SE176930C1 - - Google Patents
Info
- Publication number
- SE176930C1 SE176930C1 SE176930DA SE176930C1 SE 176930 C1 SE176930 C1 SE 176930C1 SE 176930D A SE176930D A SE 176930DA SE 176930 C1 SE176930 C1 SE 176930C1
- Authority
- SE
- Sweden
- Prior art keywords
- gas
- column
- slurry
- particles
- metal
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 claims description 83
- 239000002184 metal Substances 0.000 claims description 83
- 239000002002 slurry Substances 0.000 claims description 64
- 239000002245 particle Substances 0.000 claims description 43
- 238000000605 extraction Methods 0.000 claims description 28
- 239000007787 solid Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 20
- 239000000725 suspension Substances 0.000 claims description 7
- 230000000630 rising effect Effects 0.000 claims description 6
- 239000002923 metal particle Substances 0.000 claims description 3
- 238000005192 partition Methods 0.000 claims 2
- 241001014642 Rasta Species 0.000 claims 1
- 239000007789 gas Substances 0.000 description 67
- 238000002386 leaching Methods 0.000 description 46
- 150000002739 metals Chemical class 0.000 description 40
- 239000000243 solution Substances 0.000 description 30
- 238000006243 chemical reaction Methods 0.000 description 26
- 239000000203 mixture Substances 0.000 description 24
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 20
- 239000007769 metal material Substances 0.000 description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 14
- 229910052802 copper Inorganic materials 0.000 description 14
- 239000010949 copper Substances 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 11
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 9
- 229910021529 ammonia Inorganic materials 0.000 description 9
- 229910052717 sulfur Inorganic materials 0.000 description 9
- 239000011593 sulfur Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000013019 agitation Methods 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000000470 constituent Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 235000008504 concentrate Nutrition 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- 238000005188 flotation Methods 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 238000010907 mechanical stirring Methods 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000012065 filter cake Substances 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 150000004763 sulfides Chemical class 0.000 description 3
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 241000282320 Panthera leo Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 241000252203 Clupea harengus Species 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000004063 acid-resistant material Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 235000019514 herring Nutrition 0.000 description 1
- 239000008241 heterogeneous mixture Substances 0.000 description 1
- 238000009854 hydrometallurgy Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000014666 liquid concentrate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0063—Hydrometallurgy
- C22B15/0065—Leaching or slurrying
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/04—Obtaining nickel or cobalt by wet processes
- C22B23/0407—Leaching processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/02—Apparatus therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
Uppfinnare: W A 0 Herrmann Prioritet begard freuz den 10 april 1954 (Canada) Foreliggande uppfinning avser ett f8rfarande for utvinning av metaller ur metallhaltiga material. Inventor: W A 0 Herrmann Priority Required April 10, 1954 (Canada) The present invention relates to a process for the extraction of metals from metallic materials.
Forfarandet enligt uppfinningen avser extrahering av minst en metal' ur metallhaltigt, fast material genom upplosning av denna me-tall i en lakli5sning och den kannetecknas darav, att en uppslamning av finfordelade partiklar av del metallhaltiga materialet och laklosningen samt en under tryck befintlig gasstrom kontinuerligt inmatas i den nedre .delen av en vertikalt anbragt kolonn och i kolonnen halles vid forhajd temperatur och ett tryck Over atmosfarstrycket p0. sadant satt, att en kontinuerligt u.ppht mot kolonnens ovre del stigande turbulent suspension, bestaende av gasbubblor, de metallhaltiga partiklarna och lak18sningen erhalles och att suspensionen bibringas i huvudsak likformig tvarsektion och I huvudsak likformig haslighet Iran inmatningsstallet i den nedre delen av kolonnen till den owe delen av kolonnen samt att de fasta partiklarna utan att sjunka bringas att kontinuerligt stiga frail inmatningsstallet i den nedre delen av kolonnen till kolonnens ovre del, dar laklosningen, gasen och olosta partiklar kontinuerligt utmatas, varvid uppslamningen och gasen inmatas i den nedre delen av kolonnen med sadan hastighet, att optimal extraktion av metallen erhalles. The process according to the invention relates to the extraction of at least one metal from metal-containing solid material by dissolving this metal in a lacquer solution and it can be characterized in that a slurry of finely divided particles of the metal-containing material and the lacquer solution and a gas stream under pressure are continuously fed in the lower part of a vertically arranged column and in the column is kept at elevated temperature and a pressure above atmospheric pressure p0. so that a continuously rising turbulent suspension, consisting of gas bubbles, the metal-containing particles and the leaching rising towards the upper part of the column, is obtained and that the suspension is imparted substantially uniform cross-section and substantially uniform hasleness to the feed stall in the lower part of the column. the owe part of the column and that the solid particles without sinking are caused to rise continuously from the feed stall in the lower part of the column to the upper part of the column, where the leach solution, the gas and unresolved particles are continuously discharged, the slurry and gas being fed into the lower part of the column. at such a rate that optimal extraction of the metal is obtained.
Hydrometallurgiska metoder for extrahering av metaller ur metallhaltiga material medelst ett losningsmedel eller lakningsmedel aro valkanda och anvandas i stor utstrackning. Hittills ha dessa metoder, utom vid lakning av metallhaltiga material genom perkolering, vanligen innefattat dispergering av en uppslamning av finpulvriserat, metallhaltigt material och ett losningsmedel eller lakningsmedel for de metaller, som man onskar extrahera, i ett reaktionskarl med mekanisk omroring. Hydrometallurgical methods for extracting metals from metallic materials by means of a solvent or leaching agent are widely used and widely used. Heretofore, except for leaching metallic materials by percolation, these methods have usually involved dispersing a slurry of finely powdered metallic material and a solvent or leaching agent for the metals which it is desired to extract into a mechanical stirring reaction vessel.
Som ett resultat av nyare upptackter bar anvandningen av hydrometallurgiska metoder, eller »vata» metoder, utstrackts till att omfatta behandling av metallhaltiga material, somfOrut behandlats genom pyrometallurgiska metoder. Dessa nyare upptackter innefatta lakning av metallhaltiga material vid forhojd temperatur och forhOjt tryck. Vidare kunna de innefatta anvandning av gaser under tryck, vilka taga del i de reaktioner, medelst vilka metaller extraheras frau utgangsmaterialet och lOsas i lakningslosningeu. Det är vasentligt att lakningssteget i sadan hydrometallurgisk process utf8res pa sh kort tid som mojligt med en maximal extraktion av den eller de onskade metallerna ur det metallhalliga materialet med effektiv absorption av den reagerande gasen och med ett minimum av kapitaloch driftskostnader. As a result of recent discoveries, the use of hydrometallurgical methods, or "vata" methods, has been extended to include treatment of metallic materials, which have previously been treated by pyrometallurgical methods. These newer discoveries include leaching of metallic materials at elevated temperature and elevated pressure. Furthermore, they may involve the use of gases under pressure, which take part in the reactions, by means of which metals are extracted from the starting material and dissolved in leaching solution. It is essential that the leaching step in such a hydrometallurgical process is carried out in as short a time as possible with a maximum extraction of the desired metal or metals from the metal-containing material with efficient absorption of the reacting gas and with a minimum of capital and operating costs.
Det har visat sig att konventionella reaktionskarl, sasom autoklaver, vilka aro avsedda att arbeta vid temperaturer och tryck Over atmosfarens, kunna anvandas i lakningssteget, men resultaten aro icke fullt tilliredsstallande. De faktorer, som paverka hastigheten och effektiviteten av extraktionen av metaller och deras omvandling till salter, som aro losliga i lakningslosningen, Oro temperaturen, trycket skiljeytan mellan gas och vatska, absorptionen av gas i losningen och genomgangen av gas genom den flytande hinnan p5. skiljeytan mellan fasta amnen och vatska samt den hastighet och effektivitet, varmed reagerande bestandsdelar i gasen absorberas av ytorna av de metallhaltiga fasta amnena. Hastigheten och effektiviteten av extraktionen av metaller och deras upplosning i lakningslosningen hero salunda till stor del pa omroringen av uppslamningen. It has been found that conventional reaction vessels, such as autoclaves, which are intended to operate at temperatures and pressures above atmospheric, can be used in the leaching step, but the results are not fully satisfactory. The factors affecting the rate and efficiency of the extraction of metals and their conversion into salts, which are soluble in the leaching solution, the temperature, the pressure interface between gas and liquid, the absorption of gas in the solution and the passage of gas through the liquid film p5. the interface between solids and liquids and the rate and efficiency at which reactive constituents in the gas are absorbed by the surfaces of the metal-containing solids. The rate and efficiency of the extraction of metals and their dissolution in the leach solution thus largely depend on the agitation of the slurry.
Det bereder ingen stiirre svarighet att a'.stadkomma en relativt jamn dispersion av fasta anmen i en vatska och en tillfredsstallande 2— — skiljeyta mellan gasen och vatskan genom mekanisk omroring i ett relativt litet karl. Effektiviteten hos karl med mekanisk omr5- ring minskar emellertid dá karlets storlek alias pa grund av -Rad svarighet att erhalla likformig omroring i hela uppslamningen, varp& den snabba, effektiva och ekonomiska extraktionen av metaller beror. Vidare är uppslamningen i reaktionskarlet ofta notande, och den kan vara synnerligen korrosiv vid de temperaturer och try& som anvandas. Dessa egenskaper hos uppslamningen astadkomma betydande svarigheter vid driften, speciellt betraffande omrorarna, omrorarlagren, packningsboxarna och de mekaniska tatningarna. It provides no greater responsibility to achieve a relatively even dispersion of solid particles in a liquid and a satisfactory interface between the gas and the liquid by mechanical agitation in a relatively small vessel. However, the efficiency of man with mechanical agitation decreases as the size of the man alias due to -Rad responsibility to obtain uniform agitation throughout the slurry, where & the fast, efficient and economical extraction of metals depends. Furthermore, the slurry in the reaction vessel is often corrosive, and it can be extremely corrosive at the temperatures and pressures used. These properties of the slurry bring about significant operational difficulties, especially with regard to the agitators, agitator bearings, stuffing boxes and mechanical seals.
Det har visat sig att svarigheter, som uppsta vid lakningen I ett vanligt, med mekanisk omrorare utrustat tryckkarl, kunna overvinnas genom att lakningen genomfores i en vertikalt anbragt reaktionskolonn, i vilken en uppslamning bestaende av finfordelade metallhaltiga partiklar och laklosning omr8res och de fasta metallhaltiga partiklarna i chargen dispergeras i uppslamningen av en gas, vilken under tryck inblases i reaktionskolonnens botten. Finfordelade fasta metallhaltiga partiklar och en laklasning for de metaller, som skola extraheras, samt en tryckgas matas narmare bestamt kontinuerligt in i den nedre delen av ett vertikalt anbragt torn eller reaktionskolonn, som halles vid en temperatur och ett tryck Over atmosfarstemperaturen respektive atmosfarstrycket. It has been found that similarities which arise during leaching in an ordinary pressure vessel equipped with a mechanical stirrer can be overcome by carrying out the leaching in a vertically arranged reaction column, in which a slurry consisting of finely divided metal-containing particles and leaching solution is stirred and the solid metal-containing particles in the charge is dispersed in the slurry of a gas which is blown under pressure into the bottom of the reaction column. Finely divided solid metal-containing particles and a leaching for the metals to be extracted, as well as a pressurized gas are fed closer continuously into the lower part of a vertically arranged tower or reaction column, which is kept at a temperature and a pressure above atmospheric temperature and atmospheric pressure.
Tornet är fullstandigt fyllt med en kontinuerligt uppatstigande turbulent suspension av gasbubblor, fasta, metallhaltiga partiklar och vatskeformigt losningsmedel med i huvudsak likformig tvarsektion och med i huvudsak likformig hastighet utan aterfall av fasta partiklar fran inloppsstallet fir de metallhaltiga partiklarna till utloppsstallet for uppslamningen. Fordelningen av de metallhaltiga partiklarna i kolonnen, utmatningen av fasta partiklar och lakl5sning samt gas fran den ovre delen av reaktionskolonnen och extraheringen av metaller for uppnaende av optimal extrahering- fran det metallhaltiga materialet under dettas stramning uppat genom kolonnen regleras inbordes genom. reglering av inmatningen av uppslamning och gas i den nedre delen av reaktionskolonnen. En blandning avol5sta fasta partiklaroch lakl5sning innehallande lost metall och fasta partiklar samt gas avledes kontinuerligt fran den owe delen av reaktionskolonnen. The tower is completely filled with a continuously ascending turbulent suspension of gas bubbles, solid, metal-containing particles and liquid solvent with a substantially uniform cross-section and with a substantially uniform velocity without recurrence of solid particles from the inlet stall for the metal-containing particles to the outlet stall. The distribution of the metal-containing particles in the column, the discharge of solid particles and leaching as well as gas from the upper part of the reaction column and the extraction of metals to obtain optimal extraction of the metallic material during its tightening up through the column are controlled byboard. regulating the feed of slurry and gas in the lower part of the reaction column. A mixture of undissolved solid particles and liquor solution containing dissolved metal and solid particles as well as gas is continuously discharged from the upper part of the reaction column.
Omraring av uppslamningen astadkommes genom att infora Gas i den undre delen av tor-net, och extraktion av metall utfores genom reaktion Indian partiklarna av det metallhaltiga materialet, bestandsdelar i gasen och lakningslosningen. Hastigheten for den uppatgaende stromningen av blandningen av gas och uppslamning genom karlet regleras sa att storsta mojliga skiljeyta mellan gas och vatska erhalles och genom grundlig omraring av uppslamningen, varigenom man erhailer en effektiv och ekonomisk extraktion av metaller ur det metallhaltiga materialet. Da metal' extraheras ur det metallhaltiga materialet bli partiklarna lattare och Rams uppat av den uppatgaende blandningen av gas och uppslamning, medan tyngre och mindre urlakade partiklar tendera att kvarstanna i den undre delen av tornet, varigenom en avsattning erhalles, genom vilken den grad i vilken metall extraheras frail utgangsmaterialet latt kan regleras on kontrolleras. Ga:sen och uppslamningen bortledas frau den. ovre delen av tornet, gasen avskilj es fran uppslamningen, och uppslamningen av olosta fasta amnen och losning innehallande 15sta metaller kan behandlas for utvinning av metaller. Stirring of the slurry is accomplished by introducing gas into the lower part of the tower, and extraction of metal is carried out by reacting the Indian particles of the metal-containing material, constituents of the gas and the leaching solution. The rate of the upward flow of the mixture of gas and slurry through the vessel is controlled so that the largest possible interface between gas and liquid is obtained and by thorough stirring of the slurry, thereby obtaining an efficient and economical extraction of metals from the metal-containing material. As metal 'is extracted from the metal-containing material, the particles become lighter and Rams up by the opposing mixture of gas and slurry, while heavier and less leached particles tend to remain in the lower part of the tower, whereby a deposit is obtained by which the degree to which metal is extracted from the starting material and can be easily controlled and controlled. Ga: sen and the slurry are diverted frau it. the upper part of the tower, the gas is separated from the slurry, and the slurry of unresolved solids and solution containing 15th metals can be treated to recover metals.
Forfarandet enligt uppfinningen belyses narmare av den efterfoljande detaljerade beskrivningen i samband med den bifogade ritningen. Fig. 1 är en sidovy av en tornreaktor, som är lamplig att anvandas vid utforande av forfarandet enligt uppfinningen, tillsamman med hjalpapparatur. Fig. 2 visar en annan utforingsform, i vilken en serie av tornreaktorer anvandas. Fig. 3 visar en tredje utforingsform, i vilken gas bortledes frAn toppen av tornet och uppslamning bortledes vid en punkt under tor-nets topp. Fig. 4 visar en fjarde utforingsform, i vilken tornet är fOrsett med organ for att Ora cirkulationen av uppslamningen langsammare. Samma beteckningar hanvisa till samma delar i ritningen och beskrivningen. The process according to the invention is further elucidated by the following detailed description in connection with the accompanying drawing. Fig. 1 is a side view of a tower reactor, which is suitable for use in carrying out the method according to the invention, together with auxiliary equipment. Fig. 2 shows another embodiment, in which a series of tower reactors are used. Fig. 3 shows a third embodiment, in which gas is discharged from the top of the tower and slurry is discharged at a point below the top of the tower. Fig. 4 shows a fourth embodiment, in which the tower is provided with means for slowing down the circulation of the slurry. The same designations refer to the same parts in the drawing and description.
UtfOrandet av forfarandet enligt uppfinningen skall i fortsattningen beskrivas med tilllampning pa behandlingen av mineralsulfidkoncentrater, vilka innehalla metaller sasom koppar, nickel och. kobolt. En syrehaltig, oxiderande gas sasom kilt, med syre anrikad luft eller syre med eller utan en. inert gas anvandes som omrkingsmedium, och syret tj anar till att tillfora atminstone en del av oxidationsmedlet. Lakningslosningen bestar av en koncentrerad ammoniaklosning bestaende av omkring 1 del 28 % NH3 och omkring 1,5 delar vatten. Tillracklig mangd vatten tillsattes for att ge en uppslamning innehallande fran 15 % eller mindre till 60 % eller mera fasta amnen. Uppslamningens Whet eller forhallandet mellan fasta amnen och losning beror pa de metaller, som skola extraheras. En hog koncentration av metaller erfordrar vanligen ett la.gre forhallande mellan fasta amnen och losning, och en lag koncentration av me-taller medger ett hogre forhallande. Forfarandet kan givetvis anvandas vid behandling av andra typer av malmer och koncentrater, sekundara metaller, metallurgiska rester och andra metallhaltiga material. Lakningslosningen kan utgoras av vilken som heist organisk eller oorganisk lakningslosning, som lampar sig sasom losningsmedel for de metaller, vilka man onskar utvinna, och gasen kan vara av — —3 lamplig typ for omroring av uppslamningen och, om sâ erfordras, for att deltaga i den reaktion, genom vilken metaller extraheras fran utgangsmaterialet och hisas i lakningslosningen. The embodiment of the process according to the invention will now be described with reference to the treatment of mineral sulphide concentrates which contain metals such as copper, nickel and. cobalt. An oxygen-containing, oxidizing gas such as kilt, with oxygen-enriched air or oxygen with or without one. inert gas is used as the stirring medium, and the oxygen serves to supply at least a portion of the oxidizing agent. The leach solution consists of a concentrated ammonia solution consisting of about 1 part of 28% NH3 and about 1.5 parts of water. Sufficient water was added to give a slurry containing from 15% or less to 60% or more solids. The Whet of the slurry or the ratio between solids and solution depends on the metals which are to be extracted. A high concentration of metals usually requires a lower ratio of solids to solution, and a low concentration of metals allows a higher ratio. The process can of course be used in the treatment of other types of ores and concentrates, secondary metals, metallurgical residues and other metallic materials. The leaching solution may be any organic or inorganic leaching solution which acts as a solvent for the metals which it is desired to recover, and the gas may be of a suitable type for agitating the slurry and, if necessary, for participating in the reaction by which metals are extracted from the starting material and hoisted into the leach solution.
I den utforingsform, som visas i fig. 1, betecknas med siffran 10 ett langstrackt, verti- kalt anordnat torn med en omvand, kon- formig botten 11. Tornet är framstallt av eller fodrat med material, som kan motsta. den kor- rosiva och den erosiva verkan av gasen och uppslamningen. Tornet ar byggt far att mot-std de blandningar, for vilka det utsattes. Exempelvis kan ett torn som är framstallt av eller fodrat med kolstal anvandas for behandling av alkaliska uppslamningar i narvaro av en syrehaltig, oxiderande gas vid mattliga ternperaturer och tryck. Sura uppslamningar kunna erfordra ett torn framstallt av eller fodrat med rostfritt stal eller titan eller nagot annat syrabestandigt material. In the embodiment shown in Fig. 1, the numeral 10 denotes an elongate, vertically arranged tower with an inverted, conical bottom 11. The tower is made of or lined with material which can withstand. the corrosive and erosive effects of the gas and the slurry. The tower was built to withstand the mixtures to which it was exposed. For example, a tower made of or lined with carbon steel can be used to treat alkaline slurries in the presence of an oxygen-containing oxidizing gas at moderate temperatures and pressures. Acidic slurries may require a tower made of or lined with stainless steel or titanium or some other acid-resistant material.
Gas inledes vid den konformade bottnens spets. Lakningsmedlet kan sasom visas 111110- ras tillsamman med gasen eller vid en hogre niva. Finpulvriserat, metallhaltigt material, foretradesvis i form av en uppslamning, kan Oxen inforas vid tornets botten eller vid en hOgre belagen punkt, sasom visas. Gas is introduced at the tip of the cone-shaped bottom. As shown, the leaching agent can be 111110 together with the gas or at a higher level. Finely powdered, metallic material, preferably in the form of a slurry, Taurus can be introduced at the bottom of the tower or at a higher coated point, as shown.
Gasen adsorberas snabbt vid den forsta beroringen med de metallhaltiga partiklarna och darefter langsammare, oberoende av koncentrationen av de reaktiva bestandsdelarna, dá lakningen fortskrider. Foljaktligen later man gasen och uppslamningen stromma tillsamman och bringar partiklarna i heroring med gasen cla de reaktiva bestandsdelarna ha sin storsta koncentration, dvs. i den undre delen av tornet, varvid uppslamningen och gasen stromma i medstrOm fran tornets botten till dess topp. The gas is rapidly adsorbed on the first contact with the metal-containing particles and then more slowly, regardless of the concentration of the reactive constituents, as the leaching proceeds. Consequently, the gas and the slurry are allowed to flow together and the particles are brought into herring with the gas cla the reactive constituents have their greatest concentration, ie. in the lower part of the tower, the slurry and gas flowing in from the bottom of the tower to its top.
Partiklar av metallhaltigt material tendera att avsatta sig i den omvanda konformade bottnen 11 och tjana till att uppdela gasstrommen i en massa bubblor och dispergera dem Over hela tornets tvarsnitt, sa att blandningen i tornet kommer att utgoras av en massa av bubblor, vilka atskiljas av tunna sektioner av uppslamningen. Dot inre av tornet utgores av en turbulent blandning av ett fatal stora (5 cm och daraver) och manga sma (5 cm till 1 mm) gasbubblor. De stora gasbublolorna synas astadkomma omroringen eller turbulensen, och de sma gaSbubblorna medforas i de strommar, som astadkommas av de stora bubblorna. Particles of metallic material tend to settle in the inverted conical bottom 11 and serve to divide the gas stream into a mass of bubbles and disperse them over the entire cross section of the tower, so that the mixture in the tower will be formed by a mass of bubbles, which are separated by barrels. sections of the slurry. The dot interior of the tower consists of a turbulent mixture of a fatally large (5 cm and daraver) and many small (5 cm to 1 mm) gas bubbles. The large gas bubbles appear to cause the agitation or turbulence, and the small gas bubbles are carried in the streams caused by the large bubbles.
Om i stora torn tillracklig dispersion joke astadkommes av de metallhaltiga partiklar, som avsatta sig vid den konformade bottnen, kan man insatta dispersionsorgan av det slag som visas i fig. 4 och senare skall beskrivas den konformiga bottnen. Vidare kan ytterligare lull och/eller lakningsmedel och/eller metallhaltigt material sattas till uppslamningen ovanfor den undre delen av tornet. If in large towers sufficient dispersion joke is provided by the metal-containing particles which have deposited at the cone-shaped bottom, dispersion means of the type shown in Fig. 4 can be inserted and the cone-shaped bottom will be described later. Furthermore, additional wool and / or leaching agent and / or metal-containing material can be added to the slurry above the lower part of the tower.
Blandningen av gasbubblor och uppslamning stiger uppat genom tornet med en hastighet, som beror av den hastighet, varmed metallhaltigt material, gas och lakningsmedel tillforas. De relativa hastigheterna uppat for fasta amnen, losning och gas installas och regleras for att astadkomma maximal extraktion av metaller under passagen genom tornet. Da metall extraheras frau partiklarna av metallhaltigt material bli partiklarna lattare och stiga i tornet. Tyngre partiklar stiga langsammare och kvarhallas salunda langre i tornet for extraktion av metall. Andra metaller On jam, sasom zink, koppar, kobolt och nickel. Extraheras snabbt fran de metallhaltiga materialen och upplosas i lakningslosningen. Jain omvandlas till olosligt ferrihydrat och aterfinnes i den olasta aterstoden. The mixture of gas bubbles and slurry rises up through the tower at a rate which depends on the rate at which metal-containing material, gas and leach are supplied. The relative velocities above solids, unloading and gas are installed and regulated to achieve maximum extraction of metals during the passage through the tower. As metal is extracted from the particles of metallic material, the particles become lighter and rise in the tower. Heavier particles rise more slowly and are thus retained longer in the tower for extraction of metal. Other metals On jam, such as zinc, copper, cobalt and nickel. Extracted rapidly from the metallic materials and dissolved in the leach solution. Jain is converted to insoluble ferric hydrate and is found in the unloaded residue.
En blandning av gas, lakningsmedel och urlakade eller delvis urlakade metallhaltiga partiklar uttagas frau den byre delen av tornet, frau toppen i fig. 1 och 2 eller frau en punkt under toppen enligt fig. 1 Om lakningssteget fullbordas i ett enda torn behandlas blandningen far avskiljande av gas, och uppslamningen ledes till andra apparater for avskiljande av oliist aterstod och utvinning av me-taller. Om lakningssteget joke fulbordas i ett enda torn lades blandningen till bottnen av ett andra torn, och fOrfarandet upprepas i detta torn eller i en serie av torn, sasom visas i fig. 2, tills metallerna extraherats i onskad grad. A mixture of gas, leaching agent and leached or partially leached metallic particles is taken from the upper part of the tower, from the top in Figs. 1 and 2 or from a point below the top according to Fig. 1. If the leaching step is completed in a single tower, the mixture is treated separately. of gas, and the slurry is passed to other apparatus for separating oliist residue and recovering metals. If the leaching step joke is completed in a single tower, the mixture was added to the bottom of a second tower, and the procedure is repeated in this tower or in a series of towers, as shown in Fig. 2, until the metals are extracted to the desired degree.
Siffran 12 beteanar kyl- eller varmeslingor eller -mantlar, vilka kunna erfordras for att Mita uppslamningens temperatur i tornet inom det omrade, dar den mest tillfredsstallande extraktionshastigheten och effektiviteten erhallas. Extraktionen av metaller frau mineralsulfider Or vanligen en exoterinisk reaktion, atminstone i de tidigare stadierna av reaktionen, och det kan vara n5dvandigt att kyla atminstone det farsta tornet, sasom visas i fig. 1, eller det forsta och det andra tor-net, sasom visas i fig. 2 och 3, for att liana temperaturen inom de anskade granserna. Tornen kylas foljaktligen, exempelvis medelst kylslingor. Om man anvander en serie torn kan det vara nodvandigt att kyla de torn, i viika starkt exotermiska reaktioner aga rum, och upphetta de foljande tornen, i vilka mindre exotermiska rea.ktioner aga rum. Extraktionen av metaller fran oxiderade malmer och koncentrerade, metallurgiska rester, sekundara metaller och liknande, Or endotermisk, och det kan vara nodvandigt att tillfora varme till tornen, exempelvis medelst varmeslingor eller varmemantlar. The numeral 12 denotes cooling or heating coils or jackets which may be required to measure the temperature of the slurry in the tower within the range where the most satisfactory extraction rate and efficiency are obtained. The extraction of metals from mineral sulphides is usually an exoteric reaction, at least in the earlier stages of the reaction, and it may be necessary to cool at least the first tower, as shown in Fig. 1, or the first and second towers, as shown in Figs. 2 and 3, to line the temperature within the desired boundaries. The towers are consequently cooled, for example by means of cooling coils. If a series of towers is used, it may be necessary to cool the towers in which strongly exothermic reactions take place, and to heat the following towers in which less exothermic reactions take place. The extraction of metals from oxidized ores and concentrated metallurgical residues, secondary metals and the like, is endothermic, and it may be necessary to supply heat to the towers, for example by means of heating coils or heating mantles.
Tornets dimensioner kunna latt bestammas med hansyn till egenskaperna hos de material, frail vilka metaller skola extraheras, mangden metallhaltigt material som skall behancllas under en foreskriven tid, den onskade omroringsgraden och den maximala dispersionen av gas- 4— — bubblor i blandningen fran tornets botten till dess topp. Foretradesvis anvandes ett cylindriskt torn, vilket ger de mest tillfredsstallande driftsresultaten. Forhallandet mellan tor-nets 116,0 och diameter heror av de 'speciella egenskaperna hos det material som skall behandlas samt av den reaktion som skall utforas och reaktionshastigheten. Dâ tornets hajd Ras for att behandla storre volymer inmatat material, erfordras hagre gastryck for att kompensera det statiska trycket lies uppslamningen i tornet. Da tornets diameter okas kan det bli svart att uppratthalla en tillracklig dispersion av gasbubblor. Med hansyn till dessa faktorer har det visat sig, att mycket tillfredsstallande resultat erhallas med torn, i vilket forhallandet mellan diametern och hajden är fran 1: 200 till 1: 10 med en starsta diameter av omkring 3 m och en storsta hojd av omkring 50 m. The dimensions of the tower can be easily determined with regard to the properties of the materials from which metals are to be extracted, the amount of metallic material to be treated for a prescribed time, the desired degree of agitation and the maximum dispersion of gas bubbles in the mixture from the bottom of the tower to its top. Preferably a cylindrical tower is used, which gives the most satisfactory operating results. The ratio between the 116.0 and the diameter of the tower of the special properties of the material to be treated and of the reaction to be carried out and the reaction rate. As the tower height is lowered to handle larger volumes of feed material, better gas pressure is required to compensate for the static pressure in the slurry in the tower. As the diameter of the tower increases, it can become black to maintain a sufficient dispersion of gas bubbles. In view of these factors, it has been found that very satisfactory results are obtained with towers, in which the ratio between the diameter and the height is from 1: 200 to 1: 10 with a maximum diameter of about 3 m and a maximum height of about 50 m. .
En blandning av gas och uppslamning uttages fran den avre delen av tornet genom en ledning 16, och blandningen ledes till en apparat for att skilja gas och vatska, exempelvis eyklonerna 17-18. En blandning av luft och ammoniak frigares och uttages fran cyklonerna. Denna blandning kan aterforas till den undre delen av tornet 11 for farnyad anvandning, eller ocksa kan ammoniaken pa kant satt uttvattas fran gasen och aterfaras for fornyad anvandning, varvid luften, som uttomts pa syre och Or i huvudsak fri fran ammoniak, kan ledas till atmosfaren. A mixture of gas and slurry is withdrawn from the lower part of the tower through a line 16, and the mixture is led to an apparatus for separating gas and liquid, for example the eiclones 17-18. A mixture of air and ammonia is released and taken out of the cyclones. This mixture can be returned to the lower part of the tower 11 for re-use, or the ammonia can be dewatered from the gas and re-used for re-use, whereby the air, which is depleted of oxygen and substantially free of ammonia, can be led to the atmosphere. .
Uppslamning, som är i huvudsak fri fran gas, kan ledas till en behallare 19 for lagring, fare behandlingen far utvinning av metaller. Fran behallaren 19 kan uppslamningen uttagas, och icke losta fasta amnen kunna avskiljas fran lOsning exempelvis genom filtrering I ett filter 20. Den fran filtret 20 kommande losningen är fardig att behandlas for utvinning av olasta metaller. Filterkakan eller aterstoden efter tvattning med vatten for att avlagsna -vidhaftande losning kan bortkastas, eller ocksa kan den behandlas for utvinning av aterstaende olosta metaller. Slurry, which is substantially free of gas, can be led to a container 19 for storage, the treatment being obtained from the extraction of metals. The slurry can be removed from the container 19, and non-unloaded solids can be separated from solution, for example by filtration in a filter 20. The solution coming from the filter 20 is ready to be treated for recovery of unloaded metals. The filter cake or residue after washing with water so that the off-adhesive solution can be discarded, or it can also be treated to recover the remaining undissolved metals.
Fig. 2 visar urlakning i ctt flertal torn utan hinderorgan. Lakningsmedel, gas och finpulvriserade metallhaltiga partiklar inmatas i den undre delen av det forsta tornet 21, och en blandning av uppslamning och gas uttages fran toppen av det f8rsta tornet och ledes till bottnen av ett andra torn 22. Den blandning som uttages fran toppen av del andra tornet ledes till bottnen av det tredje tornet 23. En blandning av gas, lakningsmedel och urlakade fasta amnen uttages fran toppen av det tredje tornet och ledes till cyklonerna 24 och 25. Den resulterande uppslamningen ledes till en forvaringsbehallare 26 och darifrOn genom ett filter 27, varifran filtratet ledes till en behallare 28. Lakningssteget utfores i tre steg, men man kan aven anvanda farre eller flera torn beroende pa det behandlade materialets egenskaper. Denna utforingsform har den fordelen, att man kan anvanda ett flertal relativt laga torn i stallet f6r ett enda Mgt torn. Fig. 2 shows leaching in a plurality of towers without obstacle means. Leaching agent, gas and finely powdered metal-containing particles are fed into the lower part of the first tower 21, and a mixture of slurry and gas is taken from the top of the first tower and led to the bottom of a second tower 22. The mixture taken from the top of the part the second tower is led to the bottom of the third tower 23. A mixture of gas, leaching agent and leached solids is taken from the top of the third tower and led to the cyclones 24 and 25. The resulting slurry is led to a storage container 26 and thence through a filter 27. , from which the filtrate is led to a container 28. The leaching step is carried out in three steps, but one can also use fewer or more towers depending on the properties of the treated material. This embodiment has the advantage that it is possible to use a plurality of relatively low towers instead of a single Mgt tower.
Den i fig. 3 visade utforingsformen ar speciellt avsedd for behandling av metallhaltiga material, varvid en selektiv flotation anvandes I tornet. Partiklar av metallhaltigt material med speciella flotationsegenskaper tendera att medforas uppat i tornet med starre hastighet an andra partiklar, vilka pa. normalt satt stiga uppat i tornet medan metall extraheras. Vid behandling av sadana material her det visat sig att uppslamningen i toppen av tornet kan innehalla partiklar, fran vilka metall extraherats i olika grad, dvs. att -vissa partiklar ha gatt forbi lakningssteget och annu innehalla en relativt hog procent av extraherbara me-taller, medan andra partiklar urlakats nor-malt. Det liar visat sig att uppslamning, som uttages &fin tornet vid en punkt under nivan for denna heterogena blandning innehaller fasta partiklar med en relativt likformig sammansattning ifraga om icke extraherad metall. Man foredrager darfor att bortleda uppslamning fran namnda punkt och reglera uttagningshastigheten pa sadant salt, att en vatskenivit uppratthalles ovanfar uttagningpunkten, medan enbart gas uttages Iran toppen av tor-net. Vid anvandning av denna metod blir kvarhallningstiden i den ovre delen av tornet tillrackligt stor far att extrahera metall frail de forbiledda partiklarna i samma grad som fran de normalt urlakade partiklarna. Den gas som bortledes fran toppen av tornet kan tillforas till den uppslamning, som uttages fran namnda punkt i tornet och vardera av dessa kan ledas till de ovan beskrivna behandlingsstegen for uppslamningen eller ledes till boltnen av nasta torn i serien, sasom visas i fig. 3, tills metaller extraherats ur det metallhaltiga materialet i anskad grad, varefter blandningen av gas och uppslamning bortledes frau den ovre delen av det sista tornet och ledes till behandlingsstegen far uppslamningen. The embodiment shown in Fig. 3 is especially intended for the treatment of metal-containing materials, a selective flotation being used in the tower. Particles of metallic material with special flotation properties tend to be carried upwards in the tower at a higher speed than other particles, which pa. normally sat rising up in the tower while metal was extracted. In the treatment of such materials it has been found that the slurry at the top of the tower may contain particles from which metal has been extracted to varying degrees, i.e. that some particles have passed the leaching step and still contain a relatively high percentage of extractable metals, while other particles are normally leached. It has been found that slurry taken from the fine tower at a point below the level of this heterogeneous mixture contains solid particles with a relatively uniform composition in the case of non-extracted metal. It is therefore preferred to divert slurry from said point and regulate the extraction rate of such salt that a water level is maintained above the extraction point, while only gas is extracted from the top of the tower. When using this method, the retention time in the upper part of the tower becomes sufficiently large to extract metal from the precipitated particles to the same degree as from the normally leached particles. The gas discharged from the top of the tower can be supplied to the slurry taken from said point in the tower and each of these can be led to the above-described slurry treatment steps or led to the bolt of the next tower in the series, as shown in Fig. 3. , until metals are extracted from the metal-containing material to a reduced degree, after which the mixture of gas and slurry is drained from the upper part of the last tower and led to the treatment steps before the slurry.
Den i fig. 1 -visade utforingsformen air uppfinningen Or speciellt lampad for tillampning av forfarandet i hoga torn och f5r behandling av metallhaltigt material med selektiva flotationsegenskaper eller for utfarande av en musattning, vid vilken det ar onskvart att avskilja produkter alit eftersom reaktionen fortskrider. The embodiment of the invention shown in Fig. 1 is particularly suitable for applying the process in high towers and for treating metallic material with selective flotation properties or for making a mousetrap in which it is desirable to separate products alit as the reaction proceeds.
Det med 40 betecknade tornet Or likadant som tornet 10 i fig. 1 med det unda.ntaget, att en serie ay omvanda koner 11 och 12 aro anordnade i tornet, foretradesvis med samma iimsesidiga avstand, varvid konen 41 Or heldgen omkring 1/3 ay avstandet fran tornets botten och konen 42 ar belagen omkring 2/3 av avstandet fran bottnen. Varje lion Or vid sin periferi fast vid tornets innervagg. En Opp-fling 43-44 Or anordnad vid spetsen av vane omvand lion, varvid varje sadan appning har — — samma eller ungefarligen samma diameter som inloppsoppningen 15 i den omvanda konen vid tornets botten. The tower Or denoted by 40 is the same as the tower 10 in Fig. 1 except that a series of inverted cones 11 and 12 are arranged in the tower, preferably at the same mutual distance, the cone 41 being approximately 1/3 ay the distance from the bottom of the tower and the cone 42 are covered about 2/3 of the distance from the bottom. Each lion Or at its periphery attached to the inner cradle of the tower. An Opp-fling 43-44 Or arranged at the tip of the habit of converting the lion, each such opening having - - the same or approximately the same diameter as the inlet opening 15 of the inverted cone at the bottom of the tower.
Gas inmatas i inloppsoppningen 45 vid tor-nets batten, och lakningsmedel och metallhaltigt material chargeras pa samma salt som i tornet 10. Blandningen av uppsiamning och gas stiger genom den forsta avdelningen av tornet mot spetsen av den omvanda konen 41 och passerar genom oppningen 43 med ungefarligen samma hastighet som materialen inmatas i tornet. Blandningen av gas och uppslamning uppstiger genom avdelningen 48 till och genom oppningen 44 i spetsen av den omvanda konen 42 ocli passerar genom oppningen 44 till avdelningen 29. Blandningen av gas och uppslamning uppstiger genom avdelningen 49 till utloppsledningen 50, genom vilken blandningen bortledes for ytterligare behandling. Gas is fed into the inlet port 45 at the tower bed, and leaching agent and metallic material are charged on the same salt as in the tower 10. The mixture of suction and gas rises through the first section of the tower towards the tip of the converted cone 41 and passes through the port 43 with approximately the same speed as the materials are fed into the tower. The mixture of gas and slurry ascends through the compartment 48 to and through the opening 44 at the tip of the converted cone 42 and passes through the opening 44 to the compartment 29. The mixture of gas and slurry rises through the compartment 49 to the outlet line 50, through which the mixture is discharged for further treatment. .
Den hOga gashastigheten gen.om Oppningarna 43 och 44 forhindrar tillbakastromning av uppsiamning fran. avdelningen 49 till avdelningen 48 och fran avdelningen 48 till avdelningen 47.Pa detta salt erhalles en utjamnande verkan, och hastigheten for stromningen av gas och uppslamning genom tornet kan regleras, sa att maximal extraktion av metall och maximalt utnyttjande av gasen erhalles. Den-nit utforingsform av uppfinningen har vidare en betydande fordel, i det att metallhaltigt maLerial med selektiva flotationsegenskaper ha en tendens att fastna i utrymmena Indian omkretsarna av de omvanda konerna 41 och 42, varigenom det under en iangre tid underkastas reaktionsbetingelserna. The high gas velocity through the openings 43 and 44 prevents backflow of suction from. section 49 to section 48 and from section 48 to section 47. On this salt a smoothing effect is obtained, and the rate of flow of gas and slurry through the tower can be regulated, so that maximum extraction of metal and maximum utilization of the gas are obtained. This embodiment of the invention further has a significant advantage in that metal-containing material with selective flotation properties tends to stick in the spaces Indian perimeters of the converted cones 41 and 42, thereby subjecting it to the reaction conditions for a longer time.
Farfarandets utforande belyses av foljande exempel. Tre torn anvandas i sane, sasom visas i fig. 2. Varje torn var omkring 25,4 cm i diameter och omkring 9,84 in i hojd. Luft tried ett tryck av omkring 7,5-9,0 ata inleddes yid bottnen av det forsta tornet. Detta resulterade i ett tryck vid toppen av det forsta tornet av omitting 7,0 ata och ett tryck av omkring 5,ata vid toppen av det tredje tornet. Omrortngsmedlet utgjordes av luft, vilken samtidigt tillforde det for lakningsreaktionen nodvandiga syret. Luftbubblorna hade en hastighet uppat av omkring 25-45 cm/sek vid spetsen av konen och omkring 5-25, och genomsnittligt omkring 11 cm/sek vid tornets fulla diameter. Tornet var fyllt med en starkt ammoniakalisk vattenlosning. Ammoniak sattes till uppslamningen i avsevart overskott utover vad som erfordrades for omsattning med de me-taller, som skulle extraheras fran det meta11- haltiga materialet. Vatten sattes till uppsiamningen i tillracklig mangd for att ge en uppslamning innehallande omkring 14-17 % fasta amnen. Ghargen var omkring 60 % mindre an 0,74 mm. Tornet fylldes till omkring 3060 % och foretradesvis till omkring 40-% av sin kapacitet med luftbubblor. The execution of the procedure is illustrated by the following example. Three towers are used in sane, as shown in Fig. 2. Each tower was about 25.4 cm in diameter and about 9.84 in height. Air pressure of about 7.5-9.0 ata was initiated at the bottom of the first tower. This resulted in a pressure at the top of the first tower of omitting 7.0 ata and a pressure of about 5, ata at the top of the third tower. The stirring agent consisted of air, which at the same time supplied the oxygen necessary for the leaching reaction. The air bubbles had a velocity of about 25-45 cm / sec at the tip of the cone and about 5-25, and averaged about 11 cm / sec at the full diameter of the tower. The tower was filled with a strong ammoniacal aqueous solution. Ammonia was added to the slurry in significant excess beyond what was required for reaction with the metals to be extracted from the metal-containing material. Water was added to the slurry in sufficient quantity to give a slurry containing about 14-17% solids. The gauge was about 60% smaller than 0.74 mm. The tower was filled to about 3060% and preferably to about 40% of its capacity with air bubbles.
Exempel I. Example I.
Kopparsulfidkoncentrat innehallande omkring 22,91 % koppar, 25,7 % svavel, 31,03 % jam och 1,22 % olosligt material inmatades kontinuerligt vid bottnen av det forsta tornet med en hastighet av omkring 11-14 kg/tim. Ammoniak inmatades kontinuerligt med en hastighet av omkring 16-19 kg/tim. Tillracklig mangd vatten tilifordes for att ge en losRing innehallande omkring 15-18 % fasta amnen. Luft tilifordes till tornets botten under ett tryck av omkring 7,5 ata med en hastighet av 94-97 N &Aim. Temperaturen i tornen halls vid omkring 72-82° C fOretradesvis omkring 80° G. Uppslamningens norelse reglerades, sa att kvarhallningstiden blev omkring 10 timmar. Det visade sig att 81,495,5 % av kopparn och 73,3-78,2 % av svavlet extraherats ur utgangsmaterialet och upplosts i losningen. Jarnet omvandlades till olosligt ferrihydrat, som aterfanns i den olosta aterstoden. Praktiskt taget inget jarn upplostes i lakningslosningen. Copper sulfide concentrate containing about 22.91% copper, 25.7% sulfur, 31.03% μm and 1.22% insoluble material was fed continuously at the bottom of the first tower at a rate of about 11-14 kg / h. Ammonia was fed continuously at a rate of about 16-19 kg / h. Sufficient water was supplied to give a solution containing about 15-18% solids. Air was supplied to the bottom of the tower at a pressure of about 7.5 ata at a velocity of 94-97 N & Aim. The temperature in the towers is maintained at about 72-82 ° C, preferably around 80 ° G. The normalization of the slurry was regulated, so that the retention time was about 10 hours. It was found that 81.495.5% of the copper and 73.3-78.2% of the sulfur were extracted from the starting material and dissolved in the solution. The iron was converted to insoluble ferric hydrate, which was found in the insoluble residue. Virtually no iron was dissolved in the leach solution.
Exempel IA. Example IA.
Forhallandena i exempel I upprepades med den skillnaden, att luftstrommen minskades till omkring 54 N ms/tim. Den minskade luftmangden forbattrade extraktionen av koppar och svavel fran 93,5 %-95,3resp. fran 85,6 %-87,7 % vid en kvarhallningstid av omkring 10 timmar. The conditions of Example I were repeated with the difference that the air flow was reduced to about 54 N ms / h. The reduced air volume improved the extraction of copper and sulfur from 93.5% -95.3resp. from 85.6% -87.7% at a retention time of about 10 hours.
Denna extraktion av upp till 95,% av kopparn och upp till 87,7 % av svaviet pa tio timmar Er omkring samma extraktion som erh011s vid en kvarhallningstid av omkring 16 timmar cla mineralsulfiderna lakades i autoklaver med mekanisk omroring. This extraction of up to 95% of the copper and up to 87.7% of the sulfur in ten hours is about the same extraction as obtained at a retention time of about 16 hours. The mineral sulphides were leached in autoclaves by mechanical stirring.
Exempel II. Example II.
Ett kopparsuifidkoncentrat, som inneholl omkring 29,7 % koppar, omkring 1,25 % nickel, omkring 30 % svavel och omkring % jam, lakades vid omkring 80° C med en vattenlosning av ammoniak i tillracklig mangd for att motsvara omkring 100 g fri ammoniak per 1, varvid tillracklig mangd vatten tillsattes fOr att ge en uppsiamning innehallande omkring 18 % fasta aninen. Luft tilifordes med en hastighet av omkring 1900 N m2 per m2 i tvarsektion och per timme vid ett tryck av omkring 7,5 ata. Vid en kvarhallningstid av omkring 10 timmar extraherades omkring 97 % av kopparn, 8% av nielteln och 92,6 % av det totala svavlet ur utgangsmaterialet och upplostes i losningen. A copper liquid concentrate containing about 29.7% copper, about 1.25% nickel, about 30% sulfur and about% iron was leached at about 80 ° C with an aqueous solution of ammonia in a sufficient amount to correspond to about 100 g of free ammonia. per 1, adding a sufficient amount of water to give a solution containing about 18% solid anine. Air was supplied at a rate of about 1900 N m2 per m2 in cross section and per hour at a pressure of about 7.5 ata. At a retention time of about 10 hours, about 97% of the copper, 8% of the nitrous oxide and 92.6% of the total sulfur were extracted from the starting material and dissolved in the solution.
Exempel IIA. Example IIA.
Betingelserna i exempel II upprepades med den skillnaden, att luftstrommen minskades till omkring 1170 N m3 per m2 tvarsektion och timme. Det visade sig att omkring 94,3 % av kopparn, 89 % av nickeln och 94,5 % av svavlet extraherades frOn utgangsmaterialet pa. 6- - omkring 12 timmar och upplastes i lakningslosningen. The conditions in Example II were repeated with the difference that the air flow was reduced to about 1170 N m3 per m2 of cross section and hour. It was found that about 94.3% of the copper, 89% of the nickel and 94.5% of the sulfur were extracted from the starting material pa. 6- - about 12 hours and loaded into the leach solution.
Exempel III. Example III.
Ett nickelsulfidkoncentrat innehallande omkring 11,8 % nickel, 2 % koppar, 0,3 % kobolt, 32 '2'y svavel och 31 % jam lakades vid omkring 80° C med ammoniak i tillracklig mangd for att ge omkring 100 g fri ammoniak per 1. Vatten tillsattes i tillracklig mangd for att ge en uppslamning innehallande omkring 18 % fasta amnen. Luft tillfordes till det forsta tor-net med en hastighet av omkring 1070 N ms per m2 tvarsektion och timme vid ett tryck av omkring 7,5 ata. Efter 20 timmars lakning hade omkring 94 % av niekeln, 95,3 % av kopparn, omkring 74 % av kobolten och omkring 88,1 % av svavlet extraherats ur utgangsmaterialet och upplosts i lakningslosning. A nickel sulfide concentrate containing about 11.8% nickel, 2% copper, 0.3% cobalt, 32 '2'y sulfur and 31% jam was leached at about 80 ° C with ammonia in a sufficient amount to give about 100 g free ammonia per Water was added in sufficient quantity to give a slurry containing about 18% solids. Air is supplied to the first tower at a rate of about 1070 N ms per m2 of cross section and hour at a pressure of about 7.5 ata. After 20 hours of leaching, about 94% of the nickel, 95.3% of the copper, about 74% of the cobalt and about 88.1% of the sulfur had been extracted from the starting material and dissolved in leaching solution.
Exempel IIIA. Example IIIA.
Betingelserna i exempel III upprepades med den skillnaden, att luftstri3mmen okades till omkring 1200 N m3 per m2 tvarsektion och timme. Foljande utbyten erhollos under de angivna lakningstiderna. The conditions in Example III were repeated with the difference that the air flow was increased to about 1200 N m3 per m2 of cross section and hour. Subsequent yields are recovered during the specified leaching times.
Tid NickelKopparKoboltSvavel % utbyte % utbyte % utbyte % utbyte 4 timmar 86,% 90,8 % 52 % 46,1 % 8 93,1 % 91,% 58 % 59,7 % 16 96,3 % 96,0 % 64% 67,9 % 97,1 % 97,3 % 72 % 79,2% Exempel IIIB. Time NickelCopper CobaltSulfur% yield% yield% yield% yield 4 hours 86,% 90.8% 52% 46.1% 8 93.1% 91,% 58% 59.7% 16 96.3% 96.0% 64% 67.9% 97.1% 97.3% 72% 79.2% Example IIIB.
Betingelserna i exempel III upprepades med den skillnaden, att Inftstrommen okades till 1330 N m3 per 1112 tvarsektion och timme. Foljande utbyten erhollos under de angivna Tid NickelKopparKoboltSvavel %utbytc % utbyte % utbyte % utbyte 4 timmar 70,4 % 76,7 % 52 % 32,0 % 8 » 90,8% 88,7% 58% 43,0% 12 a 93,9 % 90,4 % 64 % 49,5 % 16 92,6 °A, 93,3 % 68 % 49,8 % 97,0 % 92,6 % 72 % 76,0 % Exempel Betingelserna i exempel III upprepades med den skillnaden, aft luftstrommen okades till 1450 N m3 per m2 tvarsektion och timme. Foljande utbyten erhollos under de angivna lakningstimmarna. The conditions in Example III were repeated with the difference that the Inft current was increased to 1330 N m3 per 1112 cross section and hour. The following yields were obtained during the indicated time NickelCopperCobaltSulfur% yield% yield% yield% yield 4 hours 70.4% 76.7% 52% 32.0% 8 »90.8% 88.7% 58% 43.0% 12 a 93.9% 90.4% 64% 49.5% 16 92.6 ° A, 93.3% 68% 49.8% 97.0% 92.6% 72% 76.0% Example The conditions of Example III repeated with that difference, aft the air flow was increased to 1450 N m3 per m2 cross section and hour. Subsequent yields are recovered during the specified leaching hours.
TM NickelKopparKoboltSvavel % utbyte % utbyte % utbyte % utbyte 4 timmar 70,0 % 77,1 % 46,4 % 44,4 % 6 » 88,7 % 86,8 % 54,8 % 53,2 % 8 90,9 % 91,% 64,% 59,8 °A a 95,1 % 91,3 % 66,4 % 65,3 % 12 97,0 % 95,0 % 70,6 % 79,3 % Exempel III D. TM NickelCopper CobaltSulfur% yield% yield% yield% yield 4 hours 70.0% 77.1% 46.4% 44.4% 6 »88.7% 86.8% 54.8% 53.2% 8 90.9 % 91,% 64,% 59.8 ° A a 95.1% 91.3% 66.4% 65.3% 12 97.0% 95.0% 70.6% 79.3% Example III D.
Betingelserna i exempel III upprepades med den skillnaden, att luftstrommen okades till 1620 N m3 per m2 tvarsektion och timme. The conditions in Example III were repeated with the difference that the air flow was increased to 1620 N m3 per m2 of cross section and hour.
FOl- jande utbyten erhallos under de angivna lakningstiderna. The following yields are obtained during the specified leaching times.
Tid NickelKopparKoboltSvavel % utbyte % utbyte % utbyte % utbyte 4 timmar 84,1 % 83,6 % 54,6 % 40,0 % 6 91,7 % 87,8% 61,2% 47,0% 8 97,6 % 93,3 % 69,8 % 52,7 % 91,2% 82,7 % 70,2 % 53,1 % 12 94,6 % 93,6 % 71,0 % 69,3 % Vid den hi5gre hastigheten for luften i detta exempel visade det sig att maximal extraktion av nickel och koppar erholls pa omkring 8 timmar. Den upplosta nickeln och kopparn visade en tendens att hydrolyseras och bilda olosliga fOreningar med ferrioxidpartiklar, da lakningstiden tikades far att Oka extraktionen av swivel. 0Forfarandet kan givetvis latt anpassas efter betingelserna for behandling av olika slag av metallhaltiga material. Exempelvis kan for-f arandet latt anpassas ftir att extrahera me-taller ur metallhaltiga material i tva steg, varvid farskt metallhaltigt material blandas med lakningslosning innehallande 18sta metaller fran ett tidigare lakningssteg och inmatas i ett torn av tidigare beskrivet slag. Den frail detta torn uttagna uppslamningen filtreras efter avskiljande av gasen. Filtratet behandlas for avskiljande och utvinning av losta metaller. Filterkakan infores i ett andra torn, dar den lakas med farskt lakningsmedel for extraktion av aterstaende metaller. Uppslamningen frail det andra tornet filtreras efter avskiljande av ga:sen. Filtratet, som innehaller losta metaller, ledes till det forsta borne!, och filterkakan kan uttagas fran kretsloppet. Time NickelCopper CobaltSulfur% yield% yield% yield% yield 4 hours 84.1% 83.6% 54.6% 40.0% 6 91.7% 87.8% 61.2% 47.0% 8 97.6% 93.3% 69.8% 52.7% 91.2% 82.7% 70.2% 53.1% 12 94.6% 93.6% 71.0% 69.3% At the higher speed for the air in this example, it was found that maximum extraction of nickel and copper was obtained in about 8 hours. The dissolved nickel and copper showed a tendency to hydrolyze and form insoluble compounds with ferric oxide particles, as the leaching time was allowed to increase the extraction of swivel. The process can of course be easily adapted to the conditions for the treatment of different kinds of metal-containing materials. For example, the process can be easily adapted to extract metals from metallic materials in two steps, whereby fresh metallic material is mixed with leaching solution containing 18 metals from a previous leaching step and fed into a tower of the type previously described. The slurry taken from this tower is filtered after separating the gas. The filtrate is treated for the separation and extraction of loose metals. The filter cake is inserted into a second tower, where it is leached with fresh leaching agent for extraction of residual metals. The slurry from the second tower is filtered after separating the gas. The filtrate, which contains loose metals, is led to the first borne !, and the filter cake can be removed from the cycle.
Forfarandet enligt foreliggande uppfinning har flera mycket betydande fordelar i jamforelse med konventionella lakningsforfaranden, som utforas i reaktionskarl med mekanisk omroring. Kostnaden for lakningstornen är mycket formanlig i forhallande till kostnaden for vanliga tryckkarl, som urn anpassade f8r behandlig av lika stora volymer uppslamning. En avsevard besparing betraffande kapitalkostnaderna Ores, eftersom det ieke ar nodvandigt att anvanda mekaniska omraringsanordningar. Vidare undviker man de driftssvarigheter, som annars uppkomma pa grund av fel hos de mekaniska omroringsanordningarna, vilka aro utsatta fi3r korrosiva och erosiva uppslamningar i slutna reaktionskarl vid farhajd temperatur och forhojt tryck och de darmed fOljande kostnaderna samt konstruktion och underhall avlager, packningsboxar och tatningar. Vidare kan lakningen utforas betydligt kortare tid och med avsevart hogre utbyte an vad som erhalles i konventionella reaktionskarl med mekanisk omrbring. The process of the present invention has several very significant advantages over conventional leaching processes which are carried out in reaction vessels with mechanical stirring. The cost of the leaching towers is very considerable in relation to the cost of ordinary pressure vessels, which are adapted for the treatment of equal volumes of slurry. A significant saving on Ores's capital costs, as it is not necessary to use mechanical stirring devices. Furthermore, the operating durations which otherwise arise due to faults in the mechanical agitators which are exposed to corrosive and erosive slurries in closed reaction vessels at elevated temperature and elevated pressure and the associated costs as well as construction and maintenance of deposits, packing boxes and seals are avoided. Furthermore, the leaching can be carried out for a much shorter time and with a considerably higher yield than that obtained in conventional reaction vessels with mechanical agitation.
I det foregaende liar uppfinningen belysts genom behandlingen av mineralsulfider med en ammoniakalisk lakningslosning i narvaro lakningstiderna. — —7 av en syrehaltig, oxiderande gas, men forfarandet ken Oven anvOndas for andra typer av metallhaltiga material med andra lampliga sura, basiska eller neutrala losningsmedel eller lakningsmedel fOr metallerna, som skola extraheras, och andra lampliga gaser, som innehalla bestandsdelar vilka deltaga i lakningsreaktionen eller aro inerta, kunna anvandas som omroringsmedium. In the foregoing the invention has been elucidated by the treatment of mineral sulphides with an ammoniacal leaching solution in the present leaching times. - —7 of an oxygen-containing, oxidizing gas, but the procedure is also used for other types of metallic materials with other suitable acidic, basic or neutral solvents or leaching agents for the metals to be extracted, and other suitable gases containing constituents which participate in the leaching reaction or aro inert, can be used as stirring medium.
Claims (5)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE176930T |
Publications (1)
Publication Number | Publication Date |
---|---|
SE176930C1 true SE176930C1 (en) | 1961-01-01 |
Family
ID=38408821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE176930D SE176930C1 (en) |
Country Status (1)
Country | Link |
---|---|
SE (1) | SE176930C1 (en) |
-
0
- SE SE176930D patent/SE176930C1/sv unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4834793A (en) | Oxidation process for releasing metal values in which nitric acid is regenerated in situ | |
US8061888B2 (en) | Autoclave with underflow dividers | |
US9839885B2 (en) | Process for the recovery of gold from anode slimes | |
US5849172A (en) | Copper solvent extraction and electrowinning process | |
US5250273A (en) | Hydrometallurgical leaching process and apparatus | |
EA012819B1 (en) | Method for recovering copper from copper sulphide ore | |
US4310494A (en) | Manganese nitrate spray decomposition | |
US20180282887A1 (en) | Solvent extraction and stripping system | |
JP3431148B2 (en) | Electrochemical system for recovery of metals from metal compounds. | |
US4331635A (en) | Recovery of copper and/or nickel and/or zinc | |
EP0134053A2 (en) | Process for purifying solutions of zinc sulphate | |
EP0124213A1 (en) | Extraction process | |
US2740707A (en) | Method of extracting metal values from metal bearing material | |
JP2017128785A (en) | Leaching tank | |
US3687828A (en) | Recovery of metal values | |
KR830004157A (en) | Method for Extracting Titanium Components from Titanium Iron-Containing Materials | |
SE176930C1 (en) | ||
US541658A (en) | John j | |
US1672016A (en) | Recovery of zinc from ores | |
JPS6018733B2 (en) | Wet metallurgy method for processing nickel pine | |
USRE24298E (en) | Method of extracting metal values | |
JP7285425B2 (en) | Autoclave equipment for high-pressure acid leaching | |
US2017330A (en) | Metallurgical process and apparatus | |
US1528206A (en) | Apparatus for treating ore pulp with gas | |
US9145309B2 (en) | Phase separation tank |