RU94012550A - DEVICE CORIOLIS (OPTIONS) AND METHOD FOR MEASURING THE SPECIFIC EXPENSE OF TECHNOLOGICAL FLUID THROUGH IT, THE SCHEME AND METHOD FOR MEASURING THE FIRST AND SECOND OUTPUT SIGNALS WITH ITS USE - Google Patents

DEVICE CORIOLIS (OPTIONS) AND METHOD FOR MEASURING THE SPECIFIC EXPENSE OF TECHNOLOGICAL FLUID THROUGH IT, THE SCHEME AND METHOD FOR MEASURING THE FIRST AND SECOND OUTPUT SIGNALS WITH ITS USE

Info

Publication number
RU94012550A
RU94012550A RU94012550/28A RU94012550A RU94012550A RU 94012550 A RU94012550 A RU 94012550A RU 94012550/28 A RU94012550/28 A RU 94012550/28A RU 94012550 A RU94012550 A RU 94012550A RU 94012550 A RU94012550 A RU 94012550A
Authority
RU
Russia
Prior art keywords
channel pair
measuring
measurement results
temperature fluctuations
channel
Prior art date
Application number
RU94012550/28A
Other languages
Russian (ru)
Other versions
RU2100781C1 (en
Inventor
Дж. Золок Майкл
Original Assignee
Микро Моушн, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/728,546 external-priority patent/US5231884A/en
Application filed by Микро Моушн, Инк. filed Critical Микро Моушн, Инк.
Publication of RU94012550A publication Critical patent/RU94012550A/en
Application granted granted Critical
Publication of RU2100781C1 publication Critical patent/RU2100781C1/en

Links

Claims (1)

Предложены устройство и способ для использования в измерительном приборе Кориолиса, которые практически полностью устраняют возникающие в результате колебания температуры погрешности измерений, которые в противном случае могут образовываться различиями в рабочей характеристике между индивидуальными входными каналами, которые используются в этом измерительном приборе. В данном случае в измерительном приборе используются две пары входных каналов. В процессе использования этот прибор будет повторно измерять внутреннюю фазовую задержку каждой канальной пары, а затем вычитать связанную с каждой канальной парой задержку из основанных на фактическом потоке жидкости результатов измерения. В то время, как одна канальная пара измеряет фактический поток жидкости, другая канальная пара будет измерять свою внутреннюю фазовую задержку, при этом канальные пары будут постоянно чередовать свои функции, образуя соответствующий циклический режим работы. Поскольку обе канальные пары работают в циклическом режиме с довольно высокой скоростью, то текущее значение внутренней фазовой задержки для каждой канальной пары будет довольно точно отражать любые вызываемые колебанием температуры изменения, которые затем могут происходить в рабочей характеристике канальной пары, благодаря чему практически полностью устраняются все вызываемые колебаниями температуры компоненты ошибки из результатов измерения потока, которые выдает эта канальная пара. Кроме того, предлагаемый прибор измеряет температуру трубки Вентури таким образом, который удаляет из результатов измерений практически все связанные с колебанием температуры ошибки. Более того, прибор также измеряет и обновляет свое значение отметки механического нуля, используя для этого лишь результаты измерения значения Δt нулевого потока, а сами результаты имеют достаточно низкое содержание помех, затем это значение отметки механического нуля вычитают из основанных на потоке жидкости результатов измерения, чтобы устранить все содержащиеся в результатах погрешности, которые в противном случае могут иметь место.A device and method are proposed for use in a Coriolis measuring instrument that almost completely eliminates measurement errors resulting from temperature fluctuations that could otherwise be formed by differences in performance between the individual input channels used in this measuring instrument. In this case, the measuring device uses two pairs of input channels. During use, this instrument will re-measure the internal phase delay of each channel pair, and then subtract the delay associated with each channel pair from the measurement results based on the actual fluid flow. While one channel pair measures the actual fluid flow, another channel pair will measure its internal phase delay, while the channel pairs will constantly alternate their functions, forming the corresponding cyclic mode of operation. Since both channel pairs operate in a cyclical mode with a fairly high speed, the current value of the internal phase delay for each channel pair will fairly accurately reflect any changes caused by temperature fluctuations that can then occur in the performance characteristics of the channel pair, thereby almost completely eliminating all caused temperature fluctuations of the error component from the flow measurement results that this channel pair produces. In addition, the proposed instrument measures the temperature of the Venturi tube in a way that removes from the measurement results almost all errors related to temperature fluctuations. Moreover, the device also measures and updates its value of the mechanical zero mark, using only the measurement results of the Δt value of the zero flow, and the results themselves have a fairly low noise content, then this value of the mechanical zero mark is subtracted from the flow-based measurement results to eliminate all errors in the results that may otherwise occur.
RU9494012550A 1991-07-11 1992-07-02 Caryolysis device (variants) and method of measurement of flow rate of process liquid passing through it; circuit and method of measurement of first and second output signals with its use RU2100781C1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US07/728546 1991-07-11
US07/728,546 US5231884A (en) 1991-07-11 1991-07-11 Technique for substantially eliminating temperature induced measurement errors from a coriolis meter
US07/728,546 1991-07-11
PCT/US1992/005584 WO1993001473A1 (en) 1991-07-11 1992-07-02 A technique for substantially eliminating temperature induced measurement errors from a coriolis meter

Publications (2)

Publication Number Publication Date
RU94012550A true RU94012550A (en) 1995-09-27
RU2100781C1 RU2100781C1 (en) 1997-12-27

Family

ID=24927282

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9494012550A RU2100781C1 (en) 1991-07-11 1992-07-02 Caryolysis device (variants) and method of measurement of flow rate of process liquid passing through it; circuit and method of measurement of first and second output signals with its use

Country Status (21)

Country Link
US (2) US5231884A (en)
EP (1) EP0593623B1 (en)
JP (1) JP2583012B2 (en)
KR (1) KR0146686B1 (en)
CN (2) CN1163731C (en)
AT (1) ATE143726T1 (en)
AU (1) AU662546B2 (en)
BR (1) BR9206115A (en)
CA (1) CA2113165C (en)
CZ (1) CZ4594A3 (en)
DE (1) DE69214290T2 (en)
ES (1) ES2094917T3 (en)
HU (1) HU216208B (en)
MD (1) MD960379A (en)
MX (1) MX9204044A (en)
MY (1) MY110166A (en)
PL (1) PL170494B1 (en)
RU (1) RU2100781C1 (en)
SK (1) SK2794A3 (en)
TJ (1) TJ235B (en)
WO (1) WO1993001473A1 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228327A (en) * 1991-07-11 1993-07-20 Micro Motion, Inc. Technique for determining a mechanical zero value for a coriolis meter
US5469748A (en) * 1994-07-20 1995-11-28 Micro Motion, Inc. Noise reduction filter system for a coriolis flowmeter
US5555190A (en) * 1995-07-12 1996-09-10 Micro Motion, Inc. Method and apparatus for adaptive line enhancement in Coriolis mass flow meter measurement
DE19652002C2 (en) * 1995-12-15 2003-03-27 Flowtec Ag Vibration meter
DE19732605C2 (en) * 1997-07-29 2001-12-06 Krohne Ag Basel Method for determining mass flow according to the Coriolis principle
US7784360B2 (en) 1999-11-22 2010-08-31 Invensys Systems, Inc. Correcting for two-phase flow in a digital flowmeter
US8467986B2 (en) 1997-11-26 2013-06-18 Invensys Systems, Inc. Drive techniques for a digital flowmeter
US8447534B2 (en) 1997-11-26 2013-05-21 Invensys Systems, Inc. Digital flowmeter
US6293157B1 (en) * 1998-01-02 2001-09-25 Graco Minnesota Inc. Compensation of coriolis meter motion induced signal
US6748813B1 (en) 1998-12-08 2004-06-15 Emerson Electric Company Coriolis mass flow controller
US6513392B1 (en) 1998-12-08 2003-02-04 Emerson Electric Co. Coriolis mass flow controller
US6493642B1 (en) * 1999-06-11 2002-12-10 Yousif A. Hussain Method of determining mass flow rate by the Coriolis principle
US6378364B1 (en) 2000-01-13 2002-04-30 Halliburton Energy Services, Inc. Downhole densitometer
US6688176B2 (en) * 2000-01-13 2004-02-10 Halliburton Energy Services, Inc. Single tube densitometer
US6378354B1 (en) * 2000-07-21 2002-04-30 Micro Motion, Inc. System for calibrating a drive signal in a coriolis flowmeter to cause the driver to vibrate a conduit in a desired mode of vibration
JP3707610B2 (en) * 2001-05-18 2005-10-19 三菱電機株式会社 Flow rate detector
DE10140617A1 (en) * 2001-08-18 2003-03-06 Bosch Gmbh Robert Measuring system with ratiometric frequency output
EP1298421A1 (en) * 2001-09-27 2003-04-02 Endress + Hauser Flowtec AG Method for the monitoring of a Coriolis mass flow meter
US6997033B2 (en) * 2004-02-03 2006-02-14 Emerson Electric Co. Flow meter pickoff assembly and flow meter pickoff adjustment method for nulling flow meter zero offset
DE102004055553A1 (en) * 2004-11-17 2006-05-18 Endress + Hauser Flowtec Ag Measuring and operating circuit for a Coriolis mass flowmeter with three measuring channels
DE102007021099A1 (en) 2007-05-03 2008-11-13 Endress + Hauser (Deutschland) Ag + Co. Kg Method for commissioning and / or reconfiguring a programmable field meter
DE102007030691A1 (en) 2007-06-30 2009-01-02 Endress + Hauser Flowtec Ag Measuring system for a medium flowing in a process line
DE102007030699A1 (en) 2007-06-30 2009-01-15 Endress + Hauser Flowtec Ag Measuring system for a medium flowing in a process line
DE102007030690A1 (en) 2007-06-30 2009-05-07 Endress + Hauser Flowtec Ag Measuring system for a medium flowing in a process line
DE102007030700A1 (en) 2007-06-30 2009-05-07 Endress + Hauser Flowtec Ag Measuring system for a medium flowing in a process line
DE102007063372A1 (en) 2007-12-30 2009-07-02 Endress + Hauser Flowtec Ag Measuring system for a medium flowing in a process line
DE102007037166A1 (en) 2007-08-07 2009-02-19 Endress + Hauser Flowtec Ag gauge
DE102007058608A1 (en) 2007-12-04 2009-06-10 Endress + Hauser Flowtec Ag Electric device
DE102008022373A1 (en) 2008-05-06 2009-11-12 Endress + Hauser Flowtec Ag Measuring device and method for monitoring a measuring device
DE102009002289A1 (en) 2009-04-08 2010-10-14 Endress + Hauser Flowtec Ag Method for determining period duration of periodic primary signal for determining e.g. mass flow rate, involves generating reference clock signal, and determining period duration based on number and reference values
CN102859852B (en) 2010-04-19 2015-11-25 恩德斯+豪斯流量技术股份有限公司 The drive circuit of measurement translator and the measuring system formed by this drive circuit
DE202010006553U1 (en) 2010-05-06 2011-10-05 Endress + Hauser Flowtec Ag Electronic measuring device with an optocoupler
DE102010030924A1 (en) 2010-06-21 2011-12-22 Endress + Hauser Flowtec Ag Electronics housing for an electronic device or device formed therewith
DE102011100092B4 (en) 2011-04-29 2013-04-18 Krohne Messtechnik Gmbh Method for operating a resonance measuring system
DE102011076838A1 (en) 2011-05-31 2012-12-06 Endress + Hauser Flowtec Ag Meter electronics for a meter device and meter device formed thereby
DE102011089808A1 (en) 2011-12-23 2013-06-27 Endress + Hauser Flowtec Ag Method or measuring system for determining a density of a fluid
CN102589545B (en) * 2012-01-12 2014-08-27 中国兵器工业第二0五研究所 Zero-position self-calibrating voltage frequency conversion device of inertial measurement unit
DE102012213644A1 (en) * 2012-08-02 2014-02-20 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration unit with automatic defrost
DE102013021136B3 (en) * 2013-12-13 2014-12-18 Abb Technology Ag Method for determining the transit time of the signals in the signal paths in a Coriolis flowmeter
AU2014400665B2 (en) * 2014-07-08 2018-08-23 Micro Motion, Inc. Vibratory flow meter and method to generate digital frequency outputs
EP3189312B1 (en) * 2014-09-04 2024-08-21 Micro Motion, Inc. Differential flowmeter tool
RU2665350C1 (en) 2014-10-21 2018-08-29 Майкро Моушн, Инк. Device for application of a variable algorithm for a vibration flowmeter and a related method
US9534897B2 (en) * 2015-01-12 2017-01-03 The Boeing Company High bandwidth Coriolis vibratory gyroscope (CVG) with in-situ bias self-calibration
DE102015100573A1 (en) * 2015-01-15 2016-07-21 Krohne Ag Method of operating a Coriolis mass flowmeter
JP6879923B2 (en) * 2015-03-13 2021-06-02 マイクロ モーション インコーポレイテッド Signal temperature compensation in vibrating flowmeter
DE102015111686A1 (en) * 2015-07-17 2017-01-19 Krohne Messtechnik Gmbh A method of operating a Coriolis mass flowmeter and Coriolis mass flowmeter in this regard
CN105865555B (en) * 2016-05-24 2018-08-24 合肥工业大学 A kind of high temperature resistance analog drive circuit of Coriolis mass flowmeter
DE102016114860A1 (en) 2016-08-10 2018-02-15 Endress + Hauser Flowtec Ag Driver circuit and thus formed converter electronics or thus formed measuring system
CN110431387B (en) * 2017-03-20 2021-11-09 高准公司 Determining zero point offset of a vibrating meter under process conditions
DE102023101930A1 (en) 2022-12-02 2024-06-13 Endress+Hauser Flowtec Ag Procedure for checking and/or (re-)commissioning a modular measuring system

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3585841A (en) * 1970-05-22 1971-06-22 Bendix Corp Self-calibrating pressure ratio measurement system
US4422338A (en) * 1981-02-17 1983-12-27 Micro Motion, Inc. Method and apparatus for mass flow measurement
JPS58151518A (en) * 1982-03-04 1983-09-08 Yokogawa Hokushin Electric Corp Mass flow meter
US4488108A (en) * 1982-08-27 1984-12-11 Rockwell International Corporation Phase detector error compensation apparatus
US4600994A (en) * 1982-10-06 1986-07-15 Takeda Riken Kogyo Kabushikikaisha Phase difference measuring apparatus
US4491025A (en) * 1982-11-03 1985-01-01 Micro Motion, Inc. Parallel path Coriolis mass flow rate meter
US4817448A (en) * 1986-09-03 1989-04-04 Micro Motion, Inc. Auto zero circuit for flow meter
EP0324783B1 (en) * 1986-10-03 1995-06-14 Micro Motion Incorporated Custody transfer meter
CA1322467C (en) * 1986-10-14 1993-09-28 Wayne Pratt Method and apparatus for measuring mass flow
GB2199711B (en) * 1987-01-08 1990-10-24 Schlumberger Electronics Converter calibration
GB8705758D0 (en) * 1987-03-11 1987-04-15 Schlumberger Electronics Uk Mass flow measurement
US5027662A (en) * 1987-07-15 1991-07-02 Micro Motion, Inc. Accuracy mass flow meter with asymmetry and viscous damping compensation
US4852409A (en) * 1988-06-09 1989-08-01 Fischer & Porter Company Signal recovery system for mass flowmeter
US4879911A (en) * 1988-07-08 1989-11-14 Micro Motion, Incorporated Coriolis mass flow rate meter having four pulse harmonic rejection
US4843890A (en) * 1988-07-08 1989-07-04 Micro Motion, Incorporated Coriolis mass flow rate meter having an absolute frequency output
US4872351A (en) * 1988-08-23 1989-10-10 Micro Motion Incorporated Net oil computer
US4876879A (en) * 1988-08-23 1989-10-31 Ruesch James R Apparatus and methods for measuring the density of an unknown fluid using a Coriolis meter
US4876898A (en) * 1988-10-13 1989-10-31 Micro Motion, Inc. High temperature coriolis mass flow rate meter
US4934196A (en) * 1989-06-02 1990-06-19 Micro Motion, Inc. Coriolis mass flow rate meter having a substantially increased noise immunity
US5009109A (en) * 1989-12-06 1991-04-23 Micro Motion, Inc. Flow tube drive circuit having a bursty output for use in a coriolis meter
US5228327A (en) * 1991-07-11 1993-07-20 Micro Motion, Inc. Technique for determining a mechanical zero value for a coriolis meter

Similar Documents

Publication Publication Date Title
RU94012550A (en) DEVICE CORIOLIS (OPTIONS) AND METHOD FOR MEASURING THE SPECIFIC EXPENSE OF TECHNOLOGICAL FLUID THROUGH IT, THE SCHEME AND METHOD FOR MEASURING THE FIRST AND SECOND OUTPUT SIGNALS WITH ITS USE
RU94015853A (en) METHOD FOR OBTAINING THE VALUE OF THE MECHANICAL ZERO OF A KORIOLIS MEASURER AND A CORIOLIS MEASURER
ES2094917T3 (en) A TECHNIQUE TO SUBSTANTIALLY ELIMINATE TEMPERATURE INDUCED ERRORS ON A CORIOLIS METER.
MY110208A (en) A technique for determining a mechanical zero value for a coriolis meter.
US3402606A (en) Fluid velocity measuring system
SU402853A1 (en) DIGITAL MEASURING INTERVALS OF TIME
SU669268A1 (en) Liquid viscosity measuring method
SU134589A1 (en) Phase frequency telemetry method and device for its implementation
CA2205309A1 (en) A technique for substantially eliminating temperature induced measurement errors from a coriolis meter
SU855532A1 (en) Digital phase meter
SU945820A1 (en) Device for measuring number of periods
SU1157478A1 (en) Method of estimating phase-meter error at 90-deg.graduation line
SU1437764A1 (en) Apparatus for automatic measurement of moistire content of loose materials
SU115993A1 (en) Ultrasonic device for measuring the flow rate
SU564601A1 (en) Medium flow rate ultrasound meter
SU577429A1 (en) Gas density meter
SU690341A1 (en) Device for measuring shaft power and acceleration
SU451092A1 (en) Voltage multiplier
SU561142A1 (en) Bridge measuring device
SU1090855A1 (en) Apparatus for measuring drilling rate
SU501361A1 (en) Apparatus for measuring and recording logarithmic damping decrement
SU922514A1 (en) Ultrasonic flowmeter
SU410324A1 (en)
SU1422181A1 (en) Digital phase meter
SU572648A2 (en) Ultrasonic single-channel flowmeter