RU94039148A - Method of measurement of physical quantity - Google Patents

Method of measurement of physical quantity

Info

Publication number
RU94039148A
RU94039148A RU94039148/28A RU94039148A RU94039148A RU 94039148 A RU94039148 A RU 94039148A RU 94039148/28 A RU94039148/28 A RU 94039148/28A RU 94039148 A RU94039148 A RU 94039148A RU 94039148 A RU94039148 A RU 94039148A
Authority
RU
Russia
Prior art keywords
correlation
measurement
computed
correlation functions
description
Prior art date
Application number
RU94039148/28A
Other languages
Russian (ru)
Other versions
RU2104495C1 (en
Inventor
Л.Б. Уразбахтина
Ю.О. Обухова
Original Assignee
Уфимский государственный авиационный технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Уфимский государственный авиационный технический университет filed Critical Уфимский государственный авиационный технический университет
Priority to RU94039148A priority Critical patent/RU2104495C1/en
Publication of RU94039148A publication Critical patent/RU94039148A/en
Application granted granted Critical
Publication of RU2104495C1 publication Critical patent/RU2104495C1/en

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

FIELD: measurement technology. SUBSTANCE: method may be used in information and measurement systems of flying vehicles and power installations. N differences of output signals of pickups forming nonrepeated combinations in pairs are computed, correlation functions of N differential signals are computed for q fixed sequentially growing correlation intervals. Values of correlation functions of measurement errors of each pickup for each fixed correlation interval are computed by solving system of q linear equations of type given in description of invention. Q unknown parameters of correlation functions of measurement errors of each pickups are computed then by solving system of q nonlinear equations of type given in description of invention relative to unknowns afor computation of optimal parameters of filter. EFFECT: increased accuracy of measurement of physical quantity.

Claims (1)

Использование: в информационно-измерительных системах летательных аппаратов и силовых установок. Задача: повышение точности измерения физической величины. Сущность изобретения: вычисляют N разностей выходных сигналов датчиков, образующих попарно неповторяющиеся совокупности, вычисляют корреляционные функции N разностных сигналов для q фиксированных последовательно увеличивающихся интервалов корреляции, вычисляют значения корреляционных функций погрешностей измерения каждого датчика для каждого фиксированного интервала корреляции путем решения системы q линейных уравнений, приведенной в описании. Затем вычисляют q неизвестных параметров корреляционных функций погрешностей измерения каждого датчика путем решения системы q нелинейных уравнений, приведенной в описании, относительно неизвестных для вычисления оптимальных параметров фильтра.Usage: in the information-measuring systems of aircraft and power plants. Objective: improving the accuracy of measuring physical quantities. The essence of the invention: calculate N differences of the output signals of the sensors forming pairwise non-repeating aggregates, calculate the correlation functions of N difference signals for q fixed successively increasing correlation intervals, calculate the values of the correlation functions of the measurement error of each sensor for each fixed correlation interval by solving a system of q linear equations, given in description. Then, q unknown parameters of the correlation functions of the measurement errors of each sensor are calculated by solving the q system of nonlinear equations given in the description, relatively unknown for calculating the optimal filter parameters.
RU94039148A 1994-10-17 1994-10-17 Process of measurement of physical quantities RU2104495C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94039148A RU2104495C1 (en) 1994-10-17 1994-10-17 Process of measurement of physical quantities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94039148A RU2104495C1 (en) 1994-10-17 1994-10-17 Process of measurement of physical quantities

Publications (2)

Publication Number Publication Date
RU94039148A true RU94039148A (en) 1996-08-20
RU2104495C1 RU2104495C1 (en) 1998-02-10

Family

ID=20161845

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94039148A RU2104495C1 (en) 1994-10-17 1994-10-17 Process of measurement of physical quantities

Country Status (1)

Country Link
RU (1) RU2104495C1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681701C2 (en) * 2017-05-02 2019-03-12 Акционерное общество "РОТЕК" (АО "РОТЕК") Method of predicting a state of a technical system based on difference functions

Also Published As

Publication number Publication date
RU2104495C1 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
CN101833089B (en) Doppler anemometry laser radar sensitivity calibrating system and method
WO1996024027A3 (en) Improvements relating to pulse echo distance measurement
JPH0125010B2 (en)
CH637764A5 (en) Meter electro-optical use.
CA2041621A1 (en) Method and apparatus for measuring a phase-modulated signal
CN1330933C (en) Open 100p optical fiber gyro output error compensating method based on nerve network
RU94039148A (en) Method of measurement of physical quantity
EP0369493A3 (en) Method for contactless position measurement
DK1079212T3 (en) Method for magnetic-inductive flow measurement
CN102221356B (en) Device and method for measuring laser incident angle by sinusoidally modulating multi-beam laser heterodyne secondary harmonics with Doppler galvanometer
CN115876413A (en) Bridge displacement estimation method under action of moving vehicle based on acceleration
DE69528963D1 (en) ARRANGEMENT FOR PREFERRED AMBULANTED MEASUREMENT BY MEANS OF ELECTRODES
ATE277340T1 (en) METHOD AND DEVICE FOR MEASURING THE PHASE DIFFERENCE BETWEEN INTENSITY MODULATED OPTICAL SIGNALS
SU1663404A1 (en) Method of controlling radial clearences when assembling turbines
CN112816055B (en) Self-calibration optical micro-vibration detection method
CN110221606B (en) Distance change rate solving and robot formation method based on ranging signals
SU1674203A1 (en) Method of measuring physical parameter current value
EP0965844A3 (en) Method and device for calibrating a sensor for the dynamic measurement of movements
JPS57146111A (en) Optical length measuring device
SU1169420A1 (en) Method of determining angles
SU877319A1 (en) Method and device for measuring displacements
SU1596916A1 (en) Method of calibrating velocity scale of moessbauer spectrometer
RU1800288C (en) Method of determining flux density of radiation from a moving remote object
JPS59135331A (en) Wavelength calculation of spectrometer
SU1144032A1 (en) Device for measuring photoreceiver frequency-contrast characteristic