RU97107015A - ALUMINOSILICATE DERIVATIVES - Google Patents

ALUMINOSILICATE DERIVATIVES

Info

Publication number
RU97107015A
RU97107015A RU97107015/25A RU97107015A RU97107015A RU 97107015 A RU97107015 A RU 97107015A RU 97107015/25 A RU97107015/25 A RU 97107015/25A RU 97107015 A RU97107015 A RU 97107015A RU 97107015 A RU97107015 A RU 97107015A
Authority
RU
Russia
Prior art keywords
clay mineral
derivative
measured
less
ammonium
Prior art date
Application number
RU97107015/25A
Other languages
Russian (ru)
Other versions
RU2146651C1 (en
Inventor
Сингх Балбир
Дональд Ричард Макиннон Иан
Пейдж Дэвид
Original Assignee
Дзе Юниверсити Оф Квинсленд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPN0121A external-priority patent/AUPN012194A0/en
Application filed by Дзе Юниверсити Оф Квинсленд filed Critical Дзе Юниверсити Оф Квинсленд
Publication of RU97107015A publication Critical patent/RU97107015A/en
Application granted granted Critical
Publication of RU2146651C1 publication Critical patent/RU2146651C1/en

Links

Claims (14)

1. Производное 2:1 глиняного минерала, включающее (a) проявление сигнала дифракции рентгеновских лучей аморфного образца в виде широкого горба между 22o и 32o 2θ при использовании порошковой дифракции рентгеновских лучей и излучения CuKα , и (b) наличие главным образом тетраэдрически координированного алюминия.1. A 2: 1 derivative of a clay mineral, comprising (a) manifesting an X-ray diffraction signal of an amorphous sample in the form of a wide hump between 22 ° and 32 ° 2θ using powder X-ray diffraction and CuKα radiation, and (b) the presence of mainly tetrahedrally coordinated aluminum. 2. Производное 2: 1 глиняного минерала по п. 1, отличающееся тем, что имеет состав, согласующийся с общей формулой MpAlqSi2Or(OH)sXt • uH2O, где M является ионом аммония или катионом щелочного металла, X представляет собой галогенид, и 0,2 ≤ p ≤ 2,0; 0,5 ≤ q ≤ 2,5; 4,0 ≤ r ≤ 12; 0,5 ≤ s ≤ 4,0; 0,0 ≤ t ≤ 1,0 и 0,0 ≤ u ≤ 6,0.2. The 2: 1 derivative of the clay mineral according to claim 1, characterized in that it has a composition consistent with the general formula M p Al q Si 2 O r (OH) s X t • uH 2 O, where M is an ammonium ion or cation alkali metal, X is a halide, and 0.2 ≤ p ≤ 2.0; 0.5 ≤ q ≤ 2.5; 4.0 ≤ r ≤ 12; 0.5 ≤ s ≤ 4.0; 0.0 ≤ t ≤ 1.0 and 0.0 ≤ u ≤ 6.0. 3. Производное 2: 1 глиняного минерала по п. 1, отличающееся тем, что обладает катионообменной способностью 20-900 миллиэквивалент на 100 г, как измерено посредством обмена ионов аммония или катионов метала из водного раствора. 3. The 2: 1 derivative of the clay mineral according to claim 1, characterized in that it has a cation exchange capacity of 20-900 milliequivalents per 100 g, as measured by the exchange of ammonium ions or metal cations from an aqueous solution. 4. Производное 2: 1 глиняного минерала по п. 3, отличающееся тем, что обладает катионообменной способностью, измеренной посредством обмена аммония, примерно 300 миллиэквивалент на 100 г. 4. The 2: 1 derivative of the clay mineral according to claim 3, characterized in that it has a cation exchange ability, measured by ammonium exchange, of about 300 milliequivalents per 100 g. 5. Производное 2:1 глиняного минерала по п. 1, отличающееся тем, что имеет площадь поверхности, измеренную методом БЭТ изотерм (Браунауэра-Эммета-Теллера) менее чем 400 м2/г.5. The 2: 1 derivative of the clay mineral according to claim 1, characterized in that it has a surface area measured by the BET isotherm method (Braunauer-Emmett-Teller) of less than 400 m 2 / g. 6. Производное 2: 1 глиняного минерала по п. 5, отличающееся тем, что площадь поверхности ВЕТ составляет 25 - 200 м2/г.6. Derived 2: 1 clay mineral according to claim 5, characterized in that the surface area of the BET is 25-200 m 2 / g. 7. Производное 2:1 глиняного минерала по п. 2, отличающееся тем, что M в виде NH4+ Na+, K+, Li+, Rb+ или Cs+, обменивается одним из следующих щелочноземельных металлов - Mg2+, Ca2+, Sr2+ и Ba2+, переходных металлов Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, тяжелых металлов - Pb2+, Cd2+, Hg2+, лантаноидов La3+ и Nd3+ или актиноидов UO22+.7. The 2: 1 derivative of the clay mineral according to claim 2, characterized in that M in the form of NH 4 + Na + , K + , Li + , Rb + or Cs + is exchanged with one of the following alkaline earth metals - Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ , transition metals Cr 3+ , Mn 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Ag + , heavy metals - Pb 2+ , Cd 2+ , Hg 2+ , lanthanides La 3+ and Nd 3+ or actinides UO 2 2+ . 8. Производное 2: 1 глиняного минерала по п. 7, отличающееся тем, что NH4+, Na+, K+, Li+, Rb+ или Cs+ обменивается на Pb2+, Cu2+, Cd2+, Ni2+, Co2+, Cr3+, Sr2+, Zn2+, Nd3+ или UO2+.8. The 2: 1 derivative of the clay mineral according to claim 7, characterized in that NH 4 + , Na + , K + , Li + , Rb + or Cs + is exchanged for Pb 2+ , Cu 2+ , Cd 2+ , Ni 2+ , Co 2+ , Cr 3+ , Sr 2+ , Zn 2+ , Nd 3+, or UO 2+ . 9. Способ получения 2:1 слоистого глиняного минерала, отличающийся тем, что включает стадию взаимодействия 2:1 слоистого глиняного минерала с соединением MX, где M является щелочным металлом или ионом аммония, а X является галогенидом. 9. A method for producing a 2: 1 layered clay mineral, characterized in that it comprises a step of reacting a 2: 1 layered clay mineral with compound MX, where M is an alkali metal or ammonium ion, and X is a halide. 10. Способ по п. 9, отличающийся тем, что глиняный минерал выбирают из монтмориллонита, иллита, палыгорскита или сапонита. 10. The method according to p. 9, characterized in that the clay mineral is selected from montmorillonite, illite, palygorskite or saponite. 11. Способ по п. 9, отличающийся тем, что используют температуру реакции 200oC или менее.11. The method according to p. 9, characterized in that use the reaction temperature of 200 o C or less. 12. Способ по п. 11, отличающийся тем, что используют температуру реакции 50 - 200oC.12. The method according to p. 11, characterized in that use the reaction temperature of 50 to 200 o C. 13. Способ по п. 9, отличающийся тем, что используют время реакции от 1 мин до 100 ч. 13. The method according to p. 9, characterized in that use the reaction time from 1 min to 100 hours 14. Способ по п. 12, отличающийся тем, что используют время реакции менее чем 24 ч. 14. The method according to p. 12, characterized in that use the reaction time of less than 24 hours
RU97107015/12A 1994-12-16 1995-10-23 Alumosilicates derivatives RU2146651C1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPN0121A AUPN012194A0 (en) 1994-12-16 1994-12-16 Alumino-silicate derivatives
AUPN0121 1994-12-16
PCT/AU1995/000698 WO1996018576A1 (en) 1994-12-16 1995-10-23 Alumino-silicate derivatives

Publications (2)

Publication Number Publication Date
RU97107015A true RU97107015A (en) 1999-05-20
RU2146651C1 RU2146651C1 (en) 2000-03-20

Family

ID=3784629

Family Applications (2)

Application Number Title Priority Date Filing Date
RU97107016/12A RU2161065C2 (en) 1994-12-16 1995-10-23 Method of preparing aluminosilicate derivatives
RU97107015/12A RU2146651C1 (en) 1994-12-16 1995-10-23 Alumosilicates derivatives

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU97107016/12A RU2161065C2 (en) 1994-12-16 1995-10-23 Method of preparing aluminosilicate derivatives

Country Status (17)

Country Link
US (2) US6218329B1 (en)
EP (2) EP0797542B1 (en)
JP (2) JPH10509688A (en)
KR (2) KR100388525B1 (en)
CN (2) CN1046120C (en)
AU (1) AUPN012194A0 (en)
BR (2) BR9509504A (en)
DE (2) DE69525373T2 (en)
DK (1) DK0797542T3 (en)
ES (2) ES2149377T3 (en)
HK (2) HK1002762A1 (en)
IN (2) IN188161B (en)
MY (2) MY113408A (en)
NZ (2) NZ294539A (en)
RU (2) RU2161065C2 (en)
WO (2) WO1996018577A1 (en)
ZA (2) ZA959004B (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69512428T2 (en) * 1994-10-25 2000-05-11 Univ Australian ALUMOSILICATE COMPOUNDS WITH CATION EXCHANGE CAPACITY
AUPN614295A0 (en) * 1995-10-23 1995-11-16 University Of Queensland, The Modified kaolinites
NO302559B1 (en) * 1996-06-27 1998-03-23 Norsk Leca As Preparation of inorganic cation exchanger from expanded clay beads and use of the prepared cation exchangers
AUPO787797A0 (en) * 1997-07-15 1997-08-07 University Of Queensland, The Catalytic conversion of gases via cation-exchangeable alumino-silicate materials
AU724315B2 (en) * 1997-07-15 2000-09-14 University Of Queensland, The Catalytic conversion of gases via cation-exchangeable alumino-silicate materials
US6215020B1 (en) * 1998-06-30 2001-04-10 Eastman Chemical Company Basic clay catalyst for the production of pentylglycol monoesters
RU2189139C2 (en) * 2000-04-20 2002-09-20 Тюрюков Сергей Николаевич Method for raising fish, water plants and other hydrobionts in closed reservoirs with ground
RU2194572C2 (en) * 2001-03-26 2002-12-20 Институт катализа им. Г.К.Борескова СО РАН Catalyst and a method for production of synthesis gas via hydrocarbon conversion
US7074257B2 (en) * 2002-10-15 2006-07-11 Synlite Chemical Company, Llc Method for removing heavy metals and radionuclides
US7018542B2 (en) * 2002-10-15 2006-03-28 Eureka Technology, Llc Method for removing heavy metals and radionuclides from an aqueous solution
US6827859B2 (en) * 2002-10-15 2004-12-07 Synlite Chemical Company Llc Method for removing heavy metals and radionuclides from an aqueous solution
DE10312203A1 (en) 2003-03-19 2004-10-07 Ashland-Südchemie-Kernfest GmbH Rheological additive
AU2003901594A0 (en) * 2003-04-04 2003-05-01 Nanochem Research Pty Ltd Aluminosilicates of zeolite n structure
ES2296521B1 (en) * 2006-05-18 2009-04-01 Universidad De Cadiz CLAY MONOLITES FOR THE TREATMENT OF CONTAMINATING GASEOUS EFFLUENTS.
CN100450923C (en) * 2006-12-22 2009-01-14 湖南师范大学 Preparation method of thermal stabilization organic montmorillonite
RU2466933C1 (en) * 2011-04-25 2012-11-20 Вера Борисовна Обухова Colloid alumosilicate
KR101144090B1 (en) * 2011-06-20 2012-05-24 재단법인 탄소순환형 차세대 바이오매스 생산전환 기술연구단 The inhibition method of algal growth using ammonium organo-nanoclays
JP6085436B2 (en) * 2012-09-10 2017-02-22 株式会社Kri Layered clay mineral composite, process for producing the same, film-forming composition and film using the same
GB201305755D0 (en) 2013-03-28 2013-05-15 Quanta Fluid Solutions Ltd Re-Use of a Hemodialysis Cartridge
AR096202A1 (en) 2013-05-06 2015-12-16 Massachusetts Inst Technology ION SOURCE OF ALKAL METALS WITH MODERATE SPEED OF ION RELEASE AND TRAINING METHODS
CN103708483B (en) * 2014-01-15 2015-08-19 中国科学院兰州化学物理研究所盱眙凹土应用技术研发中心 Attapulgite original position crystal conversion prepares the method for recessed-Meng stone
GB201409796D0 (en) 2014-06-02 2014-07-16 Quanta Fluid Solutions Ltd Method of heat sanitization of a haemodialysis water circuit using a calculated dose
KR102637706B1 (en) 2015-10-26 2024-02-15 에코랍 유에스에이 인코퍼레이티드 Highly homogeneous zeolite precursor
GB201523104D0 (en) 2015-12-30 2016-02-10 Quanta Fluid Solutions Ltd Dialysis machine
KR102060640B1 (en) * 2016-09-09 2019-12-30 주식회사 엘지화학 A reinforcing materials for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same
KR102000728B1 (en) 2016-09-09 2019-07-22 주식회사 엘지화학 A reinforcing materials for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same
WO2018048158A1 (en) * 2016-09-09 2018-03-15 주식회사 엘지화학 Rubber reinforcement comprising aluminosilicate particles, and tire rubber composition containing same
KR102134856B1 (en) 2016-11-02 2020-07-16 주식회사 엘지화학 Method for preparing aluminosilicate particles having excellent dispersion, a reinforcing materials for rubber comprising the aluminosilicate particles, and rubber composition for tires comprising the reinforcing materials
CN110139829B (en) 2016-12-02 2023-10-13 埃科莱布美国股份有限公司 Polyaluminium salts and their use in the preparation of high purity colloidal aluminum-silica composite particles and zeolites
GB201622119D0 (en) 2016-12-23 2017-02-08 Quanta Dialysis Tech Ltd Improved valve leak detection system
CN110980754B (en) * 2019-12-31 2023-02-28 湖北三鼎科技有限公司 Preparation method of natural sodium bentonite
KR20220129055A (en) * 2020-02-28 2022-09-22 제이에프이미네라르 가부시키가이샤 halloysite powder
CN115611293B (en) * 2021-07-16 2023-11-07 安徽泽欧新材料技术有限公司 Silicate material ZEO-2 and silicate molecular sieve ZEO-3, synthetic method and use thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA917630A (en) 1972-12-26 K. Maher Philip Catalyst composition
BE612554A (en) * 1961-12-21
US3765825A (en) * 1969-07-22 1973-10-16 V Hurst Viscosity reduction of kaolin by hydrothermal treatment
US3769383A (en) * 1969-07-22 1973-10-30 V Hurst Hydrothermal transformation of kaolin
US3784392A (en) * 1971-04-29 1974-01-08 Huber Corp J M Production of finely divided amorphous alumino-silicate pigments from kaolin
US3837877A (en) * 1971-05-07 1974-09-24 Huber Corp J M Production of rod-shaped micro-crystallites from clay
SU499887A1 (en) 1973-07-12 1976-01-25 Институт Коллоидной Химии И Химии Воды Ан Украинской Сср Method of producing inorganic ion exchanger
US3976598A (en) 1974-03-29 1976-08-24 Mobil Oil Corporation Zeolite synthesis
US4271043A (en) * 1979-09-04 1981-06-02 W. R. Grace & Co. Pillared interlayered clay products
GB8405531D0 (en) * 1984-03-02 1984-04-04 Nadeau P H Randomly interstratified clays
EP0235431B1 (en) * 1985-08-23 1994-06-22 Hagiwara Research Corporation Amorphous aluminosilicate & process for producing the same
CN86101990B (en) * 1986-03-27 1988-06-01 中国石油化工总公司石油化工科学研究院 Process for preparing layered column type of clayey molecular sieve
US5171365A (en) * 1986-06-17 1992-12-15 J. M. Huber Corporation Synthetic alkali metal alumino-silicates compositions and their methods of preparation
SU1588437A1 (en) 1988-10-24 1990-08-30 Институт коллоидной химии и химии воды им.А.В.Думанского Method of producing sorbent based on tremolite
SU1771426A3 (en) 1991-03-19 1992-10-23 Пehзиh Pomah Ahдpeebич Method for production of non-organic sorbent
US5192725A (en) * 1991-09-03 1993-03-09 Uop Gallium/germanium dioctahedral smectite clay and process for preparing the clay
JPH06340413A (en) * 1993-05-28 1994-12-13 Nittetsu Mining Co Ltd Inorganic porous material and its production
ZA944114B (en) 1993-06-17 1995-02-07 Univ Queensland Kaolin derivatives

Similar Documents

Publication Publication Date Title
RU97107015A (en) ALUMINOSILICATE DERIVATIVES
RU97107016A (en) METHOD FOR OBTAINING ALYUMOSILICATE DERIVATIVES
Bischoff A ferroan nontronite from the Red Sea geothermal system
US4329328A (en) Method of synthesizing zincosilicate or stannosilicate or titanosilicate material
RU2161065C2 (en) Method of preparing aluminosilicate derivatives
RU96101163A (en) Derivatives of Kaolina
EP0293032A2 (en) Synthetic, crystalline, porous material containing oxides of silicon and boron
EP0796821A1 (en) ERS-10 Zeolite and process for its preparation
ES8704855A1 (en) Process for the manufacture of crystalline layered alkali metal silicates.
RU2005130633A (en) ALUMINOSILICATES WITH STRUCTURAL N-ZEOLITE
US4626421A (en) Preparation of magadiite
Mizutani et al. Synthesis of nickel and magnesium phyllosilicates with 1: 1 and 2: 1 layer structures
EP0142350A3 (en) Crystalline zeolite composition ecr-2 and process for its preparation
JPH0616416A (en) New polyaluminum chlorosulfate, its synthesis and its application
US4749676A (en) Process for the preparation of a crystalline, swellable sheet silicate of the saponite type
Miyawaki et al. Effects of solution chemistry on the hydrothermal synthesis of kaolinite
US4542002A (en) Silicates with high ion exchange capacity derived from sepiolite and processes for their production
Al-Wakeel et al. Divalent ion uptake of heavy metal cations by (aluminum+ alkali metals)–substituted synthetic 1.1 nm-tobermorites
JP2949227B1 (en) Hydrous bismuth compounds with excellent inorganic anion exchange properties and their production
US7056489B2 (en) Synthesis of zeolite ITQ-16 in an alkaline medium
Xu et al. Preparation and characterization of molecular sieves based on aluminium phosphate
Yoshinaga et al. Basic study on lithium recovery from lithium containing solution.
US4996034A (en) Process for preparing silicon substituted zeolite compositions
JPS636486B2 (en)
US5958354A (en) Aluminosilicate cation exchange compounds