RU95104635A - Method of mineral underwater mining and plant for embodiment of the method - Google Patents

Method of mineral underwater mining and plant for embodiment of the method

Info

Publication number
RU95104635A
RU95104635A RU95104635/03A RU95104635A RU95104635A RU 95104635 A RU95104635 A RU 95104635A RU 95104635/03 A RU95104635/03 A RU 95104635/03A RU 95104635 A RU95104635 A RU 95104635A RU 95104635 A RU95104635 A RU 95104635A
Authority
RU
Russia
Prior art keywords
minerals
rocks
sedimentary rocks
unloading
devices
Prior art date
Application number
RU95104635/03A
Other languages
Russian (ru)
Other versions
RU2098628C1 (en
Inventor
В.С. Ковтун
В.Е. Любинский
Original Assignee
Ракетно-космическая корпорация "Энергия" им.С.П.Королева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ракетно-космическая корпорация "Энергия" им.С.П.Королева filed Critical Ракетно-космическая корпорация "Энергия" им.С.П.Королева
Priority to RU95104635A priority Critical patent/RU2098628C1/en
Publication of RU95104635A publication Critical patent/RU95104635A/en
Application granted granted Critical
Publication of RU2098628C1 publication Critical patent/RU2098628C1/en

Links

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

FIELD: methods of means of mining of mineral deposits on sea and ocean bottoms. SUBSTANCE: the offered method of mineral underwater mining employs the technique of ferrohydrostatic separation. For this purpose, in the known method of underwater mineral mining, including loading of rocks together with sea water into closed volume, mixing of rocks and sea water, separation of mineral and sedimentation rocks, unloading of sedimentation rocks from the volume, unloading of mineral into transportation facilities for subsequent lifting to the surface, rocks together with sea water are loaded into closed volume filled with stable to dissolving and sedimentation ferromagnetic fluid based on sea water of the mining location, magnetized to saturation with simultaneous preservation of aggregate stability. Then, rocks are mixed with magnetized ferromagnetic fluid based on sea water. Minerals and sedimentary rocks are separated by application to the obtained mixture, by means of external magnetic field, of volume magnetic forces of different values whose direction coincides with directions towards the points of unloading of sedimentary rocks and minerals. Then, nonmagnetic bodies including sedimentary rocks and minerals will be pushed to the region of weak field. So, successive separation from other rocks and transportation to unloading point of sedimentary rocks are carried out whose density is lower than that on minerals, and then, separation of mineral and their transportation to unloading points are effected. At the unloading points the respective emulsion and mixture of the sedimentary rocks and minerals in ferromagnetic fluid based on sea water are exposed to the effect of external magnetic field whose intensity is determined in each case depending on the required working pressure inside magnetic fluid for unloading of sedimentary rocks and minerals. Upon completion of mineral unloading, remaining solid sedimentary rocks are unloaded under the action of gravity onto the worked-out ares of sea bottom. The plant for underwater mining of mineral deposits for embodiment of the offered method includes load-carrying frame, mounted on which are device for extraction of rocks with closed volume, device for mixing and cleaning of minerals, transportation of minerals and sedimentary rocks, and having propelling devices of transportation with transportation pipeline, devices for separation of mineral from sedimentary rocks and unloading of minerals and sedimentary rocks with propelling device for unloading. In this case, transportation pipelines of minerals and sedimentary rocks are connected with closed volume, which in its turn, through unloading valves, is connected with pipelines of unloading of mineral and sedimentary rocks. In addition, the plant contains the unit for forming the control action on ferromagnetic fluid based on sea water, formed by common body of devices for extraction of rocks, mixing, cleaning of minerals, separation of minerals from sedimentary rocks, transportation of minerals and sedimentary rocks and also pipelines of device for transportation of minerals and sedimentary rocks and filled with the fluid. The unit for forming of control actions on ferromagnetic fluid based on sea water of closed volume includes device for forming of control actions on ferromagnetic fluid based on sea water in common body of enumerated devices, and devices for forming control actions on ferromagnetic fluid based on sea water in pipelines for transportation of minerals and sedimentary rocks. Introduced additionally into plant are devices for collection of stabilized ferrophase in unloaded rock and device for loading of ferromagnetic fluid based on sea water into closed volume. In so doing, devices for forming control actions on ferromagnetic fluid based on sea water of pipeline for transportation of minerals and sedimentary rocks are installed on respective pipelines. Devices for collection of stabilized ferrophase from unloaded rocks is installed on pipeline of unloading of minerals and sedimentary rocks behind the respective unloading valves. As an example, embodiment of the offered method and plant is considered for mixing of underwater ferromagnese concretions. It is shown that the offered method and plant, as compared with the mechanical methods and means of mining of ferromagnese concretions, offer the following improved characteristics: reduced losses of ferromagnetic concretions; excluded crushing of ferromanganese concretions large in size; reduced abrasive wear of plant devices involved in rock working; reduced physical and chemical pollution of environment by the plant working devices. Besides, one of the paramount and decisive, from the point of view of industrial mining of ferromanganese concretions, ecological problem of utilization of possible pulps with laying of worked sedimentary rocks into bottom layer without making suspension cones. This is ensured by the process train in which separation is carried out in common closed volume of plant, and upon its completion concentrated substances of various density are located in definite parts of the volume. This makes it possible to perform additional compaction of concentrated sedimentary rocks prior to their laying into bottom layer. EFFECT: higher efficiency.

Claims (1)

Изобретения относятся к способам и средствам разработки месторождений полезных ископаемых на дне морей и океанов. В предложенном способе используется метод феррогидростатической сепарации. Для этого в известном способе подводной разработки месторождений, включающем загрузку горных пород вместе с морской водой в замкнутый объем, перемешивание горных пород и морской воды, разделение полезных ископаемых и осадочных пород, выгрузку осадочных пород из указанного объема, выгрузку полезных ископаемых в транспортные средства для последующего подъема на поверхность, горные породы вместе с морской водой загружают в замкнутый объем, заполненный устойчивой к разбавлению, а также седиментационно-устойчивой ферромагнитной жидкостью на основе морской воды (ФМЖОМВ) места разработки, намагниченной до насыщения при одновременном сохранении агрегативной устойчивости. Затем перемешивают горные породы с намагниченной ФМЖОМВ. Разделение полезных ископаемых и осадочных пород производится путем приложения к полученной смеси с помощью внешнего магнитного поля объемных магнитных сил различной величины, направление которых совпадает с направлениями к местам выгрузки осадочных пород и полезных ископаемых. Тогда немагнитные тела, которыми являются осадочные породы и полезные ископаемые, будут испытывать на себе действие сил, выталкивающих их в область слабого поля. Так производится последовательное отделение от остальной породы и транспортировка к месту выгрузки осадочных пород плотностью меньшей, чем плотность полезных ископаемых, а затем отделение полезных ископаемых и транспортировка их к местам выгрузки. В местах выгрузки соответствующие эмульсия и смесь указанных осадочных пород и полезных ископаемых в ФМЖОМВ подвергаются воздействию внешнего магнитного поля, величина напряженности которого определяется в каждом случае исходя из необходимых рабочих давлений внутри магнитной жидкости для выгрузки осадочных пород и полезных ископаемых. По окончании выгрузки полезных ископаемых оставшиеся твердые осадочные породы выгружают под действием сил тяжести на разработанные участки морского дна. Установка для подводной разработки месторождений полезных ископаемых, реализующая предложенный способ, кроме установленных на силовой раме устройства извлечения горных пород с замкнутым объемом, устройств перемешивания, очистки полезных ископаемых, транспортировки полезных ископаемых и осадочных пород с содержанием в последних движителей транспортировки с трубопроводом транспортировки, устройств отделения полезных ископаемых от осадочных пород и выгрузки полезных ископаемых и осадочных пород с движителями выгрузки, причем трубопроводы транспортировки полезных ископаемых и осадочных пород соединены с замкнутым объемом, который через клапаны выгрузки соединен с трубопроводами выгрузки полезных ископаемых и осадочных пород, дополнительно содержит блок формирования управляющих воздействий на ФМЖОМВ замкнутого объема, образованного единым корпусом устройств извлечения горных пород, перемешивания, очистки полезных ископаемых, отделения полезных ископаемых от осадочных пород, транспортировки полезных ископаемых и осадочных пород, а также трубопроводами устройств транспортировки полезных ископаемых и осадочных пород и заполненного указанной жидкостью. Причем сам блок формирования управляющих воздействий на ФМЖОМВ замкнутого объема включает в себя устройство формирования управляющих воздействий на ФМЖОМВ в едином корпусе перечисленных устройств, устройства формирования управляющих воздействий на ФМЖОМВ трубопроводов транспортировки полезных ископаемых и осадочных пород. В установку также дополнительно введены устройства сбора стабилизированной феррофазы с выгружаемой породы и устройство загрузки ФМЖОМВ в замкнутый объем, при этом устройства формирования управляющих воздействий на ФМЖОМВ трубопроводов транспортировки полезных ископаемых и осадочных пород установлены на соответствующих им трубопроводах, а устройство сбора стабилизированной феррофазы с выгружаемой породы - на трубопроводах выгрузки полезных ископаемых и осадочных пород за соответствующими им клапанами выгрузки. По сравнению с механическими способами и средствами разработки ЖМК удается достичь следующих улучшенных показателей: уменьшить потери ЖМК; исключить дробление ЖМК крупных размеров; уменьшить абразивный износ устройств установки, занятых переработкой породы; уменьшить физическое и химическое загрязнения окружающей среды от работающих устройств установки. Кроме того, решается одна из важнейших и решающих с точки зрения возможностей промышленной добычи ЖМК экологическая задача по утилизации возможных пульп с укладкой отработанных осадочных пород в придонный слой без получения "факелов" взвеси. Это обеспечивается технологической цепочкой процесса, в которой сепарация происходит в едином замкнутом объеме установки, а по ее окончании сконцентрированные вещества различной плотности находятся в определенных частях указанного объема. Это позволяет далее произвести дополнительную упаковку сконцентрированных осадочных пород перед их укладкой в придонный слой.The invention relates to methods and means of developing mineral deposits at the bottom of the seas and oceans. In the proposed method, the method of ferrohydrostatic separation is used. To do this, in the known method of underwater mining, including loading rocks together with sea water into a closed volume, mixing rocks and sea water, separating minerals and sedimentary rocks, unloading sedimentary rocks from the specified volume, unloading minerals into vehicles for subsequent rising to the surface, rocks together with sea water are loaded into a closed volume filled with a dilution-resistant, as well as sedimentation-resistant ferromagnetic fluid based on seawater (FMZHOMV) development space, magnetized to saturation while maintaining the aggregate stability. Then the rocks are mixed with magnetized FMZHOMV. Separation of minerals and sedimentary rocks is carried out by applying to the resulting mixture using an external magnetic field volumetric magnetic forces of various sizes, the direction of which coincides with the directions to the places of discharge of sedimentary rocks and minerals. Then non-magnetic bodies, which are sedimentary rocks and minerals, will experience the action of forces pushing them into the field of a weak field. This is how sequential separation from the rest of the rock and transportation to the place of unloading of sedimentary rocks with a density lower than the density of minerals is carried out, and then separation of minerals and their transportation to the places of unloading. In the places of unloading, the corresponding emulsion and a mixture of the specified sedimentary rocks and minerals in the FMHOMW are exposed to an external magnetic field, the intensity of which is determined in each case based on the necessary working pressures inside the magnetic fluid to unload the sedimentary rocks and minerals. At the end of the unloading of minerals, the remaining solid sedimentary rocks are discharged by gravity to the developed sections of the seabed. Installation for underwater mining of mineral deposits that implements the proposed method, in addition to devices for extracting rocks with a closed volume mounted on the power frame, mixing devices, purification of minerals, transportation of minerals and sedimentary rocks containing in the last movers of transportation with a transportation pipeline, separation devices minerals from sedimentary rocks and unloading of minerals and sedimentary rocks with unloading movers, and the pipe pipelines for transporting minerals and sedimentary rocks are connected to a closed volume, which through discharge valves is connected to pipelines for unloading minerals and sedimentary rocks, additionally contains a block for the formation of control actions on a closed volume FMZHOMV formed by a single body of devices for extracting rocks, mixing, cleaning minerals , separation of minerals from sedimentary rocks, transportation of minerals and sedimentary rocks, as well as pipelines PTS transport minerals and rocks of sedimentary and filled with said liquid. Moreover, the control actions generation unit for closed-loop FMJOMV includes a device for generating control actions for FMJOMV in a single casing of the above devices, devices for generating control actions for FMJOMV of pipelines for transporting minerals and sedimentary rocks. The installation also additionally includes devices for collecting stabilized ferrophase from paged rock and a device for loading FMJOMV into a closed volume, while devices for generating control actions on FMJOMV of pipelines for transporting minerals and sedimentary rocks are installed on their pipelines, and a device for collecting stabilized ferrophase from paged rock is installed on pipelines for unloading minerals and sedimentary rocks behind their respective discharge valves. Compared with the mechanical methods and development tools of the LMC, the following improved indicators can be achieved: reduce the loss of the LMC; to exclude crushing of large-sized LMCs; reduce abrasive wear of installation devices engaged in rock processing; reduce physical and chemical environmental pollution from operating devices of the installation. In addition, one of the most important and decisive from the point of view of the possibilities of industrial mining of iron-ore complex is solved the environmental problem of disposing of possible pulps with the laying of spent sedimentary rocks in the bottom layer without receiving "torches" of suspension. This is ensured by the technological chain of the process, in which separation occurs in a single closed volume of the installation, and upon its completion concentrated substances of various densities are located in certain parts of the specified volume. This allows further packaging of concentrated sedimentary rocks before they are laid in the bottom layer.
RU95104635A 1995-03-28 1995-03-28 Method of underwater mining of mineral deposits and plant for its embodiment RU2098628C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95104635A RU2098628C1 (en) 1995-03-28 1995-03-28 Method of underwater mining of mineral deposits and plant for its embodiment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95104635A RU2098628C1 (en) 1995-03-28 1995-03-28 Method of underwater mining of mineral deposits and plant for its embodiment

Publications (2)

Publication Number Publication Date
RU95104635A true RU95104635A (en) 1996-12-20
RU2098628C1 RU2098628C1 (en) 1997-12-10

Family

ID=20166178

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95104635A RU2098628C1 (en) 1995-03-28 1995-03-28 Method of underwater mining of mineral deposits and plant for its embodiment

Country Status (1)

Country Link
RU (1) RU2098628C1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2011160C2 (en) * 2013-07-12 2015-01-13 Ihc Holland Ie Bv VACUUM CONTROL METHOD FOR A RISER LINE.

Also Published As

Publication number Publication date
RU2098628C1 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
TW542805B (en) Method and device for moving rocks and sediments under water
CN105731758A (en) Sea dredged silt dewatering and solidifying treatment integrated device and method
Das et al. Waste management in mining industry
CN107542431B (en) Method for gas-liquid-solid multiphase fluidization separation of natural gas hydrate on seabed
ATE390538T1 (en) PROPANT RECOVERY SYSTEM
Bath Deep sea mining technology: Recent developments and future projects
RU95104635A (en) Method of mineral underwater mining and plant for embodiment of the method
US20120138539A1 (en) Method and Apparatus For Extraction of Hydrocarbons From a Body of Water Using Recovery Particle Binding
KR20140039478A (en) Vessel for remedying polluted soil in marine or river using biological treatment
JPH10296120A (en) Treatment of sea sand
RU2530950C2 (en) Method and device for processing dredge spoils excavated by dredger
JP6159301B2 (en) Processing method of radioactive material
RU60136U1 (en) MOLE KUSHPARENKO INSTALLATION FOR PRIMARY ENRICHMENT OF MINERAL MINERALS MINERATED FROM THE SEA BOTTOM
Hogland et al. Preliminary analysis of elements in water supply sludge at Rönneholms Mosse fields, southern Sweden
Masuda Challenges toward the sea-floor massive sulfide mining with more advanced technologies
KR20140039476A (en) Vessel for remedying oil polluted soil in marine or river
RU2386024C1 (en) Method of oil extraction from waste oil field
JP3775214B2 (en) Landfill treatment method and system using dehydrated cake
RU2008116900A (en) METHOD FOR DEVELOPING SMALL KIMBERLITE TUBES
CA3004135C (en) Hydraulic hoisting of potash and other evaporite ores
CN102912775A (en) Processing technique for efficiently removing ocean oil spill
RU97115793A (en) METHOD FOR KIMBERLITE TUBES DEVELOPMENT
JP2017196620A (en) Contaminated soil purifying method and system in shield method
STROPNIK et al. The effects of coal mining and energy production in the Salek valley, Slovenia, on surface water bodies
RU2106495C1 (en) Method for development of placer deposits