RU97114799A - ZIRCONIUM ALLOY PIPE FOR ASSEMBLY OF NUCLEAR REACTOR FUEL ELEMENTS - Google Patents

ZIRCONIUM ALLOY PIPE FOR ASSEMBLY OF NUCLEAR REACTOR FUEL ELEMENTS

Info

Publication number
RU97114799A
RU97114799A RU97114799/25A RU97114799A RU97114799A RU 97114799 A RU97114799 A RU 97114799A RU 97114799/25 A RU97114799/25 A RU 97114799/25A RU 97114799 A RU97114799 A RU 97114799A RU 97114799 A RU97114799 A RU 97114799A
Authority
RU
Russia
Prior art keywords
temperature
paragraphs
alloy
annealing
pipe according
Prior art date
Application number
RU97114799/25A
Other languages
Russian (ru)
Other versions
RU2126559C1 (en
Inventor
Мардон Жан-Поль
Сенева Жан
Шарке Даниель
Original Assignee
Фраматом
Компани Женераль де Матьер Нюклеэр
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9501025A external-priority patent/FR2730089B1/en
Application filed by Фраматом, Компани Женераль де Матьер Нюклеэр filed Critical Фраматом
Application granted granted Critical
Publication of RU2126559C1 publication Critical patent/RU2126559C1/en
Publication of RU97114799A publication Critical patent/RU97114799A/en

Links

Claims (13)

1. Труба из сплава на основе циркония, образующая полностью или частично оболочку или трубчатую направляющую сборки ядерного реактора, отличающаяся тем, что сплав содержит 1,0-1,7 % вес. олова, 0,55-0,8 % вес. железа, 0,20-0,60 % вес. по меньшей мере одного из элементов: хром или ванадий и 0,10-0,18 % вес. кислорода, при этом содержание углерода и кремния составляет соответственно 50 - 200 % и 50 - 120 %, остальное цирконий и неизбежные примеси.1. A pipe made of an alloy based on zirconium, forming in whole or in part a shell or a tubular guide assembly of a nuclear reactor, characterized in that the alloy contains 1.0-1.7% by weight. tin, 0.55-0.8% weight. iron, 0.20-0.60% by weight. at least one of the elements: chromium or vanadium and 0.10-0.18% weight. oxygen, while the content of carbon and silicon is respectively 50 - 200% and 50 - 120%, the rest is zirconium and inevitable impurities. 2. Труба по п.1, отличающаяся тем, что сплав находится в полностью рекристаллизованном состоянии. 2. The pipe according to claim 1, characterized in that the alloy is in a fully recrystallized state. 3. Труба по п. 1, отличающаяся тем, что сплав находится в полностью ненапряженном состоянии. 3. The pipe according to claim 1, characterized in that the alloy is in a completely unstressed state. 4. Труба согласно пп. 1, 2 или 3, отличающаяся тем, что сплав содержит около 1,3 % олова, 0,60 % железа, 0,25 % ванадия или хрома, 0,14 % кислорода, 140 % углерода и 90 % кремния. 4. Pipe according to paragraphs. 1, 2 or 3, characterized in that the alloy contains about 1.3% tin, 0.60% iron, 0.25% vanadium or chromium, 0.14% oxygen, 140% carbon and 90% silicon. 5. Труба по любому из пп. 1-4, отличающаяся тем, что соотношение между железом и ванадием приближается к 2:1, причем сплав практически не содержит хрома. 5. The pipe according to any one of paragraphs. 1-4, characterized in that the ratio between iron and vanadium approaches 2: 1, and the alloy practically does not contain chromium. 6. Труба по любому из пп. 1-4, отличающаяся тем, что соотношение между железом и хромом приближается к 2:1, причем сплав практически не содержит ванадия. 6. The pipe according to any one of paragraphs. 1-4, characterized in that the ratio between iron and chromium approaches 2: 1, and the alloy practically does not contain vanadium. 7. Труба по любому из пп. 1-6, отличающаяся тем, что суммарное содержание железа, с одной стороны, ванадия или хрома, с другой стороны, превышает 0,7%. 7. The pipe according to any one of paragraphs. 1-6, characterized in that the total iron content, on the one hand, vanadium or chromium, on the other hand, exceeds 0.7%. 8. Способ получения трубы по любому из пп. 1-7, отличающийся тем, что предусматривает последовательно отливку слитка и его ковку до получения сплошного бруса, закалку бруса, предварительно нагретого до фазы β, при необходимости отжиг до фазы α при температуре 640 - 760°С, волочение прошитой заготовки с получением трубной заготовки, при необходимости, отжиг до фазы α при температуре 600 - 750°С, холодную прокатку в несколько последовательных проходов с получением труб уменьшенной толщины с применением операций промежуточной термообработки в атмосфере инертного газа или в вакууме при температуре 640 - 760°С, предпочтительно при температуре около 730°С при первых двух операциях термообработки и 700°С при последующих, и конечный отжиг в атмосфере инертного газа или в вакууме. 8. A method of obtaining a pipe according to any one of paragraphs. 1-7, characterized in that it provides for casting the ingot and forging it in succession to obtain a solid bar, quenching the bar previously heated to phase β, annealing to phase α at temperature of 640 - 760 ° C, if necessary, drawing the stitched blank to obtain a tube stock , if necessary, annealing to phase α at a temperature of 600 - 750 ° C, cold rolling in several consecutive passes to obtain pipes of reduced thickness using intermediate heat treatment operations in an inert gas atmosphere or in vacuum at a temperature ture of 640 - 760 ° C, preferably at about 730 ° C under the first two operations and heat treatment at 700 ° C subsequent and final annealing in an inert gas atmosphere or in vacuo. 9. Способ по п. 8, отличающийся тем, что конечный отжиг проводят для снятия напряжений при температуре 450 - 500°С. 9. The method according to p. 8, characterized in that the final annealing is carried out to relieve stresses at a temperature of 450 - 500 ° C. 10. Способ по п. 8, отличающийся тем, что конечный отжиг проводят для рекристаллизации при температуре 565 - 630°С. 10. The method according to p. 8, characterized in that the final annealing is carried out for recrystallization at a temperature of 565 - 630 ° C. 11. Способ по любому из пп. 8-10, отличающийся тем, что совокупность операций по термообработке такова, что параметр ΣA составляет 10-18 - 10-16.11. The method according to any one of paragraphs. 8-10, characterized in that the set of heat treatment operations is such that the parameter ΣA is 10 -18 - 10 -16 . 12. Способ по пп. 8, 9 или 10, отличающийся тем, что первый отжиг проводятся при температуре около 730°С. 12. The method according to PP. 8, 9 or 10, characterized in that the first annealing is carried out at a temperature of about 730 ° C. 13. Способ по п. 12, отличающийся тем, что второй отжиг проводят после волочения при температуре около 650°С. 13. The method according to p. 12, characterized in that the second annealing is carried out after drawing at a temperature of about 650 ° C.
RU97114799/25A 1995-01-30 1997-09-01 Zirconium base alloy tube for nuclear reactor fuel assembly RU2126559C1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9501025A FR2730089B1 (en) 1995-01-30 1995-01-30 ZIRCONIUM-BASED ALLOY TUBE FOR FUEL ASSEMBLY OF NUCLEAR REACTOR AND METHOD FOR MANUFACTURING SUCH A TUBE
FR9501025 1995-01-30
PCT/FR1996/000137 WO1996024140A1 (en) 1995-01-30 1996-01-26 Zirconium alloy tube for a nuclear reactor fuel assembly, and method for making same

Publications (2)

Publication Number Publication Date
RU2126559C1 RU2126559C1 (en) 1999-02-20
RU97114799A true RU97114799A (en) 1999-08-27

Family

ID=9475620

Family Applications (1)

Application Number Title Priority Date Filing Date
RU97114799/25A RU2126559C1 (en) 1995-01-30 1997-09-01 Zirconium base alloy tube for nuclear reactor fuel assembly

Country Status (14)

Country Link
US (1) US5887045A (en)
EP (1) EP0808503B1 (en)
JP (1) JP4137181B2 (en)
KR (1) KR100423109B1 (en)
CN (1) CN1131526C (en)
CA (1) CA2210326A1 (en)
DE (1) DE69600630T2 (en)
ES (1) ES2122785T3 (en)
FR (1) FR2730089B1 (en)
RU (1) RU2126559C1 (en)
TW (1) TW419526B (en)
UA (1) UA42041C2 (en)
WO (1) WO1996024140A1 (en)
ZA (1) ZA96642B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3145701A (en) * 1960-11-30 1964-08-25 Aspin Frank Metcalf Rotary valves for internal combustion engines
SE9601594D0 (en) * 1996-04-26 1996-04-26 Asea Atom Ab Fuel boxes and a method for manufacturing fuel boxes
KR100286871B1 (en) * 1998-10-21 2001-04-16 장인순 Zirconium alloy composition with excellent corrosion resistance and mechanical properties
DE19942463C1 (en) * 1999-09-06 2001-05-10 Siemens Ag Fuel rod for a fuel element of a pressurized water reactor has a cladding tube with a corrosion-resistant outer surface made of a zirconium alloy containing alloying additions of niobium, tin, iron, chromium and vanadium
JP2003149369A (en) * 2001-11-08 2003-05-21 Mitsubishi Nuclear Fuel Co Ltd Method of manufacturing fuel assembly support grid
US9284629B2 (en) 2004-03-23 2016-03-15 Westinghouse Electric Company Llc Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
US10221475B2 (en) 2004-03-23 2019-03-05 Westinghouse Electric Company Llc Zirconium alloys with improved corrosion/creep resistance
WO2005094504A2 (en) 2004-03-23 2005-10-13 Westinghouse Electric Company, Llc Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion resistance
US9637809B2 (en) * 2009-11-24 2017-05-02 Ge-Hitachi Nuclear Energy Americas Llc Zirconium alloys exhibiting reduced hydrogen absorption
WO2012173738A1 (en) 2011-06-16 2012-12-20 Westinghouse Electric Company Llc Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
CN110877186B (en) * 2018-09-06 2021-12-28 国核宝钛锆业股份公司 Manufacturing method of large-specification zirconium alloy thin-walled tube and large-specification zirconium alloy thin-walled tube
KR20220003018A (en) * 2019-04-30 2022-01-07 웨스팅하우스 일렉트릭 컴퍼니 엘엘씨 Improved corrosion resistance of additively manufactured zirconium alloys

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1241998B (en) * 1961-12-27 1967-06-08 Siemens Ag Zirconium alloy
CA1214978A (en) * 1982-01-29 1986-12-09 Samuel G. Mcdonald Zirconium alloy products and fabrication processes
DE3528545A1 (en) * 1985-08-08 1987-02-19 Kraftwerk Union Ag FUEL ROD FOR A CORE REACTOR FUEL
DE3873643T2 (en) * 1987-06-23 1993-03-25 Commissariat Energie Atomique METHOD FOR PRODUCING A ZIRCONIUM ALLOY-BASED TUBE FOR NUCLEAR REACTORS AND USE.
DE3805124A1 (en) * 1988-02-18 1989-08-31 Siemens Ag CORE REACTOR FUEL ELEMENT
US5112573A (en) * 1989-08-28 1992-05-12 Westinghouse Electric Corp. Zirlo material for light water reactor applications
US5278882A (en) * 1992-12-30 1994-01-11 Combustion Engineering, Inc. Zirconium alloy with superior corrosion resistance
US5437747A (en) * 1993-04-23 1995-08-01 General Electric Company Method of fabricating zircalloy tubing having high resistance to crack propagation
FR2713009B1 (en) * 1993-11-25 1996-01-26 Framatome Sa Method of manufacturing a cladding tube for a nuclear fuel rod and tubes in accordance with those thus obtained.
FR2714516B1 (en) * 1993-12-29 1996-03-01 Framatome Sa Guide tube for nuclear fuel assembly and method of manufacturing such a tube.
FR2729000A1 (en) * 1994-12-29 1996-07-05 Framatome Sa METHOD OF MANUFACTURING A TUBE FOR ASSEMBLY OF NUCLEAR FUEL AND TUBES CONFORMING TO THOSE OBTAINED

Similar Documents

Publication Publication Date Title
JPH11509927A (en) Tube for nuclear fuel assembly and method of manufacturing the same
RU97114799A (en) ZIRCONIUM ALLOY PIPE FOR ASSEMBLY OF NUCLEAR REACTOR FUEL ELEMENTS
US5855699A (en) Method for manufacturing welded clad steel tube
FI112888B (en) Manufacture of a zirconium protective tube with inner coating
RU95122479A (en) METHOD FOR PRODUCING A TUBULAR SHELL OF NUCLEAR FUEL RODS AND A TUBULAR SHELL OBTAINED BY THE INDICATED METHOD
KR930017045A (en) Nuclear fuel rods and cladding manufacturing method of such fuel rods
RU2002111558A (en) ZIRCONIUM ALLOY AND METHOD FOR PRODUCING AN ELEMENT FOR FUEL ASSEMBLY OF A NUCLEAR REACTOR FROM SUCH ALLOY
KR100707502B1 (en) Method for making thin zirconium alloy elements and wafers obtained
KR960029471A (en) Zirconium base alloy tube used in a nuclear reactor fuel system and its manufacturing method
RU2002111557A (en) ZIRCONIUM ALLOY AND METHOD FOR PRODUCING AN ELEMENT FOR FUEL ASSEMBLY OF A NUCLEAR REACTOR FROM SUCH ALLOY
RU2126559C1 (en) Zirconium base alloy tube for nuclear reactor fuel assembly
KR100349456B1 (en) Nuclear Fuel Rod Sheath Tube
KR940011656A (en) High Speed Molding Aluminum Alloy Plate and Manufacturing Method Thereof
RU2187155C2 (en) Alloy and tube for nuclear reactor fuel assembly and tube manufacturing process
JPH0682582A (en) Improved manufacturing method for heat-treated compound nuclear fuel
EP0112608B1 (en) Method for improving the ductility of autogenous welds in unstabilized, ferritic stainless steel coils
CA2200258A1 (en) Method of cooling steel sections which are hot from rolling
RU2145739C1 (en) Tubular can for nuclear fuel rods and its manufacturing process
EP0090115B1 (en) Cold worked ferritic alloys and components
RU98103241A (en) PIPE FOR NUCLEAR FUEL ASSEMBLY AND METHOD FOR PRODUCING SUCH PIPE
JPS56142826A (en) Production of high-toughness high tensile steel plate
RU2172527C2 (en) Nuclear fuel assembly tube and its manufacturing process
CN115198161B (en) Header for boiler unit with temperature of 650 ℃ and above and preparation method thereof
JP3224107B2 (en) Method for producing boron-containing austenitic stainless steel strip
JP2564425B2 (en) Manufacturing method of high toughness 40kg class steel pipe with excellent SSC resistance