RU94040134A - Method of orientation of space vehicle in space by means of solar-dynamic surfaces and device for realization of this method - Google Patents

Method of orientation of space vehicle in space by means of solar-dynamic surfaces and device for realization of this method

Info

Publication number
RU94040134A
RU94040134A RU94040134/11A RU94040134A RU94040134A RU 94040134 A RU94040134 A RU 94040134A RU 94040134/11 A RU94040134/11 A RU 94040134/11A RU 94040134 A RU94040134 A RU 94040134A RU 94040134 A RU94040134 A RU 94040134A
Authority
RU
Russia
Prior art keywords
spacecraft
space vehicle
space
solar
longitudinal axis
Prior art date
Application number
RU94040134/11A
Other languages
Russian (ru)
Other versions
RU2102291C1 (en
Inventor
Г.В. Малышев
В.М. Кульков
В.И. Зернов
А.В. Первененок
Original Assignee
Научно-исследовательский институт прикладной механики и электродинамики
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-исследовательский институт прикладной механики и электродинамики filed Critical Научно-исследовательский институт прикладной механики и электродинамики
Priority to RU94040134A priority Critical patent/RU2102291C1/en
Publication of RU94040134A publication Critical patent/RU94040134A/en
Application granted granted Critical
Publication of RU2102291C1 publication Critical patent/RU2102291C1/en

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

FIELD: space engineering. SUBSTANCE: during orientation of space vehicle in space, its longitudinal axis is oriented in preset direction through deflecting the solar-dynamic surfaces tangentially and radially through first preset angles, after which these surfaces are returned to neutral position. At preset section of interplanetary trajectory, longitudinal axis of space vehicle is directed to Sun by deflecting the solar-dynamic surfaces through preset angle, space vehicle is twisted to preset angular velocity, after which solar-dynamic surfaces are returned to neutral position; at the next section of trajectory, longitudinal axis of space vehicle is directed perpendicularly to plane of orbit of space vehicle through deflecting the solar-dynamic surface through second preset angles both tangentially and readily and after precession of longitudinal axis of space vehicle to position perpendicular to plane of heliocentric orbit of space vehicle, these surface are returned to neutral position. In area of periphelion, longitudinal axis of space vehicle is directed to Earth by deflecting the solar-dynamic surfaces through third preset angles in directions indicated and direction to Earth is tracked during communication session with Earth, after which these surfaces are returned to neutral position. Device for orientation of space vehicle in space contains at least one pair of solar-dynamic surfaces mounted symmetrically on casing of space vehicle for turn relative to radial and tangential axes of space vehicle; area of solar-dynamic surface is selected in accordance with above-mentioned operations. EFFECT: enhanced reliability. 3 cl, 2 dwg

Claims (1)

Использование: космическая техника, системы ориентации космических аппаратов (КА) с использованием солнечно-динамических поверхностей (СДП). Сущность изобретения: при ориентации КА в пространстве его продольную ось ориентируют в заданном направлении путем отклонения СДП в тангенциальном и радиальном направлениях на первые заданные углы, после чего эти поверхности возвращают в нейтральное положение. На заданном участке межпланетной траектории продольную ось КА направляют на Солнце путем отклонения СДП на заданный угол, закручивают КА до заданной угловой скорости, после чего возвращают СДП в нейтральное положение; на следующем участке траектории продольную ось КА направляют перпендикулярно плоскости орбиты КА путем отклонения СДП на вторые заданные углы в тангенциальном и радиальном направлениях, а после прецессии продольной оси КА в положение, перпендикулярное плоскости гелиоцентрической орбиты КА, данные поверхности возвращают в нейтральное положение. В районе перигелия продольную ось КА направляют на Землю отклонением СДП на третьи заданные углы в указанных направлениях и отслеживают направление на Землю в течение сеанса связи с Землей, после чего эти поверхности вновь возвращают в нейтральное положение. Устройство ориентации КА в пространстве содержит по меньшей мере пару СДП, установленных симметрично на корпусе КА с возможностью поворота относительно радиальной и тангенциальной осей КА, при этом площадь СДП выбрана в соответствии с режимами вышеописанных операций.Usage: space technology, the orientation system of spacecraft (SC) using solar-dynamic surfaces (SDP). The essence of the invention: when the spacecraft is oriented in space, its longitudinal axis is oriented in a given direction by deflecting the SDP in the tangential and radial directions to the first given angles, after which these surfaces are returned to a neutral position. On a given section of the interplanetary trajectory, the longitudinal axis of the spacecraft is directed to the Sun by deviating the SDP to a given angle, the spacecraft is twisted to a given angular velocity, and then the SDP is returned to a neutral position; in the next section of the trajectory, the longitudinal axis of the spacecraft is directed perpendicular to the plane of the spacecraft's orbit by deflecting the SDP to the second given angles in the tangential and radial directions, and after the precession of the spacecraft's longitudinal axis to the position perpendicular to the plane of the spacecraft's heliocentric orbit, these surfaces are returned to the neutral position. In the perihelion region, the longitudinal axis of the spacecraft is directed to the Earth by the deviation of the SDS to the third specified angles in the indicated directions and the direction to the Earth is monitored during the communication session with the Earth, after which these surfaces are again returned to the neutral position. The spacecraft orientation device in space contains at least a pair of SDPs mounted symmetrically on the spacecraft’s body with the possibility of rotation relative to the radial and tangential axes of the spacecraft, while the SDP area is selected in accordance with the modes of the operations described above.
RU94040134A 1994-10-28 1994-10-28 Method of orientation of space vehicle in space by means of solar dynamic surfaces and device for realization of this method RU2102291C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94040134A RU2102291C1 (en) 1994-10-28 1994-10-28 Method of orientation of space vehicle in space by means of solar dynamic surfaces and device for realization of this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94040134A RU2102291C1 (en) 1994-10-28 1994-10-28 Method of orientation of space vehicle in space by means of solar dynamic surfaces and device for realization of this method

Publications (2)

Publication Number Publication Date
RU94040134A true RU94040134A (en) 1997-04-20
RU2102291C1 RU2102291C1 (en) 1998-01-20

Family

ID=20162130

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94040134A RU2102291C1 (en) 1994-10-28 1994-10-28 Method of orientation of space vehicle in space by means of solar dynamic surfaces and device for realization of this method

Country Status (1)

Country Link
RU (1) RU2102291C1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107390523B (en) * 2017-07-13 2020-07-14 西北工业大学 Adaptive neural network dynamic surface controller of space tether composite system

Also Published As

Publication number Publication date
RU2102291C1 (en) 1998-01-20

Similar Documents

Publication Publication Date Title
US4358076A (en) Method of sun and earth acquisition for three axis stabilized satellites equipped with acquisition sensors
EP0499815A1 (en) Triaxially stabilized satellite provided with electric propulsors for orbital maneuvering and attitude control
IL106926A (en) Planetary inertial power source and a method of extracting energy therefrom
DE3879694D1 (en) METHOD FOR ORIENTING A SYNCHRONIZED SATELLITE.
Lissauer Shepherding model for Neptune's arc ring
US3243706A (en) Satellite net configured for uninterrupted global coverage and dynamically balanced tracking
RU94040134A (en) Method of orientation of space vehicle in space by means of solar-dynamic surfaces and device for realization of this method
US4807835A (en) Spacecraft attitude stabilization system
JPH01312000A (en) Method of inclining moment of inertia of rotary free body in fixed direction in space
JP2806659B2 (en) Direction tracking device
EP0916576A3 (en) High torque double gimbal control moment gyro
JPH07187091A (en) Launching method for plurality of satellites
Heck Ion beam optics of misaligned beam transport elements
Paranicas et al. Satellite sweeping of energetic particles at Neptune
EP0933253A3 (en) A device for positioning and securing a headlamp on a support structure of a vehicle
RU2059540C1 (en) Method of formation of planet surface local observation system
RU2106749C1 (en) Space optical communication line between two objects
Sinha et al. Effect of solar radiation pressure on the motion and stability of the system of two inter-connected satellites when their center of mass moves in a circular orbit
Barker et al. Spin nutation in binary systems due to general relativistic and quadrupole effects
FR2418922A1 (en) Double suspension gyroscope for military vehicle e.g. tank navigation - has armature with pivots in universal joint suspension supporting rotor of torque motor
Liu Orientation and resonance locks for satellites in the elliptic orbit
MAGIROS et al. 440 DEMETRIOS G. MAGIROS
Thibodeau Use of planetary oblateness for parking-orbit alinement
Kubo et al. Numerical integration of precession and nutation of the rigid Earth
WESTERLUND Method of orienting a synchronous satellite(Patent)