RU92094U1 - Радиальный реактивно-роторный двигатель с роторами противоположного вращения - Google Patents

Радиальный реактивно-роторный двигатель с роторами противоположного вращения Download PDF

Info

Publication number
RU92094U1
RU92094U1 RU2009141533/22U RU2009141533U RU92094U1 RU 92094 U1 RU92094 U1 RU 92094U1 RU 2009141533/22 U RU2009141533/22 U RU 2009141533/22U RU 2009141533 U RU2009141533 U RU 2009141533U RU 92094 U1 RU92094 U1 RU 92094U1
Authority
RU
Russia
Prior art keywords
stage
rotor
rotors
rotation
nozzles
Prior art date
Application number
RU2009141533/22U
Other languages
English (en)
Inventor
Виктор Иванович Сычиков
Абдулрахман Усманович Сембиев
Олег Викторович Мальханов
Юрий Михайлович Архаров
Сергей Андреевич Дяченко
Георгий Александрович Козырев
Original Assignee
Закрытое акционерное общество "РТИ-Системы вторичного энергопитания"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "РТИ-Системы вторичного энергопитания" filed Critical Закрытое акционерное общество "РТИ-Системы вторичного энергопитания"
Priority to RU2009141533/22U priority Critical patent/RU92094U1/ru
Application granted granted Critical
Publication of RU92094U1 publication Critical patent/RU92094U1/ru

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

1. Устройство для получения механической энергии, содержащее роторы первой и второй ступени противоположного вращения и кинематически связанный с ними выходной вал, ротор первой ступени выполнен с соплами Лаваля, ротор второй ступени - с сужающимися соплами, расположенными по окружности, а между роторами образовано замкнутое кольцевое пространство, отличающееся тем, что по меньшей мере часть каждого ротора выполнена в виде кольца и одно кольцо охватывает другое, а каждое сопло Лаваля и каждое сужающееся сопло выполнено с входом и выходом на цилиндрических поверхностях соответствующего кольца и центральная линия каждого сопла изогнута таким образом, чтобы обеспечить поворот потока рабочего тела с сохранением направления потока перпендикулярным оси вращения, причем направление поворота потока в сужающихся соплах ротора второй ступени противоположно направлению поворота потока в соплах Лаваля ротора первой ступени. ! 2. Устройство по п.1, отличающееся тем, что кинематическая связь роторов с выходным валом осуществлена посредством эпициклов, связанных каждый с соответствующим сателлитом, связанным посредством водила с выходным валом. ! 3. Устройство по п.1, отличающееся тем, что роторы установлены на трубе для подвода рабочего тела с возможностью вращения вокруг ее оси.

Description

Полезная модель относится к машиностроению, а именно к гидравлическим, пневматическим и паровым турбинам и промышленно применимо в промышленности и транспорте для двигателей, приводов электрогенераторов, компрессоров холодильных установок, насосов и тому подобного.
Известна турбина для получения механической энергии в турбине («Турбина без выходного вала» (патент РФ №2156864, МПК F01D 1/32) и «Радиальная турбомашина» (патент РФ №2189450, МПК F01D 1/32)), в которой осуществляют подачу рабочего тела в замкнутое пространство и его разгон и расширение в расположенных по окружности реактивных лопатках с истечением радиально, причем последующий ряд лопаток вращается в противоположную сторону от ряда предыдущего. Предложенные турбомашины имеют колеса встречного вращения, как и турбина Юнгстрема, но не имеют выходных валов. Генераторы располагаются снаружи самой турбины, а магниты ротора генераторов крепятся к самому колесу, причем магниты одного генератора крепятся к одному колесу, магниты второго - к другому. Катушки статора генераторов крепятся к корпусу турбины. Каждое колесо с ротором своего генератора вращается в подшипниках установленных на неподвижной трубе статора. По этой трубе и осуществляется подвод пара к, колесам турбины.
Недостатками этих аналогов являются:
- сложность регулирования мощности, так как для максимальной эффективности способа угловые скорости колес турбины должны быть одинаковыми, что требует специальную систему регулирования частоты вращения и распределения энергии потребителей, подключенных к обоим генераторам;
- недопустимость разгона рабочего тела на каждой, кроме последней ступени, до сверхзвуковой скорости, а, следовательно, невозможность получения большей механической энергии в ступени и меньшего числа ступеней, а следовательно, лучших массогабаритных характеристик двигателя, невозможность использования образовавшегося скачка уплотнения за каждой сверхзвуковой ступенью, для восстановления части кинетической энергии рабочего тела в статическое давление и последующего преобразования его в механическую работу;
- трудности охлаждения подшипников и генераторов механизма.
Наиболее близкими к предложенным является турбина и сегнерово колесо (патент РФ №2280168, МПК F01D 1/32, 2004)).
В известной турбине, имеющей вход и выход рабочего тела, оболочку и сегнеровы колеса, установленные внутри цилиндра соосно с валом и с возможностью вращения, в сегнеровых колесах выполнены отверстия в виде сопел Лаваля под прямым углом к радиусу кольца и под острым углом к оси его вращения, содержится, по меньшей мере, одно дополнительное сегнерово колесо с отверстиями в виде сужающихся сопел, расположенных по кольцу под прямым углом к радиусу кольца и под острым углом к оси его вращения и торцевые неподвижные элементы, сегнеровы колеса выполнены в виде колец, причем сегнеровы колеса установлены между цилиндром и оболочкой таким образом, что между ними формируется замкнутое кольцевое пространство. В частности, вход рабочего тела может быть расположен между торцевым неподвижным элементом и сегнеровым колесом, а вход рабочего тела может быть расположен между сегнеровыми колесами.
Известное сегнерово колесо (см. там же), содержит симметрично выполненные отверстия в виде сопел Лаваля под прямым углом к радиусу колеса и под острым углом к оси его вращения.
Недостатками этого ближайшего аналога являются:
- жесткая связь оболочки и рабочего колеса, установленных на едином валу приводит к вращению рабочих колес и оболочки в одну сторону, что приводит к потерям энергии внутри двигателя из-за торможения потока рабочего тела на набегающей стороне колес и потерь на выходе из сопел последнего колеса со скоростью, и, следовательно, к низкому коэффициенту полезного действия;
- поскольку в сегнеровых колесах выполнены отверстия в виде сопел под прямым углом к радиусу кольца и под острым углом к оси его вращения, в работу преобразуется только часть механической энергии, доля которой пропорциональна косинусу этого угла;
- ограниченная прочность цилиндрической оболочки из-за множества отверстий на ее поверхности ограничивает окружную скорость оболочки и еще больше понижает коэффициент полезного действия двигателя.
Техническим результатом полезной модели является устранение перечисленных недостатков, а именно, снижение потерь энергии и повышение КПД уменьшение массы двигателя.
Технический результат достигается тем, что в устройстве для получения механической энергии, содержащем роторы первой и второй ступени противоположного вращения и кинематически связанный с ними выходной вал, ротор первой ступени выполнен с соплами Лаваля, ротор второй ступени - с сужающимися соплами, расположенными по окружности, а между роторами образовано замкнутое кольцевое пространство, согласно изобретению, по меньшей мере, часть каждого ротора выполнена в виде кольца и одно кольцо охватывает другое, а каждое сопло Лаваля и каждое сужающееся сопло выполнено с входом и выходом на цилиндрических поверхностях соответствующего кольца, центральные линии сопел лежат в плоскости, перпендикулярной оси вращения роторов и изогнуты таким образом, чтобы обеспечить поворот потока рабочего тела с сохранением направления потока перпендикулярным оси вращения, причем направление поворота потока в сужающихся соплах ротора второй ступени противоположно направлению поворота потока в соплах Лаваля ротора первой ступени.
Кинематическая связь каждого ротора с выходным валом может быть осуществлена, в частности, посредством соответствующего эпицикла, связанного с соответствующим сателлитом, связанным посредством водила с выходным валом.
Кроме того, роторы могут быть установлены на трубе для подвода рабочего тела с возможностью вращения вокруг ее оси.
Сущность полезной модели поясняется чертежами, где на фиг.1 и фиг.2 представлено сечение плоскостью, перпендикулярной оси вращения, части ротора 1 первой ступени, в котором расположены сопла Лаваля 2 с изгибом центральной линии в противоположную вращению ротора 1 сторону, и показаны треугольники скоростей на входе в сопла Лаваля 2 (фиг.1) и на его выходе (фиг.2). Ускоренное течение рабочего тела в сопле 2 создает реактивную силу, действующую на ротор 1. В расширяющейся части сопла 2 поток рабочего тела разгоняется до сверхзвуковой скорости Wcd1 и выходит из сопла под углом α3 к касательной окружности радиусом R4.
На фиг.3 представлены треугольники скоростей на входе и выходе сужающихся сопел 3 ротора 4 второй ступени предлагаемого устройства (двигателя) и направления вращения роторов 1 и 4.
На фиг.1-3 также представлены расчетные значения углов и скоростей потока рабочего тела, полученных для исходных данных: начальное давление и паросодержание насыщенного пара Р0=0,497 МПа, x0=0,997, конечное давление пара Р2=0,1 МПа.
На фиг.4 показана диаграмма "s-h", иллюстрирующая процессы расширения насыщенного водяного пара в двухступенчатом радиальном реактивно-роторном двигателе с роторами встречного вращения (жирная линия выше) и в трехступенчатой активной турбине (тонкая линия ниже), построенная по результатам расчета при одинаковых граничных условиях, представленным в таблицах 1 и 2. В таблице 3 представлены расчетные значения эффективности работы турбины и двухступенчатом радиальном реактивно-роторном двигателе с роторами встречного вращения.
На фиг.5 показана кинематическая схема предложенного устройства на примере двухступенчатого радиального реактивно-роторном двигателя с роторами встречного вращения, в котором объединена механическая энергия роторов первой и второй ступени.
Устройство для получения механической энергии содержит роторы 1 и 5 первой и второй ступени и кинематически связанный с ними выходной вал. Ротор 1 первой ступени выполнен с соплами Лаваля 2, ротор 4 второй ступени - с сужающимися соплами 3, расположенными по окружности. По меньшей мере часть каждого из роторов 1 и 4 имеет форму кольца, одно из которых охватывает другое с образованием между роторами 1 и 4 замкнутого кольцевого пространства. Каждое сопло Лаваля 2 и каждое сужающееся сопло 3 выполнено с входом и выходом на цилиндрических поверхностях соответствующего кольца. Центральная линия каждого сопла лежит в плоскости, перпендикулярной оси вращения ротора и изогнута таким образом, чтобы обеспечить поворот потока рабочего тела с сохранением направления потока перпендикулярным оси вращения, причем направление поворота потока в сужающихся соплах 3 ротора 4 второй ступени противоположно направлению поворота потока в соплах Лаваля 2 ротора 1 первой ступени.
Устройство для получения механической энергии работает следующим образом.
Рабочее тело подается в сопла Лаваля 2 ротора 1 первой ступени со скоростью близкой к окружной скорости ротора 1 первой ступени. Дальнейший разгон рабочего тела до сверхзвуковых скоростей осуществляется в соплах 2 с поворотом потока в противоположную сторону по отношению к направлению потока на входе в сопло 2, что обеспечивает вращение ротора 1 первой ступени за счет реактивной силы и вращающего момента. Рабочее тело из сопел Лаваля 2 ротора 1 первой ступени подается в образованное роторами 1 и 4 первой и второй ступени замкнутое пространство, где оно, взаимодействуя с ротором 4 второй ступени, тормозится с образованием скачка уплотнения, что приводит к преобразованию кинетической энергии потока рабочего тела в потенциальную энергию с увеличением давления, температуры и энтальпии рабочего тела. Далее рабочее тело поступает в суживающиеся сопла 3 ротора 4 второй ступени, поворачивающие поток перпендикулярно оси вращения в противоположную сторону по отношению к первой ступени и позволяющие выходить рабочему телу по касательной к цилиндрической поверхности ротора 4 второй ступени, который вращается в противоположном по отношению к ротору 1 первой ступени направлении. Во второй ступени происходит разгон рабочего тела до скорости равной звуковой либо меньшей звуковой скорости и совершение работы за счет реактивной тяги сопел 3.
На фиг.5 показана кинематическая схема устройства на примере двигателя и передачи механической энергии к генератору. Роторы 1 и 4 приводят во вращение каждый свой эпицикл 5 и 6, которые через опорные и упорные подшипники закреплены в статоре двигателя и передают вращение, направленное в противоположные стороны, сателлитам 7, которые связаны посредством водила с выходным валом, вращающим якорь синхронного генератора. Размеры зубчатых зацеплений и частоты подобраны таким образом, чтобы на номинальной мощности генератор вырабатывал стандартную частоту электрического тока. Роторы установлены на трубе 8 для подвода рабочего тела с возможностью вращения вокруг ее оси.
Подобная конструкция, сохраняя все преимущества турбины Юнгстрема, позволяет при меньшем числе ступеней существенно увеличить срабатываемый рабочим телом теплоперепад и, соответственно, увеличить внутренний кпд турбины, существенно уменьшив габариты, массу и стоимость двигателя.
Использование предлагаемой конструкции реактивно-роторного двигателя позволяет, по сравнению с существующими паровыми турбинами при меньшем числе ступеней (см. фиг.4) заметно увеличить вырабатываемый рабочим телом теплоперепад и, соответственно, механическую работу и тепловую эффективность, увеличить внутренний кпд двигателя, существенно уменьшив его габариты, массу и стоимость.
Уменьшение влажности отработанного пара (см. табл.2) обеспечивает мелкодисперсность (гомогенность) двухфазного потока, отсутствие скольжения фаз при трансзвуковой скорости течения рабочего тела в соплах и между ступенями дает двигателю, по сравнению с паровыми турбинами, лучшую тепловую экономичность, минимум потерь на трение и более высокую безотказность.
Отсутствие рабочих лопаток и вала в роторе реактивно-роторного двигателя и трансзвуковое течение рабочего тела в соплах и между ступенями делает его работоспособным при любой влажности рабочего тела, вплоть до насыщенной жидкости, не требует высокой чистоты рабочего тела по растворенным и механическим примесям, уменьшает массогабаритные характеристики и повышает маневренность и экономичность двигателя по сравнению с известными конструкциями паровых и газовых турбин.
Простота заявляемой конструкции снижает ее стоимость и делает двигатель конкурентоспособным даже на начальных стадиях реализации.
Таблица 1
Параметры пара в трехступенчатой активной турбине
Наименование точки на s-h диаграмме Обозн. точки p МПа x h кДж/кг s кДж/кг·К
вход в направляющий аппарат 1-й ступени 0 0,497 0,997 2742,0913 6,8092
выход из направляющего аппарата и вход в рабочие лопатки 1-й ступени 1 т 0,288 0,968 2652,9370 6,8330
выход из рабочих лопаток 1-ой ступени и вход в направляющий аппарат 2-й ступени 2 т 0,288 0,970 2658,1759 6,8459
выход из направляющего аппарата и вход в рабочие лопатки 2-й ступени 3 т 0,166 0,944 2573,78 6,8694
выход из рабочих лопаток 2-ой ступени и вход в направляющий аппарат 3-й ступени 4 т 0,166 0,946 2578,737 6,8822
выход из направляющего аппарата и вход в рабочие лопатки 3-й ступени 5 т 0,1 0,9248 2505,237 6,9035
выход из турбины 6 т 0,1 0,9267 2509,556 6,9151
Таблица 2
Параметры пара в двухступенчатом РРД
Наименование точки на s-h диаграмме Обозначение точки на s-h диаграмме p МПа x h кДж/кг s кДж/кг·К
вход в 1-ую ступень 0 0,497 0,997 2742,0913 6,8092
выход из 1-ой ступени 1 0,105 0,928 2515,602 6,9090
скачок и вход во 2-ю ступень 2 0,116 0,933 2531,002 6,9091
выход из 2-ой ступени и РРД 3 0,1 0,927 2510,588 6,9179
Таблица 3
Расчетные значения эффективности работы турбины и радиального реактивно-роторного двигателя
Наименование параметра Обозначение РРД Турбина
Располагаемый теплоперепад Hά, кДж/кг 327,691 327,691
Работа на валу Lвал, КДЖ/КГ 307,343 232,535
КПД ηi 0,938 0,710

Claims (3)

1. Устройство для получения механической энергии, содержащее роторы первой и второй ступени противоположного вращения и кинематически связанный с ними выходной вал, ротор первой ступени выполнен с соплами Лаваля, ротор второй ступени - с сужающимися соплами, расположенными по окружности, а между роторами образовано замкнутое кольцевое пространство, отличающееся тем, что по меньшей мере часть каждого ротора выполнена в виде кольца и одно кольцо охватывает другое, а каждое сопло Лаваля и каждое сужающееся сопло выполнено с входом и выходом на цилиндрических поверхностях соответствующего кольца и центральная линия каждого сопла изогнута таким образом, чтобы обеспечить поворот потока рабочего тела с сохранением направления потока перпендикулярным оси вращения, причем направление поворота потока в сужающихся соплах ротора второй ступени противоположно направлению поворота потока в соплах Лаваля ротора первой ступени.
2. Устройство по п.1, отличающееся тем, что кинематическая связь роторов с выходным валом осуществлена посредством эпициклов, связанных каждый с соответствующим сателлитом, связанным посредством водила с выходным валом.
3. Устройство по п.1, отличающееся тем, что роторы установлены на трубе для подвода рабочего тела с возможностью вращения вокруг ее оси.
Figure 00000001
RU2009141533/22U 2009-11-11 2009-11-11 Радиальный реактивно-роторный двигатель с роторами противоположного вращения RU92094U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009141533/22U RU92094U1 (ru) 2009-11-11 2009-11-11 Радиальный реактивно-роторный двигатель с роторами противоположного вращения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009141533/22U RU92094U1 (ru) 2009-11-11 2009-11-11 Радиальный реактивно-роторный двигатель с роторами противоположного вращения

Publications (1)

Publication Number Publication Date
RU92094U1 true RU92094U1 (ru) 2010-03-10

Family

ID=42135703

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009141533/22U RU92094U1 (ru) 2009-11-11 2009-11-11 Радиальный реактивно-роторный двигатель с роторами противоположного вращения

Country Status (1)

Country Link
RU (1) RU92094U1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145969A1 (en) * 2010-05-20 2011-11-24 Aleksandr Alekseevich Pavlov Turbine
RU2491425C2 (ru) * 2011-10-24 2013-08-27 Федор Камильевич Глумов Паровой роторно-лопастный двигатель
CN114607476A (zh) * 2022-03-04 2022-06-10 暨南大学 一种全负荷工况高效汽轮机组、设计方法及运行方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145969A1 (en) * 2010-05-20 2011-11-24 Aleksandr Alekseevich Pavlov Turbine
RU2491425C2 (ru) * 2011-10-24 2013-08-27 Федор Камильевич Глумов Паровой роторно-лопастный двигатель
CN114607476A (zh) * 2022-03-04 2022-06-10 暨南大学 一种全负荷工况高效汽轮机组、设计方法及运行方法
CN114607476B (zh) * 2022-03-04 2023-05-09 暨南大学 一种全负荷工况高效汽轮机组、设计方法及运行方法

Similar Documents

Publication Publication Date Title
RU2703888C2 (ru) Компрессор осевого газотурбинного двигателя с ротором противоположного вращения
US9745860B1 (en) Power transmission system for turbine or compressor having counter-rotating blades
US4075500A (en) Variable stator, diffuser augmented wind turbine electrical generation system
WO2015195871A1 (en) Turbine apparatus with counter-rotating blades
WO2014055570A1 (en) Generator
RU92094U1 (ru) Радиальный реактивно-роторный двигатель с роторами противоположного вращения
RU2420661C1 (ru) Способ получения механической энергии и радиальный реактивно-роторный двигатель с роторами противоположного вращения для его реализации
US10247450B2 (en) Device and method for converting thermal energy
EP3517729B1 (en) A multi-stage radial turboexpander
US9127595B2 (en) Parallel cascaded cycle gas expander
US11661858B2 (en) Turbine generator
US10190436B2 (en) Power transmission system for turbine, a turbocharger, a compressor, or a pump
EP3119991B1 (en) Centrifugal radial turbine
Moroz et al. Comparison of counter–rotating and traditional axial aircraft low-pressure turbines integral and detailed performacnes
CN113914942A (zh) 一种采用超音速透平膨胀机的orc装置
US9322414B2 (en) Turbomachine
JPH04237801A (ja) 二軸反転軸流タービン
RU2280168C1 (ru) Способ получения механической энергии в турбине, турбина и сегнерово колесо для его реализации
US10260367B2 (en) Power transmission system for turbines or compressors having counter-rotating blades
US2945670A (en) Active-reactive energy applications for prime movers
EP3578763A1 (en) Power transmission system for turbine, a turbocharger, a compressor, or a pump
RU2305772C2 (ru) Осевая проточная турбина
JP2019535946A (ja) 低蒸気温度で作動するように適合される多段軸流タービン
RU185105U1 (ru) Турбина
JPS5848732B2 (ja) 電力発生方法およびその装置

Legal Events

Date Code Title Description
MG1K Anticipatory lapse of a utility model patent in case of granting an identical utility model

Ref document number: 2009141531

Country of ref document: RU

Effective date: 20110610