine Iran HCl electrolysis is led into the reduction chlorination chamber. 8. Forfaringssatt enligt patentanspraken 1 till 7, kannetecknat darav, att det vid klorering av malraen, vid forbranning av ferrikloriden och vid HC1-absorptionen frigjorda vdrmet och det vid kylning av de gasformiga reaktionsprodukterna efter malmkloreringen, den varma gangarten, den varma kloren efter forbranningen och de varma avgaserna efter reduktionsbehandlingen utvunna varmet omvandlas till elektrisk energi, som anvandes fiir den elektrolytiska klorutvinningen.Process according to claims 1 to 7, characterized in that the chlorine released during the chlorination of the grit, during the combustion of the ferric chloride and during the HCl absorption and the cooling of the gaseous reaction products after the ore chlorination, the hot gait, the hot chlorine after the combustion and the hot exhaust gases after the reduction treatment recover the heat converted into electrical energy, which is used for the electrolytic chlorine recovery. 9. FOrfaringssatt enligt patentanspraken 1 till 8, kannetecknat darav, att fOr upphettning och torkning av maid koks och maid maim den reducerande och oxiderandekloreringen, upphettning av kvave med den varma stoftfina gangarten och reduktion av den stoftfina jarnoxiden med reducerande gaser till jam anvandas cyklonbatterier av i och f Or sig kant slag. Anforda publikationer:9. A method according to claims 1 to 8, characterized in that for heating and drying of maid coke and maid maim the reducing and oxidizing chlorination, heating of nitrogen with the hot dusty gait and reduction of the dusty iron oxide with reducing gases to jams are used by cyclone i and f Or sig edge kind. Request publications:
SE184068D SE184068C1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE184068T

Publications (1)

Publication Number Publication Date
SE184068C1 true SE184068C1 (en) 1963-01-01

Family

ID=38409941

Family Applications (1)

Application Number Title Priority Date Filing Date
SE184068D SE184068C1 (en)

Country Status (1)

Country Link
SE (1) SE184068C1 (en)

Similar Documents

Publication Publication Date Title
US3466169A (en) Process for the production of metallic chlorides from substances containing metallic oxides
US3295924A (en) Process for recovering iron, titanium and aluminum from the red slurries obtained in processing bauxite by the bayer process
CA1277144C (en) Production of magnesium metal from magnesium containing materials
CN103130279B (en) A kind of method of chlorination production high purity vanadic anhydride
US20160016812A1 (en) Method for treating titanium-containing feedstock
US20130042438A1 (en) Method for processing spodumene
US3244509A (en) Halide process for extraction of iron from iron-oxide-bearing materials
US20210354992A1 (en) Production of fine grain magnesium oxide and fibrous amorphous silica from serpentinite mine tailings
CA1085137A (en) Process for the production of aluminum chloride and related products
CA3087355A1 (en) System and method for producing high purity particulate graphite
EP4279453A2 (en) Process for the production of commercial grade silicon
CN106586962A (en) Method for recycling hydrochloric acid through vapor neutral hydrolysis of titanium tetrachloride dust collection residues
PL139606B1 (en) Method reclaiming metals from molten slag
TW201437382A (en) Method for producing titanium oxide and iron oxide
WO2006048283A1 (en) Process and plant for producing titania slag from ilmenite
NO166932B (en) PROCEDURE FOR MANUFACTURING IRON GLIMPS.
US3989510A (en) Manufacture of titanium chloride and metallic iron from titaniferous materials containing iron oxides
NO141577B (en) DEVICE FOR DETECTING INFRAROED RADIATION
US3787556A (en) Method for preparing titanium tetrachloride
US4288411A (en) Process for the selective production of a plurality of individual pure halides and/or halide mixtures from a mixture of solid oxides
US2723902A (en) Method for the treatment of iron ore
CN104609375A (en) Nano oxide composite powder and preparation method
EP0007803B1 (en) Process for the preparation of anhydrous magnesium chloride
Zheng et al. Overview of current phosphoric acid production processes and a new idea of kiln method
SE184068C1 (en)