SE1150901A1 - EGR cooler and internal combustion engine with such EGR cooler - Google Patents

EGR cooler and internal combustion engine with such EGR cooler Download PDF

Info

Publication number
SE1150901A1
SE1150901A1 SE1150901A SE1150901A SE1150901A1 SE 1150901 A1 SE1150901 A1 SE 1150901A1 SE 1150901 A SE1150901 A SE 1150901A SE 1150901 A SE1150901 A SE 1150901A SE 1150901 A1 SE1150901 A1 SE 1150901A1
Authority
SE
Sweden
Prior art keywords
egr cooler
egr
inlet
cooling
transport
Prior art date
Application number
SE1150901A
Other languages
Swedish (sv)
Other versions
SE537803C2 (en
Inventor
Dennis Konstanzer
Original Assignee
Scania Cv Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania Cv Ab filed Critical Scania Cv Ab
Priority to SE1150901A priority Critical patent/SE537803C2/en
Priority to DE102012019254A priority patent/DE102012019254A1/en
Publication of SE1150901A1 publication Critical patent/SE1150901A1/en
Publication of SE537803C2 publication Critical patent/SE537803C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/19Means for improving the mixing of air and recirculated exhaust gases, e.g. venturis or multiple openings to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials

Abstract

The exhaust gas recirculation cooler has multiple cooling pipes, which are fitted with channels for cooling and directing exhaust gas recirculation gases from inlet ports to outlet openings of the respective channel. A transfer pipe is arranged parallel to the remaining cooling pipes for transferring the pulse energy occurring in the exhaust gas recirculation gases. The transfer pipe has a transmission channel having an inlet and an outlet.

Description

EGR-kylare samt forbranningsmotor med en sadan EGR-kylare. EGR cooler and internal combustion engine with such an EGR cooler.

UPPFINNINGENS BAKGRUND OCH KAND TEKNIK Foreliggande uppfinning avser en EGR-kylare enligt patentkravets 1 ingress. Uppfin- ningen avser ocksa en forbranningsmotor med en sadan EGR-kylare. BACKGROUND OF THE INVENTION AND KNOWLEDGE TECHNOLOGY The present invention relates to an EGR cooler according to the preamble of claim 1. Inventive The invention also relates to an internal combustion engine with such an EGR cooler.

EGR-system anvands vid avgasrening for bensin- och dieselmotorer. Kvaveoxider bildas dâ luftens kvave och syre reagerar vid de hoga temperaturer och tryck som fore- kommer i motoms forbranningsrum. EGR, som är en forkortning av det engelska uttrycket exhaust gas recirculation, innebar att motoms avgaser leds tillbaka till motoms inloppssida. De aterledda avgasema kommer att sanka forbranningstemperaturen i motoms forbranningsrum, vilket medfor att bildningen av kvaveoxiderna minskar. Pa turboOverladdade motorer finns sà kallade langa och korta EGR-system. Vid det korta systemet forbinds inloppssidan nedstroms overladdarens kompressom, och vanligen aven nedstroms en laddluftkylare, med avgassidan fore overladdarens turbin. Darmed kommer EGR-systemet vara anslutet mellan hogtryckssidan av kompressom och hogtryckssidan av turbinen. Vid det langa systemet daremot är EGR-systemet anordnat mellan motom inloppssida fore kompressom och pa avgassidan efter turbinen. EGR systems are used in exhaust gas purification for petrol and diesel engines. Nitrogen oxides are formed when the nitrogen and oxygen in the air react at the high temperatures and pressures comes in the engine's combustion chamber. EGR, which is an abbreviation of the English term exhaust gas recirculation, meant that the engine's exhaust gases are led back to the engine's inlet side. The returned exhaust gases will lower the combustion temperature in the engine's combustion chamber, which means that the formation of nitrogen oxides is reduced. On turbocharged engines there are so-called long and short EGR systems. In short the system is connected to the inlet side downstream of the supercharger compressor, and usually also downstream a charge air cooler, with the exhaust side in front of the supercharger's turbine. Thus, the EGR system will be connected between the high pressure side of the compressor and the high pressure side of the turbine. In the case of the long system, on the other hand, the EGR system is arranged between the engine inlet side before the compressor and on the exhaust side after the turbine.

En fordel med att anvanda det korta EGR-systemet är att ledningarna kan gOras betydligt kortare an for det langa systemet och att saledes att utrymmesbehovet for ledningama fOr EGR-systemet minskar. Darmed minskar aven vikten hos EGR-systemet. Nackdelen med detta kanda system är dock svarigheten att i forbranningsmotoms alla forbranningsrum erhalla en homogen och likformig blandning av avgaser fran EGR- systemet och inloppsluften fran kompressom. Vid en olikformig blandning kommer forbranningsforhallandet i motoms olika forbranningsrum bli olika, vilket medfor att effekten fran respektive kolv, som verkar pa motoms vevaxel blir olika. Detta leder i sin tur att emissionema i motoms avgaser 'Aar. Anledningen till att det är svart att er- halla en homogen och likformig blandning av avgaser fran EGR-systemet och inlopps- luften fran kompressom är det korta avstandet fran den position dar EGR-systemet forbinds nedstroms laddluftkylaren for inloppsluften och respektive forbranningsrums 2 position. Resultatet blir att avgasema och inloppsluften har svart att hinna blandas homogent i det korta rorsystemet mellan de ovannamnda positionerna. An advantage of using the short EGR system is that the lines can be made significantly shorter than for the long system and thus that the space requirement for the lines for the EGR system is reduced. This also reduces the weight of the EGR system. The disadvantage of this kanda system, however, is the similarity to in all combustion engines combustion chambers obtain a homogeneous and uniform mixture of exhaust gases from the EGR the system and the inlet air from the compressor. In the case of a non-uniform mixture, the combustion ratio in the different combustion chambers of the engine will be different, which means that the effect of each piston acting on the engine's crankshaft will be different. This in turn leads to the emissions in the engine exhaust 'Aar. The reason why it is black to maintain a homogeneous and uniform mixture of exhaust gases from the EGR system and the inlet the air from the compressor is the short distance from the position where the EGR system is connected downstream of the charge air cooler for the inlet air and the respective combustion chamber 2 position. The result is that the exhaust gases and the inlet air have black to have time to mix homogeneously in the short rudder system between the above-mentioned positions.

Denna nackdel foreligger inte vid det langa systemet dar de langa ledningarna medfor att avgasema val hinner blandas med inloppsluften innan blandningen tillfors motoms olika cylindrar. This disadvantage does not exist in the long system where the long wires are involved that the exhaust gases have time to mix with the inlet air before the mixture is fed to the engine different cylinders.

I syfte att oka mangden avgaser som kan aterledas anordnas vanligen en EGR-kylare i EGR-systemet, sâ att avgaserna kyls innan de tillfors inloppsluften. EGR-kylaren in- nefattar ett antal vasentligen parallella kylarror, som var och ett är forsett med en kanal genom vilka avgasema passerar. Kring kylarroren strommar kylvatska, som avleder varme fran avgasema i kylarroren i det fall EGR-kylaren är vatskekyld. EGR-kylaren kan aven vara kyld av luft som dâ pa motsvarande satt leds kring kylkanalerna. In order to increase the amount of exhaust gases that can be returned, an EGR cooler is usually arranged in the EGR system, so that the exhaust gases are cooled before they are supplied with the inlet air. The EGR cooler in- comprises a number of substantially parallel cooling tubes, each of which is provided with a channel through which the exhaust gases pass. Cooling fluid flows around the radiator rudder, which dissipates heat from the exhaust gases in the radiator rudder in the event that the EGR cooler is cooled in liquid. The EGR cooler can also be cooled by air which is then similarly led around the cooling ducts.

I dokumentet EP-B2-1367253 visas en EGR-kylare som ingar i ett EGR-system. Kyla- ren innefattar flera kylarror, som var och ett är utformade med kanaler for att leda och kyla EGR-gaser fran en inloppsoppning till en utloppsoppning hos respektive kanal. For det fall avgasema inte skall kylas, vilket kan vara aktuellt under vissa driftsforhallanden, kan avgasema ledas genom en bypass-kanal, som stracker sig utmed kylarro- ren. En ventil kan anordnas for att leda avgasema aningen genom kylarroren eller ge- nom bypass-kanalen. The document EP-B2-1367253 shows an EGR cooler which is part of an EGR system. Cold- The purifier comprises several cooling tubes, each of which is formed with channels for conducting and cooling EGR gases from an inlet opening to an outlet opening of the respective channel. In the event that the exhaust gases are not to be cooled, which may be relevant during certain operating conditions, the exhaust gases can be led through a bypass duct, which extends along the radiator radiator clean. A valve can be provided to direct the exhaust gases slightly through the cooling pipes or nom bypass channels.

Avgasema fran en kolvmotor lamnar forbranningsrummet vid utblasningstakten med ett overtryck, vilket medfor att trycket i motoms avgassystem pulserar, vilket i sin tur medfor att avgasflodet pulserar. Eftersom EGR-systemet är anslutet till motoms avgas- system kommer avgasemas tryck och Nide i EGR-systemet att variera och damned pulsera. EGR-kylaren kommer att utjamna avgasemas tryck- och flodesvariationer vid passagen genom kanalema i kylarroren, vilket medfOr ett vasentligen jamnt flOde hos avgasema nedstroms EGR-kylaren utan tryckvariationer och utan pulser. 3 SAMMANFATTNING AV UPPFINNINGEN Syftet med foreliggande uppfinning är att astadkomma en EGR-kylare, som bidrar till en homogen och likformig blandning av EGR-gaser och inloppsluften hos en forbrdn- ningsmotor. The exhaust gases from a piston engine leave the combustion chamber at the blow-out rate with an overpressure, which causes the pressure in the engine's exhaust system to pulsate, which in turn causes the exhaust flow to pulsate. Since the EGR system is connected to the engine exhaust system, the exhaust pressure and Nide in the EGR system will vary and damned pulsate. The EGR cooler will equalize the pressure and flow variations of the exhaust gases as it passes through the channels in the radiator tubes, resulting in a substantially even flow of the exhaust gases downstream of the EGR cooler without pressure variations and without pulses. 3 SUMMARY OF THE INVENTION The object of the present invention is to provide an EGR cooler which contributes to a homogeneous and uniform mixture of EGR gases and the inlet air of a combustion gas. engine.

Ett ytterligare syfte med uppfinningen är att astadkomma en forbranningsmotor med ett EGR-system, vid vilken forbranningsmotor en homogen och likformig blandning av EGR-gaser och inloppsluft erhalles i forbranningsmotorns forbranningsrum. A further object of the invention is to provide an internal combustion engine with an EGR system, in which the internal combustion engine a homogeneous and uniform mixture of EGR gases and inlet air are obtained in the combustion engine's combustion chamber.

Dessa syften uppnas med en EGR-kylare av det inledningsvis ndmnda slaget, vilken kannetecknas av de sdrdrag som anges i patentkravets 1 kannetecknande del. These objects are achieved with an EGR cooler of the kind mentioned in the introduction, which can be characterized by the features stated in the characterizing part of claim 1.

Dessa syften uppnas aven med en fOrbranningsmotor av det inledningsvis namnda sla- get genom att anordna en sadan EGR-kylare i forbranningsmotorns EGR-system. These objects are also achieved with an internal combustion engine of the initially mentioned type. by arranging such an EGR cooler in the EGR system of the internal combustion engine.

Genom att forse EGR-kylaren med minst ett transport& for transport av i EGRgaserna forekommande pulsenergi erhalles en homogen och likformig blandning av EGR-gaser och inloppsluft i forbrdnningsmotoms alla forbranningsrum. Ddrmed er- halls en vdsentligen likformig effekt fran respektive kolv pa motorns vevaxel, vilket medfOr att forbranningsmotorns prestanda Okar och emissionema i motoms avgaser minskar. By providing the EGR cooler with at least one transport & for transport of pulse energy present in the EGR gases, a homogeneous and uniform mixture of EGR gases and inlet air is obtained in all combustion chambers of the internal combustion engine. Ddrmed er- maintains a substantially uniform effect from the respective piston on the engine crankshaft, which causes the performance of the internal combustion engine to increase and the emissions of the engine exhaust.

Ytterligare fordelar med uppfinningen framgar av foljande detaljerade beskrivning. Further advantages of the invention will become apparent from the following detailed description.

KORT BESKRIVNING AV RITNINGARNA I det foljande beskrivs, sasom ett exempel, foredragna utfOringsformer av uppfinningen med hanvisning till bifogade ritningar, pa vilka: Fig. 1visar en schematisk vy av ett fordon 1, som innefattar en forbrannings- motor med en EGR-kylare enligt foreliggande uppfinning, 4 Fig. 2 Fig. 3 Fig. 4 Fig. visar en schematisk vy av forbranningsmotor med en EGR-kylare enligt foreliggande uppfinning, visar en snittvy av en EGR-kylare enligt foreliggande uppfinning, visar en tvarsnittsvy genom EGR-kylaren utmed linjen A — A i fig. 3, och visar en snittsvy av en EGR-kylare enligt en alternativ utforingsform. BRIEF DESCRIPTION OF THE DRAWINGS In the following, by way of example, preferred embodiments of the invention are described with reference to the accompanying drawings, in which: Fig. 1 shows a schematic view of a vehicle 1, which comprises a combustion engine with an EGR cooler according to the present invention, 4 Fig. 2 Fig. 3 Fig. 4 Fig. Shows a schematic view of an internal combustion engine with an EGR cooler according to the present invention, shows a sectional view of an EGR cooler according to the present invention, shows a cross-sectional view through the EGR cooler along the line A - A in Fig. 3, and shows a sectional view of an EGR cooler according to an alternative embodiment.

DETALJERAD BESKRIVNING AV UPPFINNINGEN Fig. 1 visar schematiskt ett fordon 1, som innefattar en forbranningsmotor 2 forsedd med ett EGR-system 22. Forbranningsmotorn 2 är via en vaxellada 6 och en transmission vidare kopplad till fordonets 1 drivhjul 8. Foretradesvis är forbranningsmotorn 2 en flercylindrig kolvmotor med kompressionstandning sasom en dieselmotor. EGRsystemet 22 är anordnat fOr att pa i sig kant sat aterfora avgaser fran ffirbranningen till forbranningsmotorns 2 inlopp for att reducera bildandet av kvaveoxider. DETAILED DESCRIPTION OF THE INVENTION Fig. 1 schematically shows a vehicle 1, which comprises an internal combustion engine 2 provided with an EGR system 22. The internal combustion engine 2 is further connected via a gearbox 6 and a transmission to the drive wheel 8 of the vehicle 1. Preferably, the internal combustion engine 2 is a multi-cylinder piston engine with compression gearing like a diesel engine. The EGR system 22 is arranged to return exhaust gases from the combustion to the inlet of the internal combustion engine 2 to reduce the formation of nitrogen oxides.

Fig. 2 visar en schematisk vy av forbranningsmotorn 2. Enligt det visade utforingsexemplet har forbranningsmotorn 2 fyra cylindrar 10, dar varje cylinder inrymmer en kolv 12 och ett forbranningsrum 14. Motorn 2 uppvisar ocksa en utgaende axel 16 for- bunden med vaxelladan 6. Forbranningsmotorn 2 innefattar ett inloppssystem 18 fOr att tillfOra luft till ffirbranningsrummen 14 och ett avgassystem 20 fOr att bortfOra avgaser fran forbranningsrummen 12. Inloppssystemet 18 och avgassystemet 20 är forbundna med varandra via EGR-systemet 22. I detta är anordnat en EGR-ventil 24 som styr mangden avgaser som tillfOrs inloppssystemet 18. EGR-systemet innefattar vidare en EGR-kylare 4 for kylning av de till inloppssystemet 18 aterforda avgasema. EGR- systemet 22 är forbundet med inloppssystemet 18 nedstroms, sett i avgasernas stromningsriktning, den i EGR-systemet 22 anordnade EGR-kylaren 4 vid en forbindelsepunkt 26 dar EGR-gaserna tillfOrs luften i inloppssystemet 18. EGR-systemet 22 är forbundet med inloppssystemet 18 nedstroms en kompressor 28 ingaende i ett turbo- aggregat och nedstroms en laddluftkylare 30 fOr inloppsluften. Saledes är EGR- systemet 22 anslutet pa hogtryckssidan av kompressorn 28. EGR-kylaren 4 är kopplad till ett kylsystem 32 hos motorn 2 och tillfors enligt det visade utforingsexemplet kylvatska genom ett kylvatskeinlopp 34. Kylvatska lamnar EGR-kylaren 4 genom ett kylvatskeutlopp 36. Det är i altemativa utforingsformer mojligt att kyla EGR-kylaren 4 med omgivande luft, som tillfors genom fartvinden nar fordonet 1 är i rorelse och/eller genom en flakt. Laddluftkylaren 30 kyls foretradesvis genom ett luftkylsy- stem 33. Kompressorn 28 drivs enligt det visade utforingsexemplet av motoms 2 avga- ser genom en i avgassystemet 20 anordnad turbin 29, vilken ocksa ingar i turboaggregatet. Inloppssystemet 18 är fOretradesvis uppbyggt av ledningar i form av ror och slangar 38, som transporterar den insugna, omgivande luften frail en inloppsoppning 40 genom kompressorn 28, laddluftkylaren 30 och slutligen till motorns 2 forbran- ningsrum 14. Avgassystemet 20 är foretrades uppbyggt av ledningar i form av ror 42, som transporterar de varma avgaserna fran forbranningsmotorns 2 forbranningsrum 14 forbi EGR-ventilen 24, genom turbinen 29 och vidare ut till omgivningen via en avgasrorsoppning 44 och/eller i forekommande fall vidare till ytterligare komponenter i avgassystemet sasom exempelvis ljuddampare, partikelfiler, katalysator och/eller andra komponenter for avgasefterbehandling. EGR-systemet 22 är ocksa uppbyggt av led- ningar i form av ror 46 som transporterar avgaserna frail EGR-ventilen 24, genom EGR-kylaren 4 och vidare till en kopplingsanordning 48 vid forbindelsepunkten 26 dar EGR-gasema tillfors luften i inloppssystemet 18. EGR-gasema tillfors och blandas saledes med inloppsluften vid forbindelsepunkten 26 och leds vidare i inloppssystemet 18 till en forgreningspunkt 47 dar de sammanblandade EGR-gasema och inloppsluften inkommer i ett inloppsrOr 49, som leder de sammanblandade EGR-gasema och inloppsluften vidare till resp. forbranningsrum 14. Avstandet mellan forbindelsepunkten 26 och fOrgreningspunkten 47 är relativt kort och är i praktiken mellan 0 mm — 500 mm, foretradesvis mellan 100 mm — 250 mm, for en dieselmotor i ett tyngre fordon. Fig. 2 shows a schematic view of the internal combustion engine 2. According to the embodiment shown, the internal combustion engine 2 has four cylinders 10, each cylinder accommodating a piston 12 and a combustion chamber 14. The engine 2 also has an output shaft 16 for combustion. bound to the gearbox 6. The internal combustion engine 2 comprises an inlet system 18 for supply air to the combustion chambers 14 and an exhaust system 20 for removing exhaust gases from the combustion chambers 12. The inlet system 18 and the exhaust system 20 are connected to each other via the EGR system 22. An EGR valve 24 is arranged therein which controls the amount of exhaust gases supplied to the inlet system 18. The EGR system further comprises a EGR cooler 4 for cooling the exhaust gases returned to the inlet system 18. EGR- the system 22 is connected to the inlet system 18 downstream, seen in the flow direction of the exhaust gases, the EGR cooler 4 arranged in the EGR system 22 at a connection point 26 where the EGR gases are supplied to the air in the inlet system 18. The EGR system 22 is connected to the inlet system 18 downstream of compressor 28 input in a turbo- unit and downstream a charge air cooler 30 for the inlet air. Thus, the EGR the system 22 connected on the high pressure side of the compressor 28. The EGR cooler 4 is connected to a cooling system 32 of the engine 2 and supplied according to the embodiment shown cooling water through a cooling water inlet 34. Cooling water leaves the EGR cooler 4 through a cooling water outlet 36. In alternative embodiments it is possible to cool the EGR cooler 4 with ambient air, which is supplied through the speed wind when the vehicle 1 is in motion and / or through a flat. The charge air cooler 30 is preferably cooled by an air cooling system. The compressor 28 is driven according to the exemplary embodiment shown by the output of the motor 2. through a turbine 29 arranged in the exhaust system 20, which also enters the turbocharger. The inlet system 18 is preferably constructed of conduits in the form of tubes and hoses 38, which transport the sucked in ambient air from an inlet opening 40 through the compressor 28, the charge air cooler 30 and finally to the combustion engine 2. The exhaust system 20 is preferably constructed of conduits in the form of tubes 42, which transports the hot exhaust gases from the combustion chamber 14 of the internal combustion engine 2 past the EGR valve 24, through the turbine 29 and further out to the environment via an exhaust pipe opening 44 and / or, where applicable, to additional components in the exhaust system such as evaporators, particulates, catalyst and / or Other exhaust gas treatment components. The EGR system 22 is also made up of in the form of tubes 46 which transport the exhaust gases from the EGR valve 24, through the EGR cooler 4 and on to a coupling device 48 at the connection point 26 where the EGR gases are supplied to the air in the inlet system 18. The EGR gases are thus supplied and mixed with the inlet air at the connection point 26 and is passed on in the inlet system 18 to a branch point 47 where the mixed EGR gases and the inlet air enters an inlet pipe 49, which leads the mixed EGR gases and the inlet air on to resp. combustion chamber 14. The distance between the connection point 26 and the branch point 47 is relatively short and is in practice between 0 mm - 500 mm, preferably between 100 mm - 250 mm, for a diesel engine in a heavier vehicle.

Detta är ett avstand som vanligen anses vara alltfor kort for att mojliggora fullgod blandning av EGR-gaser och inloppsluften. This is a distance that is usually considered too short to allow for full satisfaction mixture of EGR gases and the inlet air.

Fig. 3 visar en snittvy av EGR-kylaren 4, som innefattar ett flertal med varandra parallella och likformiga kylarror 50. Varje kylarror 50 är utformat med en kanal 52 for att leda och kyla EGR-gaser fran en inloppsoppning 54 till en utloppsoppning 56 hos re- spektive kanal 52. Kanalema 52 har en form, som medger en stor kontaktyta med de i kanalema 52 strommande avgaserna. EGR-kylaren 4 tillfors kylvatska genom kylvats- 6 keinloppet 34 vilket efter passage genom EGR-kylaren bortfors via kylvatskeutloppet 36. Kylvatskan medges att omge respektive kylarror 50, sâ att varmen fran kylarroren 50 kan borttransporteras med kylvatskan. EGR-kylaren 4 omges av ett hus 58, som inrymmer kylarroren 50. I huset 58 är kylvatskeinloppet 34 och kylvattenutloppet 36 anordnade. Huset 58 uppvisar aven avgasinlopp 60 och avgasutlopp 62. Fig. 3 shows a sectional view of the EGR cooler 4, which comprises a plurality of parallel and uniform cooling tubes 50. Each cooling tubes 50 is formed with a channel 52 for conducting and cooling EGR gases from an inlet port 54 to an outlet port 56 of the respective duct 52. The ducts 52 have a shape which allows a large contact area with the exhaust gases flowing in the ducts 52. The EGR cooler 4 is supplied with cooling water through the cooling water 6 kein inlet 34 which after passage through the EGR cooler is removed via the cooling water outlet 36. The cooling liquid is allowed to surround the respective cooling tubes 50, so that the heat from the cooling tubes 50 can be transported away with the cooling liquid. The EGR cooler 4 is surrounded by a housing 58, which houses the cooling tubes 50. In the housing 58, the cooling water inlet 34 and the cooling water outlet 36 are arranged. The housing 58 also has an exhaust inlet 60 and an exhaust outlet 62.

Eftersom forbranningsmotom 2 är en kolvmotor kommer trycket i motoms 2 avgassystem 20 att variera och pulsera i beroende av hur dess avgasventiler oppnas och stangs, vilket i sin tur medfor att avgasflodet varierar och pulserar. Eftersom EGR-systemet 22 är anslutet direkt till motoms 2 avgassystem 20 kommer avgasemas tryck och Bade i EGR-systemet 22 att variera och damned pulsera. Vid utnyttjande av en konventionell EGR-kylare kommer en sadan att till huvudsaklig del utjamna det pulserande Wide till ett vasentlig jamnt Wide. Men i syfte att undvika att EGR-kylaren 4 pa detta satt utjamnar avgasemas tryck- och flOdesvariationer nar avgasema passerar genom kanaler- na 52 i kylarroren 50 är den visade EGR-kylaren 4, till skillnad fran konventionella EGR-kylare, utformad med minst ett av kylarroren med en speciell utformning. For att skilja detta kylarror fran de ovriga benamns detta kylarror fortsattningsvis for transportror 64, vilket i likhet med ovriga kylarror är omgivet av samma kylvatska som ovriga kylarror 50, och som Atminstone till viss del kyler de genomstrommande avgaser- na. Harutover utnyttjas transportroret 64 for transport av i EGR-gaserna forekomman- de pulsenergi fran EGR-kylarens inlopp till dess utlopp. TransportrOret 64 är anordnat vasentligen parallellt med de ovriga kylarroren 50. Transportroret 64 bidrar saledes till att avgasemas tryck och Wide varierar och pulserar Liven nedstrOms EGR-kylaren 4 och anda fram till del de blandas med inloppsluften. Den i EGR-gasema forekomman- de pulsenergin bidrar damned till en god omblandningseffekt av EGR-gaser och luft i inloppssystemet, och sA att en homogen och likformig blandning av EGR-gaser och inloppsluft i forbranningsmotorns 2 alla forbranningsrum 14 erhalls. Darmed erhafts en vasentligen likformig effekt frail motoms 2 alla cylindrar 10, vilket medfcir att forbranningsmotorns 2 prestanda akar och emissionerna i motoms 2 avgaser minskar. En nackdel med ett sadant transportrOr 64 är att de avgaser som transporteras genom den- na inte erhaller en lika god kylning som de avgaser som passerar genom de ovriga ka- 7 nalema 52. Av denna anledning bar transportroret 64 inte dimensioneras storre an vad som erfordras for att uppna en acceptabel avsedd effekt. Since the internal combustion engine 2 is a piston engine, the pressure in the exhaust system 20 of the engine 2 will vary and pulsate depending on how its exhaust valves are opened and closed, which in turn causes the exhaust flow to vary and pulsate. Since the EGR system 22 is connected directly to the engine 2 exhaust system 20, the exhaust pressure and Bade in EGR system 22 to vary and damned pulsate. When using a conventional EGR cooler, one will essentially equalize the pulsating Wide to a substantially even Wide. However, in order to avoid that the EGR cooler 4 in this way equalizes the pressure and flow variations of the exhaust gases when the exhaust gases pass through ducts. 52 in the radiator tubes 50 is the EGR cooler 4 shown, unlike conventional ones EGR cooler, designed with at least one of the cooling tubes with a special design. In order to distinguish this cooling tube from the others, this cooling tube is still referred to as transport tube 64, which, like other cooling tubes, is surrounded by the same cooling liquid as the other cooling tubes 50, and which at least to some extent cools the flowing exhaust gases. na. In addition, the transport tube 64 is used for the transport of substances present in the EGR gases. the pulse energy from the EGR cooler inlet to its outlet. The transport pipe 64 is arranged substantially parallel to the other cooling pipes 50. The transport pipe 64 thus contributes to the exhaust gas pressure and Wide varying and pulsating the life downstream of the EGR cooler 4 and breathing until they are mixed with the inlet air. The occurrence in the EGR gases The pulse energy contributes damned to a good mixing effect of EGR gases and air in the inlet system, and so that a homogeneous and uniform mixture of EGR gases and inlet air in all the combustion engine 14 of the internal combustion engine 2 is obtained. Thereby a substantially uniform effect is obtained from all the cylinders 10 of the engine 2, which means that the performance of the internal combustion engine 2 and the emissions of the exhaust gases of the engine 2 are reduced. One disadvantage of such a conveyor tube 64 is that the exhaust gases transported through it do not receive as good a cooling as the exhaust gases passing through the other 7 52. For this reason, the transport tube 64 should not be dimensioned larger than what is required to achieve an acceptable intended effect.

Transportffiret 64 innefattar en transportkanal 66, som har ett inlopp 68 och ett utlopp 70, vilket inlopp 68 är anordnat i ett med inloppsoppningarna 54 for kanalerna 52 hos kylarroren 50 vasentligen gemensamt forsta plan 72 och vilket utlopp 70 är anordnat i ett med utloppsOppningarna 56 for kanalema 52 hos kylarrOren 50 vasentligen gemensamt andra plan 74. Darmed erhalls en god genomstromning av avgaser genom transportror 64 och kylarkanaler 50. Transportkanalen 66 har en vasentligen slat inneryta 76 utefter hela sin utstrdckning vilket medfor ett lagt stromningsmotstand. De ovriga kyl- kanalema 52 kan ddremot pa konventionellt satt vara utformade med in-och utbuktningar och liknande ytforstorande former som medfor god varmeoverforing. Transportffiret 64 och darmed transportkanalen 66 är vasentligen rakt och uppvisar ett vasentligen cirkulart tvdrsnitt, alit detta for att med stOrsta effekt och minimala ffirlus- ter overfora pulsenergin hos avgasema genom EGR-kylaren. Dock kan transportroret uppvisa en godtycklig form sett i tvarsnittsriktningen. The transport liner 64 comprises a transport channel 66, which has an inlet 68 and an outlet 70, which inlet 68 is arranged in one with the inlet openings 54 of the channels 52 of the radiator tubes 50 substantially in common first plane 72 and which outlet 70 is arranged in a substantially common second plane 74 with the outlet openings 56 of the channels 52 of the radiator tubes 50. Thereby a good flow of exhaust gases through conveyor tubes 64 and radiator channels 50 is obtained. The transport channel 66 has a substantially slat interior 76 along its entire extent, which results in a laid flow resistance. The other cooling the channels 52, on the other hand, can in a conventional manner be formed with indentations and bulges and similar surface-enlarging shapes which result in good heat transfer. The transport guide 64 and thus the transport channel 66 is substantially straight and has a substantially circular cross-section, all this in order to, with the greatest effect and minimal error, transmit the pulse energy of the exhaust gases through the EGR cooler. However, the transport tube can exhibit an arbitrary shape seen in the cross-sectional direction.

Fig. 4 visar en tvdrsnittsvy genom EGR-kylaren utmed linjen A — A i fig. 3. Kylarroren 50 är sa arrangerade att de vasentligen omger transportroret 64. Darmed kan pulsener- gin hos avgasema med minimala forluster overforas genom EGR-kylaren 4. Det fram- gar av fig. 4 att kylarroren 50 tillsammans med transportrOret 64 bildar en matris 78. Kylarroren 50 har i fig. 4 ett kvadratiskt tvarsnitt. Dock kan kylarroren uppvisa en godtycklig form, exempelvis cirkuldr tvarsnittsform. Det framgar ocksa att transportrOret 64 har en vdsentligen storre tvarsnittsyta i jdmforelse med respektive kylarror 50. Detta storleksforhallande kan dock vara godtyckligt. Enligt fordelaktiga utforingsformer bar transportrorets 64 transportkanal 66 uppvisa en tvarsnittsarea som understiger 10 % av den totala tvarsnittsarean for EGR-kylarens ovriga kylkanaler 52, och ett forhallande mellan 1 och 5 % sarskilt fordelaktigt. Mest fordelaktigt är det i narheten av 1% och det bar helst inte overstiga 3%. I alla utforingsformer är dock tvarsnittarenan av trans- portkanalen 66 avsevart stone en tvarsnitsarea for nagot av de Ovriga kanalema 52, atminstone 10 ganger storre, och helt atminstone 25 ganger stone. 8 Det kan framhallas att transportkanalen 66 inte innehaller flagon ventil eller nagot annat reglerbart organ for reglering av flodet genom detsamma. Dess dimensioner är saledes forbestamda vid tillverkningen vilken ocksa medfor att dess flodeskapacitet är forbestamd. Fig. 4 shows a cross-sectional view through the EGR cooler along the line A - A in Fig. 3. The cooler tubes 50 are arranged so as to substantially surround the transport tube 64. Thus, the pulse the exhaust gases with minimal losses are transferred through the EGR cooler 4. The Fig. 4 shows that the cooling tube 50 together with the transport tube 64 forms a matrix 78. The cooling tube 50 has a square cross-section in Fig. 4. However, the radiator tubes can have an arbitrary shape, for example a circular cross-sectional shape. It also appears that the conveyor tube 64 has a substantially larger cross-sectional area in comparison with the respective cooling tubes 50. This size ratio can, however, be arbitrary. According to advantageous embodiments bar the transport channel 66 of the conveyor tube 64 has a cross-sectional area of less than 10% of the total cross-sectional area of the other cooling channels 52 of the EGR cooler, and a ratio between 1 and 5% is particularly advantageous. It is most advantageous in the vicinity of 1% and it should preferably not exceed 3%. In all embodiments, however, the cross-sectional arena of the gate channel 66 is a cross-sectional area for some of the other channels 52, at least 10 times larger, and completely at least 25 times stone. 8 It can be pointed out that the transport channel 66 does not contain a flake valve or any other controllable means for regulating the flow through it. Its dimensions are thus predetermined during manufacture, which also means that its river capacity is predetermined.

I det visade utforingsexemplet visas endast ett transportror 64. Dock kan ett godtyckligt antal transportrOr 64 anordnas i EGR-kylaren 4. De tvarsnittsareor som i beskrivningsexemplet ovan anges for transportkanalen ska i dessa fall tolkas att avse den sammanlagda tvarsnittsarean som samtliga transportkanaler. Aven ett godtyckligt antal kylarror 50 kan anordnas i EGR-kylaren 4. Som visas i fig. 3 och fig. 4 är transportro- ret anordnas centralt i EGR-kylaren och nar denna har en cirkular tvarsnittsform är transportroret anordnat koncentriskt vid dess centrum. Genom att samtidigt anordna EGR-kylaren avgasinlopp 68 och avgasutlopp 62 centralt och koncentriskt med EGRkylaren, sasom visas i fig. 3, kan avgaspulsema utan omlankning passera genom EGR- kylaren 4 med minsta majliga stromningsmotstand. Detta medfor att transportkanalens 66 tvarsnittsarea kan hallas nere och att endast en liten andel av EGR-gaserna behover ledas genom transportkanalen 66. Detta medfor att transportroret 64 endast EGR-kylaren 4. Om EGRkylaren 4 inlopp 68 och utlopp 70 är placerade i andra positioner kan det vara fordelak- tigt att anordna transportkanalen 66 sâ centralt till dessa som mojligt i stallet for att anordna det i EGR-kylarens centrum. In the exemplary embodiment shown, only one conveyor tube 64 is shown. However, any number of conveyor tubes 64 can be arranged in the EGR cooler 4. The cross-sectional areas specified in the description example above for the transport channel must in these cases be interpreted to refer to the total cross-sectional area as all transport channels. Even an arbitrary number cooling tubes 50 can be arranged in the EGR cooler 4. As shown in Fig. 3 and Fig. 4, the transport tubes The tube is arranged centrally in the EGR cooler and when it has a circular cross-sectional shape, the transport tube is arranged concentrically at its center. By simultaneously arranging the EGR cooler exhaust inlet 68 and exhaust outlet 62 centrally and concentrically with the EGR cooler, as shown in Fig. 3, the exhaust pulses can pass through the EGR without redirection. cooler 4 with minimum monthly flow resistance. This means that the transport channel 66 cross-sectional area can be kept down and that only a small proportion of the EGR gases need to be passed through the transport channel 66. This means that the transport tube 64 only the EGR cooler 4. If the EGR cooler 4 inlet 68 and outlet 70 are located in other positions, it may be advantageous. It is possible to arrange the transport channel 66 as centrally to these as possible instead of arrange it in the center of the EGR cooler.

Fig.5 visar en EGR-kylare enligt en altemativ utfOringsform. Fig.5 visar pa samma satt som fig. 3 en snittvy av en EGR-kylare 4 dar stromningsmotstandet genom trans- portkanalen 64 ytterligare har reducerats. I detta fall utstracker sig transportroret 64 pa sin inloppssida in i ett till EGR-kylarens 4 avgasinlopp 60 anslutet avgasror 90 och pa sin utloppssida in i ett till EGR-kylarens 4 avgasutlopp 62 anslutet avgasror 92. PA detta satt är transportroret 64 vid EGR-kylarens 4 inlopp anordnat sA att det utstracker sig uppstroms inloppsoppningarna 54 for kylkanalema 52, och pa motsvarande satt är transportrOret 64 anordnat vid EGR-kylarens 4 utlopp sA att det utstracker sig ned- stroms utloppsoppningarna 56 fran kylkanalema 52. PA detta satt kommer de pulser som forefinns hos avgasema i avgasroret 90 inte utsattas for den tryckforandring som 9 orsakas av den expansion de utsatts for innan de inledes i de respektive kylkanalerna 52. Pa samma satt utsatts avgaserna i transportkanalen 64 inte for den kontraktion som avgaserna fran kylkanalerna 52 utsatts for efter de passerat kylkanalerna. Avgaserna kan damned passera transportkanalen 64 vasentligen utan tryckreducering. Mest for- delaktigt är det att pa detta satt anordna transportkanalen 64 bade vid EGR-kylarens 4 inlopp och utlopp men i altemativa utforingsformer kan transportkanalen 64 enbart vid inloppet eller utloppet var anordnat pa detta sat medan den andra delen är utformad i enlighet med vad som beskrivits med hanvisning till fig.3. Fig. 5 shows an EGR cooler according to an alternative embodiment. Fig. 5 shows in the same way as Fig. 3 a sectional view of an EGR cooler 4 where the flow resistance through the port channel 64 has been further reduced. In this case, the transport tube extends 64 pa its inlet side into an exhaust pipe 90 connected to the exhaust inlet 60 of the EGR cooler 4 and on its outlet side into an exhaust pipe 92 connected to the exhaust outlet 62 of the EGR cooler 4. In this way the transport pipe 64 at the inlet of the EGR cooler 4 is arranged so as to extend upstream of the inlet openings 54 for the cooling ducts 52, and in a corresponding manner the transport tube 64 arranged at the outlet of the EGR cooler 4 so that it extends downwards the outlet openings 56 from the cooling ducts 52. In this way, the pulses present in the exhaust gases in the exhaust pipe 90 will not be subjected to the pressure change which 9 caused by the expansion to which they are subjected before they are introduced into the respective cooling ducts 52. In the same way, the exhaust gases in the transport duct 64 are not subjected to the contraction to which the exhaust gases from the cooling ducts 52 are subjected after they have passed the cooling ducts. The exhaust gases can then pass through the transport channel 64 substantially without pressure reduction. Most for- in this way, the transport channel 64 is arranged both at the EGR cooler 4 inlet and outlet, but in alternative embodiments, the transport channel 64 can only be arranged at the inlet or outlet in this way, while the other part is designed in accordance with what is described with reference to Fig. 3.

EGR-systemet kan utover de beskrivna komponenterna innefatta ytterligare i sig kanda komponenter sasom exempelvis en ventilstyrd by-passledning som nar det inte foreligger behov av kylning kan transportera EGR-gaserna forbi EGR-kylaren. Enligt beskrivningsexemplet ovan utgors kylmediet av en kylvatska, men uppfinningen kan givetvis utnyttjas pa motsvarande med luft eller annat medium som kylmedium. Enligt ovanstaende exempel är transportkanalen anordnad som en kylkanal vilket mojliggor en enkel inbyggnad och samtidigt ma jliggor kylning av de EGR-gaser som passerar genom den samma. I alternativa utforingsformer kan transportkanalen anordnas som en helt extern kanal, exempelvis genom externa rorledningar, vilken ansluter transportkanalen till en avgasledning fran motorn fore respektive efter EGR-kylaren. Aven i en sadan utforingsform är saledes transportkanalen anordnad parallellt med kylkanalerna. In addition to the components described, the EGR system may further comprise kanda in itself components such as a valve-controlled bypass line which, when there is no need for cooling, can transport the EGR gases past the EGR cooler. According to the description example above, the cooling medium consists of a cooling liquid, but the invention can of course be used correspondingly with air or other medium as cooling medium. According to In the above example, the transport duct is arranged as a cooling duct, which makes it possible a simple installation and at the same time allows cooling of the EGR gases that pass through the same. In alternative embodiments, the transport duct can be arranged as a completely external duct, for example through external pipelines, which connects the transport duct to an exhaust duct from the engine before and after the EGR cooler. Even in one such an embodiment, the transport channel is thus arranged parallel to the cooling channels.

I en sadan utfOringsform behOver EGR-gaserna vid sin passage genom transportkanalen inte utsattas for flagon kylning. Vad som är vasentligt i alla utforingsformer är att transportkanalen utformas med sa fA krOkar och sA fa' areaforandringar som mojligt, eftersom dessa reducerar tryckpulserna. 10 In such an embodiment, the EGR gases do not need to be subjected to flake cooling during their passage through the transport channel. What is essential in all embodiments is that the transport channel is designed with as few hooks and as few area changes as possible, since these reduce the pressure pulses. 10

Claims (1)

Patentkrav 1. EGR-kylare avsedd att kyla EGR-gaser vid en forbranningsmotor och innefattande ett flertal kylarror (50), som är utformade med kanaler (52) for att leda och kyla EGR- gaser fran inloppsoppningar (54) till utloppsoppningar (56) hos respektive kanal (52), kannetecknad av ett transportror (64) som är anordnat parallellt med de ovriga kylarroren (50) och som är anordnat for transport av i EGR-gasema forekommande pulsenergi. 2. EGR-kylare enligt krav 1, kannetecknad av att transportroret (64) innefattar en transportkanal (66), som har ett inlopp (68) och ett utlopp (70), vilket inlopp (68) är anordnat i ett med inloppsoppningama (54) gemensamt forsta plan (72) och vilket utlopp (70) är anordnat i ett med utloppsoppningen (56) gemensamt andra plan (74). 3. EGR-kylare enligt krav 1 kannetecknad av att transportroret (64) vid EGR- kylarens (4) inlopp utstracker sig uppstroms inloppsoppningarna (54) for kylkanalerna (52) och/eller vid EGR-kylarens (4) utlopp utstracker sig nedstroms utloppsoppningarna (56) fran kylkanalema (52). 4. EGR-kylare enligt nagot av foregaende krav, kannetecknad av att transportkanalen (66) utefter hela sin utstrackning har en slat inneryta (76). 5. EGR-kylare enligt nagot av fOregaende krav, kannetecknad av att niimnda kylarrOr (50) omger transportroret (64). 6. EGR-kylare enligt nagot av foregaende krav, kannetecknad av att transportroret (64) är rakt. 7. EGR-kylare enligt nagot av foregaende krav, kannetecknad av att transportroret (64) har ett cirkulart tvarsnitt. 8. EGR-kylare enligt nagot av foregaende krav, kannetecknad av att transportkanalen 11 (66) har en tvarsnittsarea som är stone an en tvarsnittarea for nagon av de ovriga kanalerna (52). 9. EGR-kylare enligt nagot av foregaende krav, kannetecknad av att transportkanalen (66) har en tvarsnittsarea som uppgar till mellan 1 och 5 %, med fordel mellan 1 och 3%, av de 6A/riga kanalernas (52) sammanlagda tvarsnittareor. 10. EGR-kylare enligt nagot av foregaende krav, kannetecknad av att EGR-kylarens kylarror (50) och transportror (64) är inrymda i ett gemensamt hus (58). 11. EGR-kylare enligt nagot av foregaende krav, kannetecknad av att transportroret (64) är omgivet av kylmedium. 12. FOrbranningsmotor, innefattande ett inlopps system (18) fcir att tillfora luft till ett forbranningsrum (14) och ett avgassystem (20) for att bortfora avgaser fran forbran- ningsrummet (14), varvid ett EGR-system (22) dr anordnat mellan inloppssystemet (18) och avgassystemet (20), kannetecknad av att en EGR-kylare (4) enligt krav 1 är anordnad i EGR-systemet (22). 13. Forbranningsmotor enligt krav 12, varvid EGR-systemet (22) är forbundet med inloppssystemet (18) nedstroms en kompressor (28) ingdende i en turbooverladdare och nerstroms en i inloppssystemet anordnad laddluftkylare (30), och är forbundet med avgassystemet (20) uppstroms en turbin (29) ingEtende i turbooverladdaren. 89An EGR cooler for cooling EGR gases in an internal combustion engine and comprising a plurality of cooling tubes (50) formed with channels (52) for conducting and cooling EGR gases from inlet ports (54) to outlet ports (56) of the respective channel (52), can be marked by a transport tube (64) which is arranged parallel to the other cooling tubes (50) and which is arranged for transport of pulse energy present in the EGR gases. EGR cooler according to claim 1, characterized in that the transport pipe (64) comprises a transport channel (66), which has an inlet (68) and an outlet (70), which inlet (68) is arranged in one with the inlet openings (54). ) common first plane (72) and which outlet (70) is arranged in a second plane (74) common to the outlet opening (56). EGR cooler according to claim 1, characterized in that the transport tube (64) at the inlet of the EGR cooler (4) extends upstream of the inlet openings (54) for the cooling channels (52) and / or at the outlet of the EGR cooler (4) extends downstream of the outlet openings. (56) from the cooling ducts (52). EGR cooler according to one of the preceding claims, characterized in that the transport channel (66) has a smooth inner surface (76) along its entire extent. An EGR cooler according to any one of the preceding claims, characterized in that said cooling tube (50) surrounds the transport tube (64). EGR cooler according to one of the preceding claims, characterized in that the transport tube (64) is straight. EGR cooler according to one of the preceding claims, characterized in that the transport tube (64) has a circular cross-section. EGR cooler according to one of the preceding claims, characterized in that the transport channel 11 (66) has a cross-sectional area which is a stone with a cross-sectional area for one of the other channels (52). EGR cooler according to one of the preceding claims, characterized in that the transport channel (66) has a cross-sectional area of between 1 and 5%, advantageously between 1 and 3%, of the total cross-sectional areas of the 6A / rich channels (52). EGR cooler according to one of the preceding claims, characterized in that the cooling tubes (50) and transport tubes (64) of the EGR cooler are housed in a common housing (58). EGR cooler according to one of the preceding claims, characterized in that the transport tube (64) is surrounded by cooling medium. An internal combustion engine, comprising an inlet system (18) for supplying air to a combustion chamber (14) and an exhaust system (20) for discharging exhaust gases from the combustion chamber (14), an EGR system (22) arranged therebetween the inlet system (18) and the exhaust system (20), characterized in that an EGR cooler (4) according to claim 1 is arranged in the EGR system (22). The internal combustion engine according to claim 12, wherein the EGR system (22) is connected to the inlet system (18) downstream of a compressor (28) contained in a turbocharger and downstream of a charge air cooler (30) arranged in the inlet system, and is connected to the exhaust system (20) upstream a turbine (29) enters the turbocharger. 89 1. 0 N--- z 61 917 2C 01, OZ \AL z17 trt7 6Z 8Z c *6u 9C b. A • Ai* Nmillimmig. imiummum, mommemmx. AOMMEMMEMIIIMMUMMEMIA MWMOMMWMIUMMEMEMINIMEMMI. AMMINIMMEMEMMIUMMIMMEMMARMOMMIlt AMMOSOMMIMMUMUNNIMMEMMUMEMMEWMOMOMMERMMOMMEMEMMEMMINMOMMIWOMOW AMMOMOIOMIONOMMIER RUMMen. WM AMMOMMIOMME EXV WIMMIL somummommx•MERAMMINIKIM MMUMMIOMMIMMENEM MIPMMUMMEMMEMOIMMI MROMMIMMEMBROMP "NWEROMMAINIMM MOM Immommonmmummw IMMIMIIIMIUM immommiummiummJUUMMEIRMMOMMAMMA IMMUKERNOMMEMMEL AWMAIRMIAMIUM MOIMUM IU II MEMMMM6.. MMOMMIORMWME MMEMENOMMIMMIXIMM WOMMINIMMUMMEN0010111WWWM LIN nrommummei minsummomiimsmommimm MEMMEMMEMMMININCMOIMOMMW VOIMMUMMIIMM1111111111101110MPIAT IMMERNMORIMOrammummum. mummuniumwmummunumf lsommummisymnimignmor MUUMWERMEMEM MIUMMEMMWOW MOVIONMEMMIMX MIIMENEW MOMMEM ....p - 89 t;,4 179 99 9 '6!.d 06 Z6 OL1. 0 N --- z 61 917 2C 01, OZ \ AL z17 trt7 6Z 8Z c * 6u 9C b. A • Ai * Nmillimmig. imiummum, mommemmx. AOMMEMMEMIIIMMUMMEMIA MWMOMMWMIUMMEMEMINIMEMMI. AMMINIMMEMEMMIUMMIMMEMMARMOMMIlt AMMOSOMMIMMUMUNNIMMEMMUMEMMEWMOMOMMERMMOMMEMMEMMINMOMMIWOMOW AMMOMOIOMIONOMMIER RUMMEN. WM AMMOMMIOMME EXV WIMMIL somummommx • MERAMMINIKIM MMUMMIOMMIMMENEM MIPMMUMMEMMEMOIMMI MROMMIMMEMBROMP "NWEROMMAINIMM MOM Immommonmmummw IMMIMIIIMIUM immommiummiummJUUMMEIRMMOMMAMMA IMMUKERNOMMEMMEL AWMAIRMIAMIUM MOIMUM IU II MEMMMM6 .. MMOMMIORMWME MMEMENOMMIMMIXIMM WOMMINIMMUMMEN0010111WWWM LIN nrommummei minsummomiimsmommimm MEMMEMMEMMMININCMOIMOMMW VOIMMUMMIIMM1111111111101110MPIAT IMMERNMORIMOrammummum. Mummuniumwmummunumf lsommummisymnimignmor MUUMWERMEMEM MIUMMEMMWOW MOVIONMEMMIMX MIIMENEW MOMMEM .... p - 89 t; , 4 179 99 9 '6! .D 06 Z6 OL
SE1150901A 2011-09-30 2011-09-30 EGR cooler and internal combustion engine with such EGR cooler SE537803C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE1150901A SE537803C2 (en) 2011-09-30 2011-09-30 EGR cooler and internal combustion engine with such EGR cooler
DE102012019254A DE102012019254A1 (en) 2011-09-30 2012-09-28 Exhaust gas recirculation cooler for cooling exhaust gas recirculation gases in internal combustion engine, has transfer pipe, which has transmission channel having inlet and outlet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE1150901A SE537803C2 (en) 2011-09-30 2011-09-30 EGR cooler and internal combustion engine with such EGR cooler

Publications (2)

Publication Number Publication Date
SE1150901A1 true SE1150901A1 (en) 2013-03-31
SE537803C2 SE537803C2 (en) 2015-10-20

Family

ID=47878738

Family Applications (1)

Application Number Title Priority Date Filing Date
SE1150901A SE537803C2 (en) 2011-09-30 2011-09-30 EGR cooler and internal combustion engine with such EGR cooler

Country Status (2)

Country Link
DE (1) DE102012019254A1 (en)
SE (1) SE537803C2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2209618B1 (en) 2002-05-28 2005-08-16 Estampaciones Noroeste, S.A. HEAT EXCHANGER FOR AN "EGR" SYSTEM WITH AN INTEGRATED DERIVATION CONDUCT.
DE10260251A1 (en) * 2002-12-20 2004-07-01 Siemens Ag Cooling element for gases
FR2921426B1 (en) * 2007-09-20 2014-02-14 Renault Sas METHOD FOR DIAGNOSING THE EXCHANGER DERIVATION FLAP IN AN EXHAUST GAS RECIRCULATION SYSTEM
DE102008056810B4 (en) * 2008-11-11 2011-11-24 Pierburg Gmbh Cooling device for an internal combustion engine

Also Published As

Publication number Publication date
SE537803C2 (en) 2015-10-20
DE102012019254A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP4906847B2 (en) Engine air management device
US8584458B2 (en) Exhaust power turbine driven EGR pump for diesel engines
US6971377B2 (en) Exhaust gas recirculation cooler with bypass flow
US7931013B2 (en) Three-pass heat exchanger for an EGR system
US7757679B2 (en) Integrated charge air and EGR valve
US7581533B1 (en) Three mode cooler for exhaust gas recirculation
US20090260605A1 (en) Staged arrangement of egr coolers to optimize performance
SE532245C2 (en) Cooling arrangement of a supercharged internal combustion engine
CN1624307A (en) Cooling system for high-temperature unit of aircraft engine and aircraft engine mounted with the system
SE531200C2 (en) Radiator arrangement in a vehicle
US6895752B1 (en) Method and apparatus for exhaust gas recirculation cooling using a vortex tube to cool recirculated exhaust gases
SE530239C2 (en) Radiator arrangement of a vehicle
US20150135690A1 (en) System for recovering energy in an exhaust gas circuit
US8967126B2 (en) Exhaust gas recirculation cooler for an internal combustion engine
ES2268611T3 (en) TURBO POWERED DIESEL ENGINE WITH "EXCESSIVE LONG" EXHAUST GAS RECIRCULATION SYSTEM.
JP2009036063A (en) Exhaust gas recirculation device for internal combustion engine
EP1815127B1 (en) Diverter for exhaust gas recirculation cooler
US20070227141A1 (en) Multi-stage jacket water aftercooler system
KR20110014122A (en) System using supplemental compressor for egr
KR101655174B1 (en) Water cooled type intercooler apparatus
US10196960B2 (en) Cooling system having variable coolant flow paths for exhaust gas recirculation system
US9103300B2 (en) Exhaust gas cooler for an exhaust gas recirculation system, and an exhaust gas recirculation system with such an exhaust gas cooler
KR101821963B1 (en) Cooling device for an engine exhaust gas recirculation circuit
EP3557039B1 (en) Exhaust gas heat exchanger capable of controlling cooling performance
US8418931B2 (en) Heat exchanger with integral thermostats

Legal Events

Date Code Title Description
NUG Patent has lapsed