SE178680C1 - - Google Patents

Info

Publication number
SE178680C1
SE178680C1 SE755660A SE755660A SE178680C1 SE 178680 C1 SE178680 C1 SE 178680C1 SE 755660 A SE755660 A SE 755660A SE 755660 A SE755660 A SE 755660A SE 178680 C1 SE178680 C1 SE 178680C1
Authority
SE
Sweden
Prior art keywords
mercury
hydrochloric acid
chloride
chlorine
cathode
Prior art date
Application number
SE755660A
Other languages
Swedish (sv)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to SE755660A priority Critical patent/SE178680C1/sv
Publication of SE178680C1 publication Critical patent/SE178680C1/sv

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

Uppfinnare: W Teske och H Holemann Prtoritet begard fran den /2 augusti 1959 (Forbundsrepubliken Tgskland) Da vid substitution av vate med klor i organiska foreningar halften av den tillforda kloren omsattes till klorvate och foljaktligen b csar forlorad for den egentliga kloreringsprocessen, liar atervinningen av klor ur denna ofta ieke onskvarda biprodukt blivit ett viktigt tekniskt problem. Principiellt aro f6r detta andamal tva vagar mojliga: Man omsatter antingen det bildade klorvatet med luft eller syrc under anvandning av katalysatorer till vatten och klor, sasom exempelvis sker vid Deaconforfarandet i dess aldre eller modernare utforingsformer, eller man absorberar det bildade gasformiga klorvatet i vatten eller utspadd saltsyra under bildning av saltsyra och elektrolyserar den erhallna saltsyran, varvid vate och klor erhalles. Inventors: W Teske and H Holemann Prtoritet requested from / 2 August 1959 (Federal Republic of Germany) When upon substitution of hydrogen with chlorine in organic compounds half of the supplied chlorine was converted to chlorine cotton and consequently b cs lost for the actual chlorination process of liar atervinn process. chlorine from this often unsavory by-product has become an important technical problem. In principle, two vagaries are possible for this purpose: either the chlorine water formed is reacted with air or oxygen using catalysts to water and chlorine, as is the case, for example, with the Deacon process in its older or more modern embodiments, or the gaseous chlorine water formed is absorbed in water or diluted hydrochloric acid to form hydrochloric acid and electrolyzes the resulting hydrochloric acid to give hydrogen and chlorine.

Man har ph olika vagar forsOkt att minska energiforbrukningen vid saltsyraelektrolysen, som bestar av tre andelar, namligen energiforbrukningen for klorutvecklingen vid anoden, for overvinnande av det inre motstandet i elektrolyscellen (i elektrolyt och diafragma) och f6r vateutvecklingen -vid katoden. Dh av praktiska skill endast klorutveckling vid grafitelektroder kommer i fraga, kan den spannings- och energiforbrukning, som speciellt kommer ph klorutvecklingen, icke paverkas. Annorlunda Oro forhallandena vid katoden, dar vateutvecklingen vid grafitelektroder forsiggar med en viss overspanning. Attempts have been made to reduce the energy consumption of hydrochloric acid electrolysis, which consists of three proportions, namely the energy consumption for chlorine evolution at the anode, for overcoming the internal resistance of the electrolysis cell (in electrolyte and diaphragm) and for the evolution of water at the cathode. Dh of practical difference only chlorine development at graphite electrodes comes into question, the voltage and energy consumption, which especially comes ph chlorine development, can not be affected. Different Concerns about the conditions at the cathode, where the water development at graphite electrodes precedes with a certain overvoltage.

En mojlighet att undvika eller atminstone minska sistnamnda nackdel bestar dari, nit man ersatter den katodiska vateutvecklingen med ett annat katodforlopp, som erfordrar ett lagre spanningsvarde vid katoden an vateutvecklingen. An opportunity to avoid or at least reduce the latter disadvantage consists in not replacing the cathodic hydrogen evolution with a different cathode process, which requires a lower voltage value at the cathode than the hydrogen evolution.

Salunda liar i den amerikanska patentskriften 2 468 766 exempelvis foreslagits att istallet for urladdning av H÷ -jonerna vid katoden foretaga reduktionen av metalljonerna fran ett hogre valensstadium till ett lagre valensstadium 1 elektrolytlosningen (t.ex. fran Fe+4-+Fe +4- eller Cu+-+ som fOrsiggar med ett lagre spanningsvarde On den lintodiska viiteutvecklingen. Denna mojlighet Or att hanfora till storleken av redoxpotentialerna for de ifragavarande reaktionerna. For example, U.S. Pat. No. 2,468,766 proposes that instead of discharging the H ÷ ions at the cathode, the metal ions be reduced from a higher valence stage to a lower valence stage in the electrolyte solution (e.g. from Fe + 4- + Fe +4 - or Cu + - + which precedes a lower voltage value on the lintodic velocity development.This possibility Or to hanfor to the magnitude of the redox potentials for the reactions in question.

Genom denna atgard bortfaller vateutvecklingen, varvid sarskilda anordningar for att skilja katod- och anodgas bli overflodiga. As a result of this action, the evolution of water is eliminated, whereby special devices for separating cathode and anode gas become superfluous.

Samtidigt minskas spannings- och energiforbrukningen. En naekdel vid detta forfaringssatt bestar emellertid dari, att de i elektrolyten losta, redan redueerade metalljonerna med lagre valens kunna uppoxideras vid anoden, vilket hterigen innebar en strOmforlust. Del Or darfor erforderligt att omedelbart Ater bortleda den vid katoden reducerade elektrolyten fran katoden, t. ex. enligt de hittills kanda forslagen genom en poros katod med noggrant foreskriven genomslapplighet. At the same time, voltage and energy consumption are reduced. A disadvantage of this method, however, is that the already reduced metal ions with lower valence in the electrolyte can be oxidized at the anode, which again meant a current loss. Part Or it is therefore necessary to immediately re-remove the reduced electrolyte from the cathode at the cathode, e.g. according to the hitherto known proposals through a porous cathode with carefully prescribed permeability.

Foreliggande uppfinning avser nu ett forfaringssatt f8r elektrolytisk utvinning av klor ur vattenhaltig saltsyra, varigenom saval 2— — samtliga anforda nackdelar vid de kanda forfaringssatten undvikes som ocksd samtidigt en avsevard inbesparing ay spanning i jamforelse med de kanda forfaringssatten uppnas. The present invention now relates to a process for the electrolytic recovery of chlorine from aqueous hydrochloric acid, whereby all the disadvantages of the known processes are avoided as well as a considerable saving in voltage in comparison with the known processes is achieved.

Farfaringssattet enligt uppfinningen kannetecknas darav, att en vattenlosning av saltsyra, sadan som den exempelvis erhalles genom absorption av det vid de i tekniken mest vanliga kloreringsreaktionerna som biprodukt bildade gasformiga klorvatet i vatten eller utspadd vattenlosning av saltsyra, omsattes med syre och/eller syre innehillande gasblandningar, sarskilt luft, och med kvicksilvermetall under tillsats av oxidationsforloppet paskyndande katalysatorer vid temperaturer av minst 40° C upp till kokpunkten for den saltsura reaktionslosningen, foretradesvis vid 600-100° C, under bildning air lost kvicksilver-(2)-klorid, att den erhallna saltsura, kvieksilver-(2)-klorid innehallande losningen elektrolyseras, varvid vid anoden bildas klor och vid katoden kvicksilvermetall, att den vid katoden avskilda kvieksilvermetal_ len aterfores till det for framstallning av kvicksilver-(2)-kloriden tjanande kvicksilverforradet, att den frau elektrolyssteget kommande, pa kvicksilver-(2)-klorid utarmade elektrolyteneventuellt efter det att den befriats fran sin klorhalt — Ater til1bakafores i forfarandekretsloppet, sarskilt som absorptionsmedel for gasformigt klorvate far bildning av -vattenhaltig saltsyra och att det yid oxidationen ay kvicksilvret till kvicksilver(2)-klorid bildade vattnet kontinuerligt aylagsnas ur forfarandekretsloppet. The process according to the invention is characterized in that an aqueous solution of hydrochloric acid, such as is obtained, for example, by absorbing the gaseous chlorine water formed in water in the most common chlorination reactions as a by-product or diluted aqueous hydrochloric acid solution, is reacted with oxygen and / or oxygen-containing gas mixtures. , especially air, and with mercury metal during the addition of the oxidation process accelerating catalysts at temperatures of at least 40 ° C up to the boiling point of the hydrochloric acid reaction solution, preferably at 600-100 ° C, forming air lost mercury (2) chloride, that the The resulting hydrochloric acid, mercury (2) chloride containing the solution is electrolysed, chlorine being formed at the anode and mercury metal at the cathode, that the mercury separated at the cathode is recycled to the mercury-borne mercury-derived mercury-derived mercury. electrolysis step coming, on mercury (2) chloride utar possibly electrolyte after it has been liberated from its chlorine content - Recirculated in the process cycle, especially as an absorbent for gaseous chlorine water to form aqueous hydrochloric acid and by the oxidation of the mercury to mercury (2) chloride the water is continuously formed from the water.

Enligt uppfinningen ha som katalysatorer for omsattningen ay den vattenhaltiga saltsyralosningen med kvicksilvermetall och med syre och/eller syre innehallande gasblandningar, sarskiIt luft, salter med aminstone 1 tva olika valensstadier upptradande metaller visat sig lampliga, vilkas hdgre valensstadium har tillracklig oxidationsformaga gentemot metalliskt kvicksilver och kvicksilver-(1)- klorid °eh vilkas lagre valensstadium genom de anvanda oxdationsmedlen, sasom exempelvis syre eller lull, ater kan oxideras till det hogre valensstacliet. Sadana salter kunna antingen enbart eller i kombination med varandra vara verksamma som katalysatorer for upplOsningen av kvicksilver och samtidig oxidation av klorvate. According to the invention, as catalysts for the reaction of the aqueous hydrochloric acid solution with mercury metal and with oxygen and / or oxygen-containing gas mixtures, especially air, salts with at least two different valence stages, metals have proved suitable, the higher valence stage of which has sufficient oxidative mercury. - (1) - Chloride, the lower valence stage of which can be oxidized to the higher valence stack by the oxidizing agents used, such as, for example, oxygen or wool. Such salts can act either alone or in combination with each other as catalysts for the dissolution of mercury and the simultaneous oxidation of hydrogen chloride.

Dd namligen kvicksilver utgor en forhal. landevis add l och foljaktligen svaroxiderbar metall, är oxidation ay densamma till HgC12 med molekylart syre och vattenhaltig saltsyra ieke utan vidare mojlig, ieke ens om den utfores rid farhajd temperatur och med finfordelning av reaktionskomponenterna. Forst genom tillsatsen ay de namnda katalysatorerna enligt foreliggande uppfinning okas oxidationshastigheten av kvicksilvret till kvicksilver-(2)-klorid avsevart, sa att reaktionen aven kan genomforas i tekniskt anvandbar skala. Sarskilt fordelaktiga katalysatorer for detta forfaringssteg ha i synnerhet jarn-(3)- klorid och koppar-(2)-klorid visat sig vara, saval vid anvandning enbart som i blandning med varandra eller med andra metallforeningam, sasom palladiumklorid, koboltklorid, molybdater och vanadater. Ay de i slutet av foreliggande beskrivning anforda exemplen 1-5, 8 och 10-16, vilka endast skola angiva en som exempel avsedd utfaringsform och icke innebar flagon inslulnkning av anvandningen ay katalysatorer enligt foreliggande uppfinning, framgar tydligt verkningssattet och anvandbuheten av dessa katalysatorer yid olika forsOksb etingelser. Namely, mercury is a vestibule. countrywise add l and consequently black oxidizable metal, oxidation ay the same to HgCl 2 with molecular oxygen and aqueous hydrochloric acid is not readily possible, ie even if it is carried out at the elevated temperature and with fine distribution of the reactants. Only by the addition of the said catalysts according to the present invention is the oxidation rate of the mercury to mercury (2) chloride significantly increased, so that the reaction can also be carried out on a technically usable scale. Particularly advantageous catalysts for this process step have been found to be, in particular, ferrous (3) chloride and copper (2) chloride, when used alone or in admixture with each other or with other metal compounds, such as palladium chloride, cobalt chloride, molybdates and vanadates. . In the examples given at the end of the present description, Examples 1-5, 8 and 10-16, which are only to give an exemplary embodiment and did not involve a slight elucidation of the use of catalysts according to the present invention, clearly show the mode of action and the usefulness of these catalysts. various experimental conditions.

F6r genomforande air forfaringssaltet enligt uppfinningen har det vidare visat sig lampligt att bringa syret och/eller de syre innehallande gasblandningarna, sarskilt luft, och det flytande kvicksilvret i finfordelad form for omsattning med vattenlosningen av saltsyra. For the conductive air process salt according to the invention, it has furthermore been found suitable to bring the oxygen and / or the oxygen-containing gas mixtures, especially air, and the liquid mercury into finely divided form for reaction with the aqueous solution of hydrochloric acid.

Elektrolysen ay den saltsura HgCl-losningen enligt forfaringssattet enligt foreliggande uppfinning utf6res med fordel mellan en grafitanod och en fast katod ay grafit eller en metal' med lagre overspanning, med avseende pa avskiljandet ay kvicksilvret, eller ocksa mellan en grafitanod och kvicksilverkatod, varvid den anvanda stromtatheten skall ligga under den for vateutveckling vid katoden erforderliga gransstromtatheten. The electrolysis of the hydrochloric acid HgCl solution according to the process of the present invention is advantageously carried out between a graphite anode and a solid cathode of graphite or a metal with lower overvoltage, with respect to the separation of the mercury, or also between a graphite anode and mercury cathode, using the current density must be below the branch current density required for water development at the cathode.

Avlagsnandet ay det i oxidationssteget, i vilket kvieksilvermetallen overfares till kvicksilver-(2)-klorid, i narvaro av saltsyra bildade vattnet forsiggar lampligen genom forflyktigande ur oxidationssteget, varvid det erhallna kondensatet shall ha lagre eller pa sin hojd lika hog klorvatehalt som den azeotropa HC1-H20-blandningen. The deposition of the water formed in the oxidation step, in which the mercury metal is converted to mercury (2) chloride, proceeds suitably by volatilization from the oxidation step, the condensate obtained having lower or at most as high a chlorine hydrogen content as the a -H 2 O mixture.

En ytterligare lamplig utforingsform ay uppfinningen bestar dari, att det bildade kondensatet, vilket pa sin hojd ham en klorvatekoncentration, som motsvarar denna koncentration i den azeotropa HCI-H20-blandningen, annu en gang mattas med gasformigt klorvate och salunda dess vatteninnehall avskiljes ur forfarandekretsloppet i form air koncentrerad saltsyra. A further suitable embodiment of the invention consists in that the condensate formed, which at most has a chlorine water concentration corresponding to this concentration in the azeotropic HCl-H 2 O mixture, is once again fed with gaseous chlorine water and thus its water content is separated from the process cycle in form air concentrated hydrochloric acid.

Under hanvisning till fig. 1 pa bifogade ritningar forklaras som exempel genamforandet ay forfaringssattet enligt uppfinningen for elektrolytisk atervinning av kloren ur det mid kloreringen air organiska substanser erhallna gasformiga klorvatet narmare. Referring to Fig. 1 of the accompanying drawings, the embodiment of the process according to the invention for electrolytic recovery of the chlorine from the gaseous chlorine vessel obtained from the middle chlorination of organic substances is further explained by way of example.

Till kloreringssystemet 1 tillfores klor genom ledningen 2. Det vid kloreringen ay de organiska substanserna bildade klorvatet till -fares genom ledningen 3 ett absorptionssystem 4 ay hand konstruktion och absorberas dar i en absorptionsvatska, foretradesvis i den frau elektrolysen stammande, pa HgC12 utarmade elektrolyten, som tillfores genom ledningen 38 och. stammar Iran det senare beskrivna — 178.680 -- elektrolyssteget, och eventuellt i det destillat, som stammer fran det i anslutning dartill beskrivna oxidationssteget och vilket genom ledningen 20 tillfores absorptionssystemet 4. Dessutom forefinnes mojligheten att genom ledningen 6 tillfora vatten och genom ledningen 5 avleda restgaser, sasom exempelvis annu kvarvarande organiska foreningar fran ldoreringssteget. Den i absorptionssystemet 4 erhallna uppkoncentrerade vattenlosningen .av saltsyra tillfores genom ledningarna 7 och 7' oxidationssystemet 10, exempelvis ett motsvarande dimensionerat reaktionstorn, och fran en behallare 8 tillfores genom ledningen 9 de eventuellt for oxidationen erforderliga tillsatserna av katalyserande amnen. I oxidationsrummet 10, som kan upphettas, t. ex. medelst de med 11 antydda upphettningsroren eller varmeslangarna, genomfores °mattningen av kvicksilvret till HgC12 enligt ekvationen Hg 2HC1 + 1/2 02HgC12 -I- H20, i det att de till oxidationsrummet 10 upptill tillforda katalysator- och saltsyralosningarna genom lampliga atgarder bringas i beroring med syre och/eller syre innehallande gaser, sasom exempelvis luft, och kvicksilvermetall, fOretradesvis i finfordelad form. Den onskade omsattningen kan exempelvis aven astadkommas genom intensiv mekanisk omroring av en kvicksilverkvantitet i en av luft- resp. syre-blasor genomstrommad saltsyralosning, dvs. i en omrorareapparatur, eller exempelvis ge-nom nedstrilning av kvicksilver i en med fine luft- resp. syreblasor fylld losning, t. ex. i ett reaktionstorn eller i nagon annan lamp-hg apparatui. I fig. 1 visas exempelvis schematiskt en tornformig oxidationsapparatur. Fran flakten 39 inblases luft genom ledningen 12 och luftfordelaren 12' i finfordelad form i oxidationsrummet 10. Kvicksilvret infOres lean forradskarlet 14 genom pumpen 15, led- ningen 16 och fordelaren 16' i finfordelad form i oxidationsrummet, medan den i oxidationen deltagande saltsyralosningen tillrinner genom ledningen 7'. Fran oxidationsrummet 10 fores det icke omsatta kvicksilvret genom en. med en lamplig tillslutningsanordfling, t. ex. en sifon, fOrsedd ledning 13 till-take till forradsbehallaren 14. Det med salt- syraangor laddade overskottet av luft passerar genom tva kylare 17 och 18 och bortledes genom ledningen 19 eller filerfores eventuellt i kretslopp genom ledningen 19' till ledningen 12 och oxidationsrummet 10. Det i kylaren 17 avskilda kondensatet aterfores till oxidationsrummet 10, om det Minn innehaller metallsalter, medan det i kylaren 18 erhallna frail metallsalter fria kondensatet pumpas till en ytterligare absorbaLor 21 genom ledningen 20 och pumpen 23, dar mattes med farskt frau. kloreringssystemet 1 genom ledningar 3 och 22 inlett klorvate och som koncentrerad saltsyra bortledes genom ledningen 21. Pa detta satt avlagsnas samtidigt en del, eventuellt hela mangden av det vid odixation av kvicksilver till HgC12 i reaktionskarlet 10 Mldade vattnet ur kretsloppet. Chlorine is supplied to the chlorination system 1 through the line 2. The chlorine water formed during the chlorination of the organic substances is fed through the line 3 to an absorption system 4 by hand and is then absorbed in an absorption liquid, preferably in the electrolysis-derived HgCl2 depleted electrolyte, which supplied through line 38 and. Iran derives the later described - 178,680 - electrolysis step, and possibly in the distillate, which originates from the oxidation step described in connection therewith and which is fed through line 20 to the absorption system 4. In addition, there is the possibility to supply water through line 6 and divert residual gases through line 5. , such as, for example, remaining organic compounds from the aging step. The concentrated aqueous solution of hydrochloric acid obtained in the absorption system 4 is fed through the lines 7 and 7 'to the oxidation system 10, for example a corresponding dimensioned reaction tower, and from a container 8 the additives of catalytic substances which may be required for the oxidation are fed through the line 9. In the oxidation chamber 10, which can be heated, e.g. by means of the heating tubes or heating hoses indicated by 11, the matting of the mercury to HgCl2 is carried out according to the equation Hg 2HCl + 1/2 O2HgCl2 -I- H2O, in that the catalyst and hydrochloric acid solutions supplied to the oxidation chamber 10 are brought into contact by suitable procedures. oxygen and / or oxygen-containing gases, such as air, and mercury metal, preferably in finely divided form. The desired turnover can also be achieved, for example, by intensive mechanical stirring of a quantity of mercury in one of the air resp. oxygen bubbles permeate hydrochloric acid solution, i.e. in a stirrer apparatus, or for example by sprinkling mercury in one with fine air resp. oxygen vesicles filled discharge, e.g. in a reaction tower or in any other lamp-hg apparatus. Fig. 1 schematically shows, for example, a tower-shaped oxidation apparatus. From the surface 39, air is blown in through the line 12 and the air distributor 12 'in finely divided form in the oxidation space 10. The mercury is introduced into the lean storage vessel 14 through the pump 15, the line 16 and the distributor 16' in finely divided form in the oxidation space, while the oxidizing hydrochloric acid solution flows through line 7 '. From the oxidation chamber 10, the unreacted mercury is passed through a. with a suitable closing device flap, e.g. a siphon, provided with line 13, is taken to the storage tank 14. The excess hydrochloric acid charged with hydrochloric acid passes through two coolers 17 and 18 and is discharged through line 19 or possibly fed in a cycle through line 19 'to line 12 and the oxidation chamber 10. The condensate separated in the cooler 17 is returned to the oxidation chamber 10, if the memory contains metal salts, while the free condensate free condensate obtained in the cooler 18 is pumped to an additional absorber 21 through the line 20 and the pump 23, where it is fed with fresh frau. chlorination system 1 initiated by lines 3 and 22 and hydrogen chloride as concentrated hydrochloric acid is discharged through line 21. In this way a part, possibly the whole amount, of the odor of mercury in HgCl 2 in the reaction vessel 10 is removed at the same time.

Man kan emellertid, forutom vid det i fig. 1 avsedda stallet i elektrolyskretsloppet, aven pa andra stallen i detsamma avlagsna det enligt ekvationen. However, in addition to the stable in the electrolytic circuit referred to in Fig. 1, it can also be removed in the same stable in the same position according to the equation.

Hg 211C1 + 1/2 02 = HgC12 + 1120 bildade vattnet, som, om det icke avlagsnades, pa otillatligt salt skulle utspada den cirkulerande elektrolyten, vilket exempelvis kan ske med tillhj alp av det i elektrolyscellen 26 utvecklade joulska varmet, vilket leder till att den genom ledningen 32 bortstrommande kloren upptager vattenanga resp. en mot temperaturen och koncentrationsforhallandena svarande saltsyraanga. Ur den i elektrolyscellen bildade kloren kan sedan eventuellt genom kyl- och torkningssystem av bruklig konstruktion avskiljande av vattnet resp. saltsyralosningen aga rum. Dessutom forefinnes ytterligare den extra mojligheten aft foranga valten resp. saltsyra ur den ur elektrolyseellen i varmt tillstand avrinnande, pa HgC12 utarmade elektrolyten, exempelvis medelst en luftstrom, om samtidigt avlagsnandet av klor ur elektrolyten efterstravas, eller genom andra lampliga atgarder, sasom exempelvis yekuumf orangning. Hg 211C1 + 1/2 02 = HgCl2 + 1120 formed the water, which, if not deposited, on impermissible salt would dilute the circulating electrolyte, which can be done, for example, with the aid of the joule heat developed in the electrolysis cell 26, which leads to the chlorine flowing out through the line 32 absorbs water vapor resp. a hydrochloric acid vapor corresponding to the temperature and concentration ratios. From the chlorine formed in the electrolytic cell, it is then possible, if necessary by means of cooling and drying systems of conventional construction, to separate the water resp. hydrochloric acid solution aga rum. In addition, there is the additional possibility of pre-empting the selection resp. hydrochloric acid from the electrolyte depleted of HgCl2 from the electrolysis cell in the hot state, for example by means of an air stream, if at the same time the removal of chlorine from the electrolyte is sought, or by other suitable measures, such as yekuum oranging.

Den i oxidationskarlet 10 bildade koncentrerade saltsura kvieksilverkloridlOsningen tillfores med hjalp av pumpen 15' genom ledningen 25 en eller flera elektrolysceller 26 for att dar sonderdelas i kvicksilver och klor. The concentrated hydrochloric acid mercury chloride solution formed in the oxidation vessel 10 is supplied with the aid of the pump 15 'through the line 25 to one or more electrolysis cells 26 so that they are divided into mercury and chlorine.

I fig. 1 visas sasom exempel en elektrolyscell med en flytande, av k-vicksilver (31) bestaende katod i horisontell anordning och tva horisontellt anordnade grafitanoder (30) med tillhorande stramtillforselledningar 28 och 27. Elektrolysen kan emellertid likasaval genomforas i celler av annat utforande, exempelvis med vertikala flytande katoder eller vertikala stela katoder, t. ex. av grafit, eller av med kvicksilver anfuktade metaller, sasom koppar, nickel, eller legeringar (monelmetall). Det i elektrolyscellen avskilda kvicksilvret 31 alerfores genom ledningen 29 till forradsbehallaren 14 och darifran alter till oxidationsrummet 10. Den vid anoden bildade kloren lamnar elektrolyseellen genom avloppsledningen 32, den pa kvicksilver-(2)-klorid utarmade elektrolyten genom avloppsledningen 33 och kan vid behov i utblasningstornet 34 befrias Iran sin klorhalt genom en genom ledningen 35 tillford och i fordelaren 35' uppdelad luftstrom. Den klorhaltiga luften lamnar utblasningstornet genom ledningen 36 och den klorfattiga elektrolyten tillbakaledes med tillhj alp av pumpen 37 och ledningen 38 Ater — 817 680 — till absorbatorn 4 for absorption av det gasformiga klorvatet. Eventuellt kunna i avloppsledningarna 32 och 36 ytterligare anordningar far avskiljande av medryckta -vatskedroppar och kylare for avskiljande av den forflyktigade saltsyran och darmed for avlagsnande av det i oxidationskarlet 10 bildade vattnet ur kretsloppet vara anordnade. Fig. 1 shows, by way of example, an electrolysis cell with a liquid k-mercury (31) cathode in horizontal arrangement and two horizontally arranged graphite anodes (30) with associated tight supply lines 28 and 27. However, the electrolysis can also be carried out in cells of another design. , for example with vertical floating cathodes or vertical rigid cathodes, e.g. of graphite, or of mercury-moistened metals, such as copper, nickel, or alloys (monel metal). The mercury 31 separated in the electrolytic cell is fed through the conduit 29 to the storage tank 14 and from there to the oxidation chamber 10. The chlorine formed at the anode leaves the electrolytic cell through the drain line 32, the electrolyte (2) chloride depleted electrolyte through the drain line 33 and can the blow-off tower 34 is freed of its chlorine content by Iran through an air stream divided through the line 35 and divided into the distributor 35 '. The chlorine-containing air leaves the exhaust tower through line 36 and the chlorine-poor electrolyte is returned with the aid of the pump 37 and line 38 Ater - 817 680 - to the absorber 4 for absorption of the gaseous chlorine water. Optionally, in the drain lines 32 and 36, additional devices may be provided for separating entrained water droplets and coolers for separating the volatilized hydrochloric acid and thereby for removing the water formed in the oxidation vessel 10 from the circuit.

I fig. 1 Oro far battre overskadlighet delvis joke de forradskarl och den transportanordning upptagna, som skola inkopplas mellan de olika app araterna. In Fig. 1 Concerns get better clarity partly joke the storekeeper and the transport device occupied, which should be connected between the various devices.

De for forfaringssattet kannetecknande delstegen: absorption av klorvate, oxidation av kvicksilver och saltsyra med syre eller syre innehallande gasblandningar till kvicksilver(2)-klorid och vatten, bortledning av det bildade vattnet och den elektrolytiska sanderdelningen av den vid oxidationen bildade kvicksilverkloriden kunna kombineras med varandra i godtycklig ordningsfoljd; sarskilt kan med avvikande Iran. utforingsschemat enligt fig. 1 inforandet av det gasformiga klorva.- tet i forfaringssattets kretslopp Oven ske mellan oxidations- och elektrolysstegen. The sub-steps known for the procedure: absorption of chlorine hydrogen, oxidation of mercury and hydrochloric acid with oxygen or oxygen-containing gas mixtures to mercury (2) chloride and water, discharge of the water formed and the electrolytic sand division of the mercury formed during the oxidation can be combined in any order; especially can with deviant Iran. the diagram of the embodiment according to Fig. 1 the introduction of the gaseous chlorine in the cycle of the process set also takes place between the oxidation and electrolysis steps.

For elektrolysen av den saltsura kvicksiIver-(2)-kloridlosningen enligt forfaringssattet enligt uppfinningen kunna olika utforingsformer av elektrolysceller anvandas, av vilka tva lampliga utforingsformer aro visade i fig. 2 och 3. For the electrolysis of the hydrochloric acid mercury (2) chloride solution according to the method according to the invention, different embodiments of electrolysis cells can be used, of which two suitable embodiments are shown in Figs. 2 and 3.

Man kan exempelvis enligt fig. 2 utfora elektrolysen mellan tva fasta elektroder, varvid 50 betecknar elektrolyskarlet, 51 anoden och 52 katoden, vilka via srtomtillforselledningar 57 och 58 aro forbundna med en lamp-hg likstromskalla. Anoden bestar vid denna utforingsfonn lampligen av grafit, katoden antingen likaledes av grafit eller av en. amalgamerad och harigenom mot saltsur kvicksilver-(2)-kloridlosning bestandig metall (sa- som t. ex. amalgamerad nickel) eller en amalgamerad metallegering, sasom exempelvis monel, vid vilken avskiljandet av kvicksilver forsiggar med endast mycket ringa overspanfling. Elektrolyscellen Or enligt fig. 2 upp till nivan 56 fylld med elektrolyt samt forsedd med en tilledning 54a for den farska elektrolyten och med avloppsledningar f6r den bildade kloren och den fOrbrukade elektrolyten (i fig. 2 visade gemensamt genom avledningsrOret 54) och for det vid katoden avskilda, fran denna nedstrilande oeh vid karlets hot-ten i en lampligt utbildad uppsamlingskammare 55 samlade kvicksilvret, t. ex. med en sifon. Lampligen forbindes det vid cellens botten uppsamlade kvicksilvret likaledes genom en metalliskt ledande forbindning 59 med den negativa stromtillforselledningen 58 for att katodiskt polarisera detsamma. For example, according to Fig. 2, the electrolysis can be performed between two fixed electrodes, 50 denoting the electrolyte vessel, 51 the anode and 52 the cathode, which are connected via a power supply lines 57 and 58 to a lamp-like direct current head. The anode in this embodiment probably consists of graphite, the cathode either also of graphite or of one. amalgamated and thus resistant to hydrochloric acid mercury (2) chloride solution resistant metal (such as amalgamated nickel) or an amalgamated metal alloy, such as monel, in which the separation of mercury proceeds with only very little overvoltage. The electrolytic cell Or according to Fig. 2 up to level 56 filled with electrolyte and provided with a lead 54a for the fresh electrolyte and with drain lines for the formed chlorine and the consumed electrolyte (in Fig. 2 shown jointly through the lead tube 54) and for it at the cathode separated, from this descending oeh at the threat of the man in a suitably trained collection chamber 55 collected the mercury, e.g. with a siphon. Lamply, the mercury collected at the bottom of the cell is likewise connected by a metallic conductive connection 59 to the negative current supply line 58 to cathodically polarize the same.

Man kan aven med fordel utfora den elektrolytiska sanderdelningen av den saltsura kvicksilver-(2)-kloridlOsningen mellan en kvicksilverkatod och en grafitanod. Fig. 3 vi sar som exempel en for detta arbetssatt lamp-hg elektrolyscell. I elektrolyscellen 61 Or horisontellt anordnad en av grafit bestaende anod 65 mittemot en horisontell kvicksilverkatod 67. Dessa bada elektroder forsorjas genom stromtillforselanslutningarna 66 och 68 med likstrom. I cellens lock 62 ar anordnat ett avledningsror 64 for den bildade Mo. ren. Elektrolyten tillfiires genom tillfarselledningen 69, fyller elektrolyscellen upp till avledningsrorets 70 niva och ,avrinner efter avskiljande av den tillforda kvicksilvermangden genom roret 70. Det avskilda kvicksilvret kan uttagas ur cellen genom en lamplig sparranordning, t. ex. sifonen 63. Vid denna utforingsform forefinnes vidare molligheten att i cellen for spolningsandamal infora elementart kvicksilver, t. ex. genom elektrolyttillf orselledningen 69. The electrolytic sand division of the hydrochloric acid (2) chloride solution between a mercury cathode and a graphite anode can also be advantageously performed. Fig. 3 shows as an example a lamp-hg electrolysis cell operated for this purpose. In the electrolytic cell 61 Or, a graphite anode 65 arranged horizontally opposite a horizontal mercury cathode 67. These two electrodes are supplied through the current supply connections 66 and 68 with direct current. Arranged in the lid 62 of the cell is a diverter tube 64 for the formed Mo. clean. The electrolyte is supplied through the supply line 69, fills the electrolytic cell up to the level of the lead pipe 70 and, after separation of the supplied mercury supply through the pipe 70, the separated mercury can be taken out of the cell through a suitable sparring device, e.g. siphon 63. In this embodiment there is furthermore the possibility of introducing elemental mercury into the cell for flushing purposes, e.g. through the electrolyte supply line 69.

For genomforandet av elektrolysen enligt forfaringsattet enligt foreliggande uppfinning kunna emellertid Oven med fordel anvandas elektrolysceller, vid vilka den arbetande kvicksilverkatoden Or anordnad vertikalt eller i lutande lage, sarskilt de utforingsformer, vid vilka antingen en eller flera med kvicksilver anfuktade metallskivor eller pa annat satt formade metallkroppar, sasoin t. ex, band, omvaxlande foras genom. elektrolyten, som skall elektrolyseras, och i anslutning dartill genom en kvicksilverbassfing, eller sadam, vid vilka kvicksilvret risslar ned Over en lutande eller vertikal metallyta. For carrying out the electrolysis according to the method of the present invention, however, electrolytic cells can also be used to advantage, in which the working mercury cathode Or arranged vertically or in an inclined layer, in particular those embodiments in which either one or more mercury-moistened metal plates or otherwise shaped metal bodies , sasoin eg, band, alternating foras through. the electrolyte to be electrolysed, and adjacent thereto by a mercury bass finger, or sadam, at which the mercury trickles down over an inclined or vertical metal surface.

Elektrolysen av den saltsura kvicksilver(2)-kloridlosningen erfordrar enligt uppfinningen pa grund av den laga avskiljningspotentialen for kvicksilver lagre spanningsbelopp On vid de redan foreslagna forfaringssatten for elektrolys av vattenlosningar av saltsyra, vid vilka undvikandet av vateutveckling vid katoden astadkommes genom reduktion av till saltsyraelektrolyten tillsatta metalljoner fran ett hogre valensstadium till ett lagre valensstadium (t. ex. reduktion av Fe F- +-joner eller Cu+ +-joner till Fe++-joner resp. Cu +-joner). Ur de kanda normalpotentialerna for de enskilda elektrodreaktionerna utraknas jamviktsspanningarna for elektrolysekvationerna : I HC1 = H2 Cl2till 1,3587 V II CuCl, = CuClCl, till 1,0137 V och III Hg CI, = Hg Cl2till 0,4977 V. The electrolysis of the hydrochloric acid mercury (2) chloride solution according to the invention requires due to the low separation potential of mercury lower voltage amounts On in the already proposed procedures for electrolysis of aqueous solutions of hydrochloric acid, in which the avoidance of hydrogen evolution at the cathode metal ions from a higher valence stage to a lower valence stage (eg reduction of Fe F ++ ions or Cu ++ ions to Fe ++ ions or Cu + ions). From the known normal potentials for the individual electrode reactions, the equilibrium voltages for the electrolysis equations are calculated: I HCl = H2 Cl2 to 1.3587 V II CuCl, = CuClCl, to 1.0137 V and III Hg CI, = Hg Cl2 to 0.4977 V.

Dessa varden hanfOra sig i varje sarskilt fall till aktiviteten. I av de ifragavarande jonslagen, sh att vardena for ekvationerna II och III ytterligare erfordra olika korrigeringar for de koncentrationer (resp. aktiviteter), som kunna uppnas i saltsura losningar. Av ekvationerna framgar emellertid entydigt, att den elektrolysspanning, som maste anvandas for en mot ekvationernasvarande elektro- lys, avtager i ordningsfifiljden I till III. These values apply in each particular case to the activity. In the ionic species in question, the values for equations II and III further require different corrections for the concentrations (respectively activities) which can be obtained in hydrochloric acid solutions. From the equations, however, it is clear that the electrolysis voltage which must be used for an electrolysis corresponding to the equations decreases in the order file I to III.

— — Da man Yid elektrolysen maste rakna med ytterligare polymerisation av elektroderna, kunna de verkligen upptradande motspanningarna (polarisationsspanningarna) bast faststallas med hjalp air stromtathetspotentialkurvor, vilka pa i och for sig kant satt uppmatts stramlost under anvandning av hjalpelektroder. Tager man ur dessa kurvor det i varje sarskilt fall till samma stromtathet horande vardet for anod- och katodpoetntialen EA och E, beraknad ur bada var- dena enligt formeln EEA — E., under be- aktande av fortecknet for EA .och Ex. och polarisationsspanningen E, sd erhalles t. ex. yid grafitelektroder de polarisationsspanningar, som i fig. 4 aro angivna i beroende av den anvanda stramtatheten. I fig. 1 atergiver kurvan C polarisationsspanningen i 21 %-ig saltsyra, kurvan B polarisationsspanningen i saltsyra av samma koncentration med en tillsats av koppar-(2)-klorid, kurvan A polarisationspanningen i 21 %-ig saltsyra med en tillsats av kvicksilver-(2)-klorid ,och kurvan A' polarisationsspanningen i 21 %-ig saltsyra med en tillsats av kvicksilver-(2)-klorid och koppar-(2)-klorid, i samtliga fall i beroende av stromtatheten. Sasom framgar av kurvan B, astadkommer visserligen redan tillsatsen av koppar-(2)-klorid en vasentlig minskning av polarisationsspanningen; genom narvaron av kvicksilver-(2)-klorid nedsattes dock i saltsura losningar polarisationsspanningen ytterligare i avsevard grad. Den enligt ovan yid anvandning av grafitelektroder for elektrolysen uppnadda spanningsbesparingen yid Vidaringssattet enligt foreliggande uppfinning erMiles amen vid andra elektrodkombinationer, exempelvis en grafitanod med en stel katod, t. ex. av med kvicksilver anfuktade metaller (t. ex. koppar, nickel) eller metallegeringar (t. ex. monelmetall), vilka i amalgamerat tillstand icke ha flagon vasentlig overspanning for a-vskiljandet av kvicksilver samt besitta tillracklig korrosionsbestandighet gentemot saltsura kvicksilver-(2)-kloridlosningar. Denna spanningsbesparing upptrader aven, nar saltsura kvicksilver-1(2)-kloridlOsningar elektrolyseras mellan en grafitanod och en flytande katod, sarskilt kvicksilver. Since the Yid electrolysis must be measured with further polymerization of the electrodes, the actual opposing voltages (polarization voltages) can be determined with the aid of air current potential curves, which on their own edge were measured without tension using auxiliary electrodes. Taking from these curves in each particular case the value of the anode and cathode potentials EA and E belonging to the same current density, calculated from both values according to the formula EEA - E., taking into account the sign for EA .and Ex. and the polarization voltage E, sd is obtained e.g. In graphite electrodes, the polarization voltages shown in Fig. 4 are dependent on the tightness used. In Fig. 1, curve C represents the polarization voltage in 21% hydrochloric acid, curve B the polarization voltage in hydrochloric acid of the same concentration with an addition of copper (2) chloride, curve A the polarization voltage in 21% hydrochloric acid with an addition of mercury. (2) chloride, and curve A 'polarization voltage in 21% hydrochloric acid with the addition of mercury (2) chloride and copper (2) chloride, in all cases depending on the current density. As can be seen from curve B, the addition of copper (2) chloride already produces a significant reduction in the polarization voltage; however, due to the presence of mercury (2) chloride in hydrochloric acid solutions, the polarization voltage was further reduced to a considerable degree. The voltage saving achieved according to the above yid use of graphite electrodes for the electrolysis yid The recovery method according to the present invention is Miles amen in other electrode combinations, for example a graphite anode with a rigid cathode, e.g. of mercury-moistened metals (eg copper, nickel) or metal alloys (eg monel metal) which, in the amalgamated state, do not have a significant essential overvoltage for the separation of mercury and have sufficient corrosion resistance to hydrochloric acid (2) chloride solutions. This voltage saving also occurs when hydrochloric acid mercury-1 (2) chloride solutions are electrolyzed between a graphite anode and a liquid cathode, especially mercury.

En vasentlig roll spelar aven koncentrationen av kvicksilver-(2)-kloriden i elektrolyten. Da ur den saltsura losningen av kvicksilver-(2)-klorid yid katoden yid lag stramtathet uteslutande avskiljes kvicksilver med lag spanningsf6rbrukning, men yid Mining av stromtatheten Over vardet av den far denna avskiljning vid den ifragavarande koncentrationen av kvicksilver- (2) -kloriden giltiga gransstrommen spanningen emellertid stiger till varden, som astadkomma vateavskiljning, maste elektrolysen utforas vid stranatatheter, som ligga under den namnda kritiska gransstramtatheten. Elektrolyserar man saltsura losningar med olika kvieksilver-(2)-klorld koncentrationer och bestammer av de dari pa kant satt uppmatta stromtathetspotentialkurvorna de stromtathetsvarden, yid vilka vateavskiljning intrader vid katoden (= gransstramtathet), sa framgar for dessa gransstromtatheter det i fig. 5 visade sambandet mellan gransstrOmtathet och kvicksilver- (2)- kloridkoncentration. Inom det omrade, som inneslutes av abscissaaxeln OG och kurvan OF, forsiggar endast avskiljande av kvicksilver och ingen vateutveckling, medan i det ovanfar kurvan OF belagna omradet ytterligare, icke anskvard vateutveckling ager rum. Av fig. 5 framgar exempelvis, att vid en HgC12- koncentration av 100 g/1 den katodiska stromtatheten av c:a 630 A/m2 icke far Overskrides, far att det icke onskvarda avskiljandet av irate skall undvikas fullstandigt. The concentration of mercury (2) chloride in the electrolyte also plays a significant role. Since from the hydrochloric acid solution of mercury (2) chloride yid the cathode yid low tightness mercury is separated with low voltage consumption, but yid Mining of the current tightness Above the value of it gets this separation at the concentration of mercury- (2) -chloride in question However, if the spruce current voltage rises to the level which will cause water separation, the electrolysis must be carried out at stranatates which are below the said critical spruce tension. Electrolyzed hydrochloric acid solutions with different mercury- (2) -chlorinated concentrations and determined by the measured current density potential curves are the current density values, at which water separation enters at the cathode (= spruce tightness), as shown for these spruce flow rates, the relationship shown in fig. between spruce current and mercury (2) chloride concentration. Within the area enclosed by the abscissa axis OG and the curve OF, only the separation of mercury and no water development takes place, while in the area covered above the curve OF further, unrestricted water development takes place. Fig. 5 shows, for example, that at a HgCl2 concentration of 100 g / l the cathodic current density of about 630 A / m2 must not be exceeded, so that the undesirable separation of irate must be completely avoided.

Gentemot de kanda forfaringssatten far elektrolytisk utvinning av klor ur klorvate uppvisar forfaringssattet enligt foreliggande uppfinning fordelen, att den for elektrolysen erforderliga elektriska energiforbrukningen ãr a-vsevart lagre an yid forstnamnda forfaringssatt. Darigenom, att vid forfaringssattet enligt uppfinningen bildning av mate yid katoden undvikes, forenklas elektrolysen vasentligt ijamforelse med de kanda forfaringssoften. Salunda bortfaller en icke onskyard farorening av den bildade kloren med vat-gas. Vidare iiro inga sarskilda atgarder erforderliga som skydd mot en ateroxidation. Compared to the known processes for electrolytic recovery of chlorine from chlorine, the process according to the present invention has the advantage that the electrical energy consumption required for the electrolysis is somewhat lower than that of the former process. In that the formation method according to the invention avoids the formation of material at the cathode, the electrolysis is substantially simplified in comparison with the known process softeners. Salunda eliminates a non-cloudy hazardous contamination of the chlorine formed with water-gas. Furthermore, no special measures are required as protection against atheroxidation.

I de foljande exemplen 1-5 beskrives omsattningen av en vattenhaltig saltsyralosning med luft och kvicksilvernaetall till kvicksilver-(2)-klorid med och utan tillsats av katalysatorer pa basis ay forsoksresultat, ay vilka sarskilt verkan ay katalysatorerna saval som ocksa genomforbarheten ay detta omsattningssteg enligt forfaringssattet enligt uppfinningen tydligt framgar. The following Examples 1-5 describe the conversion of an aqueous hydrochloric acid solution with air and mercury metal to mercury (2) chloride with and without the addition of catalysts based on test results, the particular effects on the catalysts as well as the feasibility of this conversion step according to the procedure according to the invention is clear.

Exempel 6 innehaller en rad forsoksdata, ay vilka den avsevarda spanningsbcsparingen vid elektrolysen enligt forfaringssattet enligt f6religgande uppfinning i jamforelse med de kanda forfaringssatten framgar. Example 6 contains a series of test data, in which the considerable voltage savings in the electrolysis according to the method of the present invention in comparison with the known methods are shown.

I exempel 7 beskrives enligt uppfinningen ett exempel pa utforandet av den kotinuerliga elektrolysen av en saltsur HgC12-losning melIan grafitelektroder och i exempel 8 mellan grafitanoder och en kvicksilverkatod, av vilka exempel sarskilt utvinningen av vatefri klor .framgar, medan exempel 9 miser genomforbarheten av regenereringen av en pa HgC12 utarmad elektrolyslosning. Example 7 describes the invention as an example of the continuous electrolysis of a hydrochloric acid HgCl2 solution between graphite electrodes and in Example 8 between graphitic anodes and a mercury cathode, examples of which in particular the recovery of anhydrous chlorine, while Example 9 misses the feasibility of regeneration. of an electrolysis solution depleted in HgCl2.

I de foljande exemplen 10-16 anvandes samma arbetssatt som i exempel 2-4 for att visa verkan ay varierande arbetsbetingelser och am olika tillsatser pa forloppet vid overforhigen av kvicksilver till kvicksilver-(2)-klorid. In the following examples 10-16, the same procedure was used as in examples 2-4 to show the effect of varying working conditions and on different additives on the process of transferring mercury to mercury (2) chloride.

Forfaringssattet enligt uppfinningen kan sjalvfallet amen genomforas med andra apparatanordningar an de i de namnda exemplen 6— 17868O — beskrivna, liksom ocksa med andra koncentrationer av de dari beskrivna losningarna. The process set according to the invention can of course be carried out with other apparatus devices than those described in the above-mentioned examples 6-178880, as well as with other concentrations of the solutions described therein.

Exempel 1. Example 1.

Ett glasr8r av 3 cm diameter och 60 cm langd an fyllt med glasparlor, vid sin undre ande forsett med tillforselledningar for luft och avloppsledningar for kvicksilver oeh saltsyra och vid sin ovre ande med en avloppsledning for luft och tillforselledningar for kvicksilver och saltsyra. Glasroret fylles med 21 %-ig saltsyra. Medan luft i finfordelat tillstand inblases med en hastighet av 300— 350 1/tim vid undre anden am pelaren genom en sintrad glaskropp (Glasfritte), later man uppifran ungefar 30 ml saltsyra av den namnda koncentrationen .och genom en lamplig droppanordning c:a 60 ml finfordelat kvicksilver indroppa per timme. Den namnda apparaturen halles mid rumstemperatur. Efter forloppet av 1 runt tal 6 tim ha endast ringa mangder kvicksilver lasts i den totala mangden saltsyra (innehallet i glaspelaren och avrunnen mangd saltsyra). A glass tube 3 cm in diameter and 60 cm long filled with glass beads, at its lower end provided with supply lines for air and drainage pipes for mercury and hydrochloric acid and at its upper spirit with a drainage line for air and supply lines for mercury and hydrochloric acid. The glass tube is filled with 21% hydrochloric acid. While air in a finely divided state is blown in at a speed of 300-350 1 / h at the lower end of the column through a sintered glass body (Glasfritte), about 30 ml of hydrochloric acid of the said concentration is passed from above and through a suitable drip device about 60 ml finely divided mercury drop by the hour. The said apparatus is kept at room temperature. After the course of 1 round number 6 hours have only small amounts of mercury loaded in the total amount of hydrochloric acid (the content of the glass column and drained amount of hydrochloric acid).

Exemplen 2. 1 en med omr0rare, lufttillednings- och avledningsror, aterflOdskylare och termometer forsedd 500 ml glaskolv omrores c:a 15 g kvicksilver under genomledning av luft mid 70° C i 250 ml c:a 23 %-ig saltsyra under 9 tim. Efter varje 2-timmarsperiod uttages ett analysprov och halten kvicksilver-(2)-klorid dari bestammes analytiskt pa i och for sig kant Ott och omraknas pa losningens utgangsvolym. Harvid erhollos de i tabellen 1 angivna vardena for den upplosta mangden kvicksilver, -vilka aro uttryckta i milliekvivalenter for att battre kunna jamforas med resultaten i de fOljande exemplen. Examples 2. In a 500 ml glass flask equipped with a stirrer, air supply and drain pipes, reflux condenser and thermometer, about 15 g of mercury are stirred while passing air at 70 ° C into 250 ml of about 23% hydrochloric acid for 9 hours. After each 2-hour period, an analytical sample is taken and the content of mercury (2) chloride therein is determined analytically on per se edge Ott and recalculated on the starting volume of the solution. In this case, the values given in Table 1 for the dissolved amount of mercury are obtained, which are expressed in milliequivalents so that it can be better compared with the results in the following examples.

Tabell 1. Table 1.

Prov uttaget efter 24678 9 tim Upplost mangd kvieksilver i milliekviva- lenter0,35 0,70 1,83 3,56 6,33 8,94 I delta fall hade redan markbart storre kvicksilvermangder upplosts an i exempel 1. Dock visor sig aven liar oxidationshastigheten av kvicksilvret i ran saltsyra t. o. m. vid MI-Ad temperatur vara alltfor lag for att kunna utnyttjas praktiskt. Sample taken after 24678 9 hours Dissolved amount of mercury in milliequivalents0.35 0.70 1.83 3.56 6.33 8.94 In some cases, already markedly larger amounts of mercury had already been dissolved than in Example 1. However, the oxidation rate also shows of the mercury in crude hydrochloric acid even at MI-Ad temperature be too low to be used practically.

Exempel 3. Example 3.

I samma forsoksanordning som i exempel 2 lOses i 250 ml c:a 21 %-ig saltsyra 4,31 g vattenfri jam- (3)-klorid och under genomledning av luft (120 1/tim) inrores dari 13,47 g kvicksilver mid 70° C. Efter varje period av 2 tim uttages ur saltsyran ett analysprov, vars halt ay kvicksilver-(2)-klorid och j am- (2) -klorid bestarrunes analytiskt och omrAk-nas pa den. totala vatskemangden 250 ml. Ur dessa varden beraknas, huru stor den totala mangden oxiderat kvicksilver ar i milliekvivalentaer, Aiken andel, som oxiderats genom overfOring ay luftsyre till kvicksilver-saltsyra-systemet, och vilken andel av kvicksilvret, som oxiderats pa bekostnad av den narvarande jarn-(3)- kloriden vid slutet av varje tidsavsnitt. Harvid erh011os de i tabell 2 angivna vardena. In the same test device as in Example 2, 4.31 g of anhydrous jam (3) chloride are dissolved in 250 ml of about 21% hydrochloric acid and, while passing air (120 l / h), 13.47 g of mercury are stirred in 70 ° C. After each period of 2 hours, an analytical sample is taken from the hydrochloric acid, the content of mercury (2) chloride and iron (2) chloride is analyzed analytically and recalculated. total water volume 250 ml. From these values it is calculated how large the total amount of oxidized mercury is in milliequivalents, the proportion oxidized by transferring air oxygen to the mercury-hydrochloric acid system, and what proportion of the mercury oxidized at the expense of the present iron (3) the chloride at the end of each time period. In this case, the values given in Table 2 are obtained.

Forsokstid i tim (fran forstikets bOrjan) Total mangd lost Hg mekv. Tabell 2. Trial time in hours (from the beginning of the front) Total amount lost Hg meq. Table 2.

Andel av det genom FeC13 oxiderade kvicksilvret mekv. Andel av det genom luftsyre oxiderade kvicksilvret mekv. 2 2,603 25,90 25,90 0,00 0,00 4 5,858,16,41,972,0 6 8,890 88,6,82,92,90 8 10,9109,00 3,76 105,24 95,60 Am tabell 2 framgar, att oxidationshastigheten jamfort med exempel 2 okats i myeket vasentlig grad och ,att den oxiderade kvicksilvermangden till iivervagande del oxiderats med hjalp am tillfort luftsyre. Det tillsatta jarnsaltet forefinnes vid forsokets slut i vida overvagande grad i 3-vard form, namligen 6,13 mol FeCl2 pa 1 mol FeCI., -waif& jam(3)-kloriden i huvudsak verkat som syreoverfOrare vid oxidationen ay kvicksilvret. Percentage of mercury oxidized by FeCl3 meq. Percentage of mercury oxidized by atmospheric oxygen meq. 2 2,603 25,90 25,90 0,00 0,00 4 5,858,16,41,972,0 6 8,890 88,6,82,92,90 8 10,9109,00 3,76 105,24 95,60 Am table 2 shows that the oxidation rate compared with Example 2 has been increased to a very significant degree and that the oxidized amount of mercury has been largely oxidized with the aid of supplied oxygen. The added iron salt is present at the end of the experiment to a large extent in 3-form form, namely 6.13 moles of FeCl2 per 1 mole of FeCl2, waif & jam (3) -chloride mainly acting as an oxygen transfer agent during the oxidation of the mercury.

Exempel 4. Example 4.

I samma forsoksanordning, som den som anva.nts i exemplen 2 och 3, behandlas 20,54 g kvicksilver i 300 ml saltsyra (c:a 21 %-ig"), som innehaller 5,25 g CuC12, under 7 tim under inledning av luft (120 I/tim) och uppvarmning till 700 G. Efter varje timme uttagas analysprov, vilkas halt ay kvicksilver-(2)-klorid, koppar-(2)-klorid och koppar-(1)-Idorid bestammes analytiskt och omraknas pa utgangsvolymen. Dessutom utraknas, vilken an-del ay kvicksilvret, som oxiderats av luftsyre och vilken andel ay kvicksilvret, som oxiderats ay den i varje sarskilt fall reducerade mangden av koppar (dvs. motsvarande den just forhandenvarande mangden av koppar- (1) -kb-rid). Resultaten aro angivna 1 tabell 3. In the same test device as that used in Examples 2 and 3, 20.54 g of mercury are treated in 300 ml of hydrochloric acid (about 21% "), containing 5.25 g of CuCl2, for 7 hours during the introduction. of air (120 I / h) and heating to 700 G. After each hour, analytical samples are taken, the content of which in mercury- (2) -chloride, copper- (2) -chloride and copper- (1) -Idoride are determined analytically and recalculated In addition, the proportion of mercury oxidized by atmospheric oxygen and the proportion of mercury oxidized to the reduced amount of copper in each case (ie corresponding to the amount of copper present) are calculated. kb-rid) The results are given in Table 3.

- - Forsokstid i tim (fran fdrstikets barjan) Total mangd lost Hg mekv. Tabell 3. - - Trial time in hours (from the beginning of the fdrstiket) Total amount lost Hg mekv. Table 3.

Andel av Oct genom CuCL oxiderade kvieksilvret mekv. Andel av det gem= luftsyre oxiderade kvicksilvret mekv. 1 4,40,60 22,19 18,41 45, 2 7,72 76,731,80 44,959, 3 11,80 117,28,60 88,75,60 4 13,08 130,9,00 121,00 93, 16,76 161,5,34 156,16 96,70 6 18,87 187,1,56 185,94 99, 7 20,204,2,18 202,02 98,90 Sasom redan den vid detta Mrs& intradande fargforandringen visar och vilket aven framgar av siffrorna i kolumn 4 i tabell 3, forsigghr oxidationen av kvicksilver till en b5rj an via omvandling av koppar-(2)-kloriden i koppar-(1)-klorid. Under forloppet av oxidationen stiger emellertid i enlighet med de i den sista kolumnen angivna resultaten den totala, pa bekostnad av luftsyret oxiderade kvicksilvermangden hastigt upp till i det narmaste 100 %. Aven koppar-(2)-kloriden verkar dadar liksom den i foregaende exempel angivna jarn-(3)-k1oriden endast som katalysator for overforing av luftsyret till systemet kvicksilver-saltsyra. Percentage of Oct by CuCL oxidized mercury meq. Proportion of the common = oxidized oxygen oxidized mercury meq. 1 4,40,60 22,19 18,41 45, 2 7,72 76,731,80 44,959, 3 11,80 117,28,60 88,75,60 4 13,08 130,9,00 121.00 93 , 16,76 161,5,34 156,16 96,70 6 18,87 187,1,56 185,94 99, 7 20,204,2,18 202,02 98.90 As already shown by this Mrs & occurring color change and as is also apparent from the figures in column 4 of Table 3, the oxidation of mercury to a start proceeds via conversion of the copper (2) chloride to copper (1) chloride. During the course of the oxidation, however, in accordance with the results given in the last column, the total amount of mercury oxidized at the expense of the aerated oxygen rises rapidly to almost 100%. Even the copper (2) chloride, like the iron (3) chloride given in the preceding example, acts only as a catalyst for the transfer of the atmospheric acid to the mercury hydrochloric acid system.

Exempel 5. Example 5.

Ett lodratt stallt glasror med c:a 5 cm diameter och 120 cm langd halles med tillhj alp air en varmvattenmantel vid 65° C. I glasroret inblases nedifran genom en sintrad glaskropp finfordelad luft med en hastighet air 11 till 26 l/tim. Fyllningen i glasroret bestar air 1350 ml c:a 21 %-ig saltsyra, som inne. hailer 71,8 g/1 koppar-(2)-klorid. Fran en droppanordning later man totalt 600 g kvicksilver i fin fordelning droppa genom saltsyran under loppet av 50 min. Efter denna tid finnes totalt 6,45 g kvicksilver-(2)-klorid i den vattenhaltiga saltsyralosningen. Darmed har oxidationshastigheten, dvs. den per tim me upplosta kvicksilvermangden, vid denna utfi5ringsform av fOrfaringssattet gentemot det i exempel 2-4 anvanda arbetssattet ytterligare stigit avseva.rt. Vid detta arbetssatt later sig redan vid lagre temperatur, t. ex. vid 53° C, en gentemot det i exempel 2-4 tillampade arbetssattet en and kvicksilvermangd bringas i losning. A vertically stable glass tube with a diameter of about 5 cm and a length of 120 cm is held with the aid of a hot water jacket at 65 ° C. The glass tube is blown in from below through a sintered glass body finely divided air at a speed of air 11 to 26 l / h. The filling in the glass tube consists of air 1350 ml about 21% hydrochloric acid, as inside. hailer 71.8 g / l copper (2) chloride. From a drip device, a total of 600 g of mercury in fine distribution is allowed to drip through the hydrochloric acid over the course of 50 minutes. After this time, a total of 6.45 g of mercury (2) chloride is present in the aqueous hydrochloric acid solution. Thus, the oxidation rate, i.e. the amount of mercury dissolved per hour has further increased considerably in this embodiment of the procedure compared to the method used in Examples 2-4. At this mode of operation it can already be seen at lower temperatures, e.g. at 53 ° C, an amount of mercury applied to the procedure set forth in Examples 2-4 is brought to solution.

Exempel 6. Example 6.

Efter varandra beredas foljande losningar: a) saltsyra 21 %, b) saltsyra 21 % med dari lost 65 g/1 kristalliserad kopparklorid (CuC12 2H20), c) saltsyra 21 % med dari lost 500 g/1 kvicksilver-(2)-k1orid, d) saltsyra 21 % med dari lost 500 g/1 kvicksilver-(2)-klorid + 65 g/1 kristalliserad kopparklorid (CuC12 • 2E120). The following solutions are prepared one after the other: a) hydrochloric acid 21%, b) hydrochloric acid 21% with dari lost 65 g / l crystallized copper chloride (CuCl 2 2H 2 O), c) hydrochloric acid 21% with dari lost 500 g / l mercury (2) chloride , d) hydrochloric acid 21% with dari lost 500 g / l mercury (2) chloride + 65 g / l crystallized copper chloride (CuCl2 • 2E120).

Li5sningarna a, b, e och d elektrolyseras efter varandra mellan de i den nedan angivna tabellen 4 angivna elektrodkombinationerna i samma elektrolyscell, sarskilt vid samma elektrodstorlea och samma ele.ktrodavstand, de tillhorande stromspanningskurvorna upptagas och genom jamforelse med stromspanningskurvan for den rena saltsyran av samma koncentration (losning a) bestammes den genom tillsatserna astadkomna spanningsbesparingen vid olika stromtatheter. The solutions a, b, e and d are electrolysed one after the other between the electrode combinations in the same electrolysis cell given in Table 4 below, especially at the same electrode size and the same electrode distance, the associated current voltage curves are taken up and by comparing the current voltage curve of the same hydrochloric acid concentration (solution a), the voltage saving achieved by the additives at different current densities is determined.

Tabell 4. Table 4.

Elektrolyt Beteekn.Ingdende drimen Elektrodkombination AnodKatod Spannings- besparing V Yid strom- Whet A/m2 HC1, CuCl2 Grafit Grafit 0,2 0,59 500 0,61 7 0,61 1000 0,59 12 HC1, HgC12 Grafit Grafit 0,76 2 0,82 500 0,82 7 0,80 1000 0,79 12 HC1, HgC1, CuCl, Grafit Grafit 0,83 2 0,87 500 Elektrolyt Beteckn.Ingdende airmen HC1, HgCl2 - - Elektrodkombination AnodKatod GrafitKvieksilver Sp annings- besparing V 0,89 0,87 0.87 1,08 1,15 1,13 1 1,11 1,16 Vid strom- tathet 750 1000 1250 250 500 750 1000 1250 1500 HC1, HgC12 CuC12 Grafit Kvicksilver 0,86 2 0,90 500 0,88 7 0,86 1000 0,82 12 0,77 1500 HC1, HgC12 Grafit Monel 0,72 2 0,7500 0,71 7 0,68 1000 0,67 12 0,64 1500 HC1, HgCl2 GuC12 Grant Monel 0,72 0,79 500 0,74 7 0,69 1000 0,61 12 0,59 1500 Av tabell 4 framgar, att narvaron av kvicksilver-(2)-klorid leder till en vasentlig sankning av elektrolysspanningen utaver den sankning, som kan uppnas med den redan kanda koppar-(2)-kloriden. Narvaron av koppar(2)-klorid i saltsyra, som innehaller kvicksilver-(2)-klorid, paverkar endast ovasentligt spanningsforhalIandena i motsats till den roll, som koppar-(2)-klorid spelar i saltsyra, vilken fir fri fran kvicksilver-(2)-kloridtillsatser. Vad som har sagts om koppar-(2)- kloridens roll vid elektrolysen galler pa samma salt for den likaledes som .oxidationskatalysator ifragakommande j arn- (3)-kloriden. Electrolyte Meaning Significant dream Electrode combination AnodeCathode Voltage saving V Yid current- Whet A / m2 HCl, CuCl2 Graphite Graphite 0.2 0.59 500 0.61 7 0.61 1000 0.59 12 HCl, HgCl2 Graphite Graphite 0.76 2 0.82 500 0.82 7 0.80 1000 0.79 12 HCl, HgCl, CuCl, Graphite Graphite 0.83 2 0.87 500 Electrolyte Meaning. Intravenous airmen HC1, HgCl2 - - Electrode combination AnodeCathode Graphite Mercury Silver Voltage saving V 0.89 0.87 0.87 1.08 1.15 1.13 1 1.11 1.16 At current density 750 1000 1250 250 500 750 1000 1250 1500 HCl, HgCl2 CuCl2 Graphite Mercury 0.86 2 0.90 500 0.88 7 0.86 1000 0.82 12 0.77 1500 HCl, HgCl2 Graphite Monel 0.72 2 0.7500 0.71 7 0.68 1000 0.67 12 0.64 1500 HCl, HgCl2 GuCl2 Grant Monel 0.72 0.79 500 0.74 7 0.69 1000 0.61 12 0.59 1500 Table 4 shows that the presence of mercury (2) chloride leads to a substantial decrease in the electrolysis voltage beyond the decrease. which can be achieved with the already known copper (2) chloride. The presence of copper (2) chloride in hydrochloric acid, which contains mercury (2) chloride, affects only insignificantly the stress ratios in contrast to the role played by copper (2) chloride in hydrochloric acid, which is free from mercury (2) chloride. 2) -chloride additives. What has been said about the role of copper (2) chloride in electrolysis applies to the same salt for the iron (3) chloride in question as well as the oxidation catalyst.

Exempel 7. Example 7.

I en sluten elektrolyscell, som Sr fOrsedd med anordningar for till- och avledning av elektrolyten och kvicksilvret, avensom med ett gasavledningsror for den utvecklade klorgasen, elektrolyseras en losning, som innehaller 228,2 g/1 saltsyra (HC1), 250 g/1 kvicksilver- (2)-klorid och 37,7 g/1 koppar-(2)-klorid, mellan grafitelektroder med en stromstyrka, som motsvarar en katodisk och anodisk strOmtathet av 1500 A/m2. Efter det att losningen passerat tva ganger genom cellen med en hastighet av c:a 2,15 1/tim Sr koneentrationen av saltsyra och kopparklorid praktiskt taget oforandrad, medan koneentrationen av kvieksilverklorid sjunkit till 2 g/l. Den utvecklade kloren innehaller inget vate; vid katoden ha endast kvicksilverforeningar reducer ats. In a closed electrolytic cell provided with devices for supplying and diverting the electrolyte and mercury, as well as with a gas diverting tube for the evolved chlorine gas, a solution containing 228.2 g / l hydrochloric acid (HCl), 250 g / l is electrolyzed. mercury (2) chloride and 37.7 g / l copper (2) chloride, between graphite electrodes with a current equivalent to a cathodic and anodic current of 1500 A / m2. After the solution has passed twice through the cell at a rate of about 2.15 l / h, the concentration of hydrochloric acid and copper chloride is practically unchanged, while the concentration of mercury chloride has dropped to 2 g / l. The developed chlorine contains no vate; at the cathode have only mercury compounds reduce ats.

Exempel 8. Example 8.

En sluten elektrolyscell, som i princip Sr utbildad efter de brukliga cellerna for kloralkalielektrolys enligt kvicksilverforfarandet, innehaller i en gas- och vfitsketat badlada en horisontell kvicksilverkatod med 125 cm2 elektrodyta, darover tva horisontella, med borrningar for bortledning av kloren forsedda grafitanoder, (var oeh en med 50 ent2 undersida). Den uppbar in- och uttradessparrar for kvieksilvret, vardera en till- och avloppsledning kvieksilver och elekrolyt, en avloppsledning f8r klor (fran gasrummet), termometer, manometer och andra anslutningar for kontrollorgan. Medan anoden och katoden sattas under spanning .fran en ansluten shamkalla, later man den till 85° C forupphettade elektrolyten, som innehaller 220,4 g/1 saltsyra, 251,6 g/1 kvicksilver-(2)-klorid och 43,0 g/1 koppar-(2)-klorid, fylla cellen och under stromgenomgangen (med en hastighet av 0,4 l/tim) strOmma genom cellen och samtidigt kvicksilver trada in i och ut ur cellen i motstrom till elektrolyten. Cellen belastas med i genomsnitt 12,67 A (motsvarande en stromtathet av 1013 A/m2 anodiskt resp. 1267 A/m2 katodiskt) och uppvisar vid den temperatur - -9 air 17-50° C, som installer sig i cellen, en genomsnittlig spanning av 1,435 V. Den i cellen vid anoden utvecklade kloren uppsamlas och analyseras. Den innehaller inget irate. Den avrinnande elektrolyten innehaller 222,6 g/1 HC1, 153,1 g/1 HgG12, 43,3 g/1 CuC12 och 0,7 g/1 lost klor. Genom bestamning av andringen av kvicksilverhalten frail cellens fyllning och elektrolytens avrinning bestammes det katodiska stromutbytet och genom absorption av kloren i NaOH det anodiska stromutbytet. Under de angivna betingelserna utgor det katodiska stromutbytet 86 % och det anodiska 80 %. Darav erhalles en energiforbrukning av 1,35 kWh/kg for den ur cellen utvecklade kloren, Stromutbytet och energiforbrukningen aro beroende av a) elektrodavstandet, b) elektrolytens ledningsformaga, c) ledningen av vatskestrommarna i cellen, d) temperaturen och e) belastningen air cellen. A closed electrolytic cell, which in principle is formed according to the usual cells for chlor-alkali electrolysis according to the mercury procedure, contains in a gas and vfitsketate bath ladle a horizontal mercury cathode with 125 cm2 electrode surface, above which two horizontal ones, with bores for the removal of chlorine, graphite provided one with 50 ent2 underside). It carried inlet and outlet rafters for the mercury, each a supply and drain line of mercury and electrolyte, a drain line for chlorine (from the gas chamber), thermometer, manometer and other connections for control means. While placing the anode and cathode under voltage from a connected sham cold, the electrolyte preheated to 85 ° C, containing 220.4 g / l hydrochloric acid, 251.6 g / l mercury (2) chloride and 43.0 g / l of copper (2) chloride, fill the cell and during the current passage (at a rate of 0.4 l / h) flow through the cell and at the same time mercury thread into and out of the cell in countercurrent to the electrolyte. The cell is loaded with an average of 12.67 A (corresponding to a current density of 1013 A / m2 anodic or 1267 A / m2 cathodic) and exhibits at the temperature - -9 air 17-50 ° C, which settles in the cell, an average voltage of 1.435 V. The chlorine developed in the cell at the anode is collected and analyzed. It contains no irate. The effluent electrolyte contains 222.6 g / l HCl, 153.1 g / l HgG12, 43.3 g / l CuCl2 and 0.7 g / l dissolved chlorine. By determining the change in the mercury content from the filling of the cell and the run-off of the electrolyte, the cathodic current yield is determined and by absorbing the chlorine in NaOH the anodic current yield. Under the specified conditions, the cathodic current yield is 86% and the anodic 80%. This results in an energy consumption of 1.35 kWh / kg for the chlorine developed from the cell, the current exchange and energy consumption are dependent on a) the electrode distance, b) the conductivity of the electrolyte, c) the conduction of the liquid currents in the cell, d) the temperature and e) the load in the cell .

Exempel 9. Example 9.

Till 300 ml av en elektrolyt, som innehaller 330 g/1 kvicksilver-(2)-klorid och 65,3 g/1 koppar-(2)-klorid, tillsattes i samma apparatur, som den i exempel 2-4 anvanda, 67,6 g kvicksilvermetall och omroring foretages under luftgenomledning. Efter 29 tim har den-. na livicksilvermangd upplOsts. Elektrolyten innehaller enligt analys 629 g/1 kvicksilver-(2)-klorid och kan anyo anvandas fOr elektrolys en. To 300 ml of an electrolyte containing 330 g / l of mercury (2) chloride and 65.3 g / l of copper (2) chloride was added in the same apparatus as that used in Examples 2-4, 67 .6 g of mercury metal and stirring are carried out under air passage. After 29 hours it has-. na livicksilvermangd upplOsts. According to the analysis, the electrolyte contains 629 g / l of mercury (2) chloride and can be used for electrolysis.

Exempel 10. Example 10.

Om man istallet for den i exempel 4 anvanda losningen omror en losning av 30,43 g kvicksilver i 400 ml saltsyra (c:a 21,5 %-ig), till vilken tillsats 38,72 g koppar-(2)-klorid, vid 930 G, medan pa samma salt som i exemplen 2-4 luft genomledes, sã losa sig 401 milliekvivalenter Hg per timme, och liter, av vilka under denna tid 213 milliekvivalenter oxiderats genom det tillforda luftsyret. If, instead of the solution used in Example 4, a solution of 30.43 g of mercury in 400 ml of hydrochloric acid (about 21.5%) is stirred, to which is added 38.72 g of copper (2) chloride, at 930 G, while on the same salt as in Examples 2-4 air was passed, 401 milliequivalents of Hg per hour were dissolved, and liters, of which during this time 213 milliequivalents were oxidized by the supplied atmospheric oxygen.

Exempel 11. 400 ml saltsyra (c:a 21,5 %-ig) forsattas med 50 g titan-(4)-klorid och omriiras under luftgenomledning vid 87° C tillsammans med 29,58 g kvicksilver. Den efter 7 tim or-Ulna losningen innehaller 24,3 milliekvivalenter kvicksilver-(2)-klorid. Example 11. 400 ml of hydrochloric acid (about 21.5%) are added with 50 g of titanium (4) chloride and reacted under air passage at 87 ° C together with 29.58 g of mercury. The after 7 hours or-Ulna solution contains 24.3 milliequivalents of mercury (2) chloride.

Exempel 12. Example 12.

Samma saltsyremangd med samma HG1- koncentration som i exempel 11 forsattes med 8,7 g kaliumperrhenat. Pa c:a 9 tim upploses under luftgenomledning och under omroring vid 89° G 50,6 milliekvivalenter kvicksilver som kvicksilver-(2)-klorid. The same hydrochloric acid moiety with the same HG1 concentration as in Example 11 was continued with 8.7 g of potassium perrhenate. In about 9 hours, 50.6 milliequivalents of mercury dissolve as mercury (2) chloride during air passage and under stirring at 89 ° G.

Tillsatsen av titan-(4)-klorid enligt exempel 11 och kaliumperrhenat enligt exempel 12 astadkommer alltsã gentemot verkan av ren saltsyra enligt exempel 2 en snabbare upplosning av kvicksilvret. The addition of titanium (4) chloride according to Example 11 and potassium perrhenate according to Example 12 thus achieves a faster dissolution of the mercury against the action of pure hydrochloric acid according to Example 2.

Exempel 13. 20 g natriummolybdat loses i 400 ml saltsyra (c:a 21,5 %-ig) och omrores vid 87° C. under luftinledning med 29,7 g kvicksilver.. Kvicksilvret liar efter 8 tim i huvudsak Overgatt till kalomel. Efter tillsats av 50 g CuC12 21--L0 till denna sats ãr oxidationen (vid 84° C) praktiskt taget avslutad pa 1 tim, dvs. pa denna timme uppnas en Mining av halten kvicksilver-(2)-klorid med 740 milliekvivalenter (rah-tat pa 1 liter losning och 1 tim), varav under beaktande av den under denna tid bildade mangden koppar-(1)-klorid 503 milliekvivalenter oxiderats av luftsyret. Example 13. 20 g of sodium molybdate are dissolved in 400 ml of hydrochloric acid (about 21.5%) and stirred at 87 DEG C. during air introduction with 29.7 g of mercury. After 8 hours, the mercury is substantially converted to calomel. After adding 50 g of CuCl2 21 - L0 to this batch, the oxidation (at 84 ° C) is practically complete in 1 hour, i.e. at this hour a Mining of the mercury (2) chloride content is achieved with 740 milliequivalents (rated at 1 liter solution and 1 hour), of which taking into account the amount of copper (1) chloride formed during this time 503 milliequivalents oxidized by the atmospheric oxygen.

Pa motsvarande satt verkar en molybdattillsats, nar frail borjan litet koppar-(2)-klorid eller mycket koppar-(2)-klorid är närva- rande, gynnsamt pa upplosningen av kvicksilvret, sasom framgar av foljande forsok. 14,44 5,3 70,4 64, 16,0 32,9 276,7 159,0 Exempel 14. Similarly, when a small amount of copper (2) chloride or a lot of copper (2) chloride is present, a molybdate addition is present, favorable to the dissolution of the mercury, as is apparent from the following experiments. 14.44 5.3 70.4 64, 16.0 32.9 276.7 159.0 Example 14.

Vanadater verka pa liknande satt som molybdater. 20,83 g NaV03, lost i 400 ml HC1, ge med kvicksilver och luft vid 86° C dels kalomel, dels kvicksilver-(2)-klorid. Genom tillsats av 33,48 g koppar-(2)-klorid astadkommes en snabb upplosning av kalomelen ,och det aterstaende kvicksil-vret, varvid en kvicksilverupplosning av 352 milliekvivalenter per timme och liter, resp, en luftoxidation ay kvicksilver av 321,8 milliekvivalenter per timme och liter kan uppnas. Vanadates act in a similar way to molybdates. 20.83 g NaVO3, dissolved in 400 ml HCl, give with mercury and air at 86 ° C partly calomel and partly mercury (2) chloride. By adding 33.48 g of copper (2) chloride, a rapid dissolution of the calomel and the remaining mercury is obtained, whereby a mercury solution of 352 milliequivalents per hour and liter, respectively, an air oxidation ay mercury of 321.8 milliequivalents per hour and liters can be achieved.

Pa motsvarande salt visar en kombination av molybdat, vanadat och koppar-(2)-klorid god katalytisk verkan vid oxidation, i det att 670 milliekvivalenter kvicksilver per liter och timme kunna losas, om man omsatter 19,75 g NaV03, 19,89 g Na2M004, 39,42 g CuC12 med 400 ml saltsyra (c:a 21 %-ig) 30,26 g Hg och luft. On the corresponding salt, a combination of molybdate, vanadate and copper (2) chloride shows good catalytic effect in oxidation, in that 670 milliequivalents of mercury per liter and hour can be dissolved, if you convert 19.75 g NaVO 3, 19.89 g Na 2 MO 4, 39.42 g CuCl 2 with 400 ml hydrochloric acid (about 21%) 30.26 g Hg and air.

Exempel 15. Example 15.

Medan alltsa enligt exemplen 13 och 14 verkan av molybdaterna och vanadaterna kan Okas genom tillsats av CuC12, eller omvant dess katalytiska verkan vid upplOsningen av kvicksilver kan Ras genom vanadat- och/eller molybdattillsats, at' den omsesidiga inverkan av jam- och kopparforeningar icke avsevard. 4,16 g FeCl3 och 3,16 g CuC12 lost i 300 ml HC1 (c:a 21,5 %-ig) ge vid 78° C den upplosning av 127 milliekvivalenter kvicksilver pa 7 tim. Thus, according to Examples 13 and 14, the effect of the molybdates and vanadates can be increased by the addition of CuCl2, or conversely its catalytic effect in the dissolution of mercury can be increased by the addition of vanadate and / or molybdate, that the mutual effect of jam and copper compounds is not negligible. . 4.16 g of FeCl 3 and 3.16 g of CuCl 2 dissolved in 300 ml of HCl (about 21.5%) give at 78 ° C the solution of 127 milliequivalents of mercury in 7 hours.

En. tillsats air mangan-(2)-sulfat astadkom- Tabell 5. One. additive air manganese (2) sulphate provided- Table 5.

Tillsatser till 400 ml HC1 (c:a 21,5 %-ig)Hg-upp- Natrium- Kopparldsning molybdat (2)-1dorid mekv/1. h Darav oxi- derat me- deist luft mekv/1. h — — mer daremot en fOrbattring av jamas kataIytiska verkan, sasom framgar av nedanstaende tabell 6 (dar sasom losningsmedel anvants 21,5 %-ig saltsyra och behandlingen .skett vid 75° C). Additives to 400 ml HCl (approx. 21.5%) Hg-upp- Sodium- Copper solution molybdate (2) -1doride meq / l. h Of which oxidized with- deist air mekv / 1. h - - more on the other hand an improvement of the catalytic effect of jama, as shown in Table 6 below (where 21.5% hydrochloric acid was used as solvent and the treatment was carried out at 75 ° C).

Tabell 6. Table 6.

HC1 volym nil Tillsatser Hg-upp- lOsning mekv/ 1. h Luftoxi- lion av Hg mekv/ 1. h 2 300 4,31 g FeC12 5,63 g FeC121 { 1,1 gi‘InSO4J 54 69 52,4 66,6 Exempel 16. HCl volume nil Additives Hg solution meq / 1. h Air toxin of Hg meq / 1. h 2 300 4.31 g FeCl 2 5.63 g FeCl 2 {1.1 g'InSO 4 J 54 69 52.4 66, Example 16.

Verkan av koppar-(2)-klorid kan paverkas genom tillsats av andra metallforeningar, som kunna underga valensvaxling, sasom framgar redan av exemplen 13 och 14. Pa samma salt verkar en palladiumkloridtillsats och en koboltkloridtillsats till den saltsura koppar-(2)- kloridlosningen. The effect of copper (2) chloride can be affected by the addition of other metal compounds which can undergo valence exchange, as already shown in examples 13 and 14. A palladium chloride additive and a cobalt chloride additive to the hydrochloric acid copper (2) chloride solution act on the same salt. .

Forsoken med dessa tillsatser genomforas liksom i de foregaende exemplen i 400 ml HCI (c:a 21,5 %-i.g). och ge de i tabell 7 angivna resultaten. The experiments with these additives are carried out as in the previous examples in 400 ml of HCl (about 21.5% -i.g). and give the results given in Table 7.

Tabell 7. Table 7.

Luftoxida- tion av kvicksilver mekvfl. h .CuC12 27,32 gl91 °C PdCl2 0,2 g j CuC12 39,6 gi91 oc CoC12 19,8 gl Genom denna tillsats beframjas sarskilt -6.1eroxidationen av den vid upplosning av -kvicksilvret intermediart bildade koppar-(1)- kloriden. Air oxidation of mercury, etc. h .CuCl2 27.32 gl91 ° C PdCl2 0.2 g j CuCl3 39.6 g91 and CoCl2 19.8 gl This addition specifically promotes the -6.1 oxidation of the copper (1) chloride formed intermediate upon dissolution of the mercury.

Av exemplen 2-4, 8 och 10-16 framgar, att en rad metallsalter med vaxlande valens, var fOr sig eller i kombination med varandra, katalysera den i enlighet med principen for foreliggande forfaringssatt avsedda omsattningen av kvicksilver med klorvate och syre I vattenfas. • Examples 2-4, 8 and 10-16 show that a series of metal salts with alternating valence, individually or in combination with each other, catalyze the reaction of mercury with hydrogen chloride and oxygen in aqueous phase according to the principle of the present process. •

Claims (8)

Patent ans pr fik:Patent ans per fik: 1. F5rfaringssatt for elektrolytisk utvinning av klor ur vattenhaltig saltsyra, kannetecknat darav, att en vattenlosning av salt- syra omsattes med syre och/eller syre innehallande gasblandningar, sarskilt luft, och med kvieksilvermetall under tillsats av oxi-dationsfOrloppet paskyndande katalysatorer vid temperaturer av Minst 40° C upp till kokpunkten for den saltsura reaktionslosningen, fiiretradesvis vid 60-100° C, under bildning av lost kvicksilver-(2)-klorid, att den erhallna saltsura, kvicksilver-(2)-klorid innehallande losningen elektrolyseras, varvid vid anoden bildas liar, som utvinnes och vid katoden kvicksilvermetall, att den vid katoden avskilda kvicksilvermetallen aterfores till det for framstallning av kvicksilver-(2)kloriden tjanande kvicksilverforradet, att den vid elektrolysen resulterande, pa kvicksilver-(2)-klorid utarmade elektrolyten, eventuellt efter det att den befriats fran sin klorhalt, aterfores forfarandekretsloppet, och sarskilt anvandes som absorptionsmedel for gasformigt klorvate for bildning av den vid forfarandet for bearbetning avsedda vattenhaltiga saltsyran och att det vid oxidationen av kvicksilvret till kvicksilver-(2)-klorid bildade vattnet avI5gsnas ur forfarandekretslopp et.1. A method for the electrolytic recovery of chlorine from aqueous hydrochloric acid, characterized in that an aqueous solution of hydrochloric acid is reacted with oxygen and / or oxygen-containing gas mixtures, especially air, and with mercury metal with the addition of the oxidation process. 40 ° C up to the boiling point of the hydrochloric acid reaction solution, preferably at 60-100 ° C, to give dissolved mercury (2) chloride, electrolysing the resulting hydrochloric acid, mercury (2) chloride containing the solution, whereby at the anode is formed, which is recovered and at the cathode mercury metal, that the mercury metal separated at the cathode is returned to the mercury (2) chloride for the production of the mercury (2) chloride, that the electrolyte (2) chloride resulting on electrolysis depleted of the electrolyte that it is freed from its chlorine content, re-enters the procedural cycle, and is used in particular as an absorbent for gaseous chlorine water to form the aqueous hydrochloric acid intended for the process for processing and that the water formed during the oxidation of the mercury to mercury (2) chloride is removed from the process cycle. 2. Satt enligt patentanspraket 1, kannetecknat darav, att som katalysatorer for omsattningen av vattenlosningen av saltsyra med kvicksilvermetall och med syre och/eller syre in.nehallande gasblandningar, sarskilt luft, anvandas salter av atminstone i tva olika valensstadier upptradande metaller, vilkas hog-re valensstadium har tillracklig oxidationsformaga gentemot metalliskt kvicksilver och kvicksilver-(1)-klorid och vilkas lagre valensstadium genom de anvanda oxidationsmedlen ater kan oxideras till hogre valensstadium.2. A kit according to claim 1, characterized in that as catalysts for the reaction of the aqueous solution of hydrochloric acid with mercury metal and with oxygen and / or oxygen-containing gas mixtures, especially air, salts of metals appearing at least in two different valence stages are used. The valence stage has sufficient oxidation capacity over metallic mercury and mercury (1) chloride and whose lower valence stage can be oxidized again to the higher valence stage by the oxidizing agents used. 3. Salt enligt patentanspraket 1-2, kannetecknat darav, att syre och/eller syre innehallande gasblandningar, sarskilt luft, och det flytande kvicksilvret i finfordelad form bring-. as till omsattning med vattenlosningen av saltsyra.Salt according to claim 1-2, characterized in that oxygen and / or oxygen containing gas mixtures, especially air, and the liquid mercury in finely divided form. as reacted with the aqueous solution of hydrochloric acid. 4. Satt enligt patentanspraket 1, kannetecknat darav, att elektrolysen av den saltsura kvicksilver-(2)-kloridlosningen utfOres mellan en grafitanod och en fast katod av grafit eller en metall med lagre overspanning med avseende pa avskiljandet av kvicksilver,4. A kit according to claim 1, characterized in that the electrolysis of the hydrochloric acid (2) chloride solution is carried out between a graphite anode and a solid cathode of graphite or a metal with a lower overvoltage with respect to the separation of mercury, 5. satt enligt patentanspraket 1, kannetecknat darav, att elektrolysen av den saltsur a kvicksilver-(2)-kloridlosningen utf ores mellan en grafitanod och en kvieksilverkatod.5. according to claim 1, characterized in that the electrolysis of the hydrochloric acid of the mercury (2) chloride solution is carried out between a graphite anode and a mercury cathode. 6. Salt enligt patentanspraket 1, 4 och 5, kannetecknat darav ,att elektrolysen av den saltsura kvicksilver-(2)-kloridlosningen sker med en stromtathet ,som bigger under den for vateutveckling vid katoden erforderliga gransstromtatheten.Salt according to claims 1, 4 and 5, characterized in that the electrolysis of the hydrochloric acid (2) chloride solution takes place with a current density which increases below the branch current density required for hydrogen development at the cathode. 7. Satt enligt patentanspraket 1, kannetecknat dara-v, att avlagsnandet av det I oxidationsstenet av kvicksilvermetall till kvicksilver-(2)-klorid i narvaro av saltsyra bildade vattnet sker genom forflyktigande och att det erhallna kondensatet har en lagre eller lika hog klorvatehalt som den azeotrapa H20-blandningen. Hg-upp- TillsatsTemperatur lesning mekv/1. h 1134 2189 — —117. A claim according to claim 1, characterized in that the deposition of the water formed in the oxidation stone of mercury metal to mercury (2) chloride in the presence of hydrochloric acid takes place by volatilization and that the obtained condensate has a lower or equally high chlorine water content as the azeotropic H 2 O mixture. Hg-up- AdditiveTemperature reading meq / 1. h 1134 2189 - —11 8. Sat enligt patentanspraket 7, kanneteck- darigenom dess vattenhalt avskilj es ur fornat darav, att det bildade kondensatet, som farandekretsloppet i form av koncentrerad bligst har en klorvatekoncentration motsva-saltsyra. rande den azeotropa HC1-H20-blandningens, ef- terat mattas med gasformigt klorvate ocb.Anfarda publikationer:8. A set according to claim 7, characterized in that its water content is separated from the form by the fact that the condensate formed, which has a chlorine-hydrogen concentration in the form of a concentrated hydrochloric acid in the form of the concentrated cycle. of the azeotropic HCl-H2 O mixture, then matted with gaseous chlorine cotton and the like.
SE755660A 1960-08-05 1960-08-05 SE178680C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SE755660A SE178680C1 (en) 1960-08-05 1960-08-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE755660A SE178680C1 (en) 1960-08-05 1960-08-05

Publications (1)

Publication Number Publication Date
SE178680C1 true SE178680C1 (en) 1962-03-27

Family

ID=38409098

Family Applications (1)

Application Number Title Priority Date Filing Date
SE755660A SE178680C1 (en) 1960-08-05 1960-08-05

Country Status (1)

Country Link
SE (1) SE178680C1 (en)

Similar Documents

Publication Publication Date Title
AU2004261975B2 (en) Method and apparatus for electrowinning copper using the ferrous/ferric anode reaction
US4308124A (en) Apparatus for electrolytic production of alkali metal hypohalite
PL171300B1 (en) Method of obtaining at least one metal form a mineral containing it
US3102085A (en) Treatment of brine solutions
Cifuentes et al. The use of electrohydrolysis for the recovery of sulphuric acid from copper-containing solutions
CA2050201C (en) Electrogeneration of bromine and use thereof in recovery of precious metals and water treatment
Cifuentes et al. Aspects of the development of a copper electrowinning cell based on reactive electrodialysis
US2825685A (en) Process of electrolysis of aqueous electrolytes
US4632738A (en) Hydrometallurgical copper process
US2511516A (en) Process for making sodium chlorate
US3129152A (en) Process for the electrolytic recovery of chlorine from hydrogen chloride or hydrochloric acid
US4243494A (en) Process for oxidizing a metal of variable valence by controlled potential electrolysis
US2470073A (en) Electrolytic cell and method of operating same
US1246099A (en) Process for the extraction of chlorin.
SE178680C1 (en)
FI86562B (en) FOERFARANDE FOER FRAMSTAELLNING AV ALKALIMETALLKLORAT.
JP2005298870A (en) Method for recovering metal indium by electrowinning
JPS5836654B2 (en) Method for producing lead from materials containing lead sulfide
EP3699324A1 (en) Electro-deposition method for producing metallic silver
US3553088A (en) Method of producing alkali metal chlorate
JP4168959B2 (en) Method for leaching copper electrolytic starch
US2624702A (en) Separation of nickel from cobalt containing solutions
US1952850A (en) Method and apparatus for galvanic deposition of copper and other metals
Varentsov et al. Electrolysis with Fibrous Carbon Electrodes in Recovery of Platinum Metals from Mineral and Secondary Raw Materials
JP2004532352A (en) Process for the simultaneous electrochemical production of sodium dithionite and sodium peroxodisulfate