RU88420U1 - Гелиевый криостат для оптических исследований - Google Patents

Гелиевый криостат для оптических исследований Download PDF

Info

Publication number
RU88420U1
RU88420U1 RU2009119194/22U RU2009119194U RU88420U1 RU 88420 U1 RU88420 U1 RU 88420U1 RU 2009119194/22 U RU2009119194/22 U RU 2009119194/22U RU 2009119194 U RU2009119194 U RU 2009119194U RU 88420 U1 RU88420 U1 RU 88420U1
Authority
RU
Russia
Prior art keywords
helium
optical
cryostat
windows
sample
Prior art date
Application number
RU2009119194/22U
Other languages
English (en)
Inventor
Евгений Иванович Демихов
Константин Павлович Мелетов
Сергей Иванович Дорожкин
Original Assignee
Российская Федерация, от лица которой выступает Федеральное агентство по науке и инновациям
ООО "РТИ, Криомагнитные системы"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от лица которой выступает Федеральное агентство по науке и инновациям, ООО "РТИ, Криомагнитные системы" filed Critical Российская Федерация, от лица которой выступает Федеральное агентство по науке и инновациям
Priority to RU2009119194/22U priority Critical patent/RU88420U1/ru
Application granted granted Critical
Publication of RU88420U1 publication Critical patent/RU88420U1/ru

Links

Abstract

Гелиевый криостат для оптических исследований, содержащий внешний корпус, выполненный из верхней и нижней частей, резервуары с жидкими гелием-4, азотом и гелием-3, два медных экрана, три оптических окна, размещенных на внешнем корпусе и двух медных экранах, отличающийся тем, что он дополнительно снабжен держателем образца, нижняя часть которого выполнена в виде конуса и прижата к конической выемке на дне цилиндрического резервуара с жидким гелием-3, а цилиндрический резервуар с жидким гелием-3 снабжен оптическим окном, расположенным на единой оптической оси с другими окнами.

Description

Полезная модель относится к криогенным приборам для физических исследований при температуре до 0.45 К и может быть использована для оптических исследований свойств образцов, помещаемых внутри камеры термостатирования и охлаждаемых жидким гелием-3.
Известен криостат, позволяющий проводить эксперименты с использованием сверхпроводящих соленоидов при низких температурах с откачкой паров жидкого гелия-3 из отдельного небольшого объема. («Приборы и техника эксперимента», №2, 1996 г., с.165-166). В известном криостате образцы во время эксперимента погружены в жидкий гелий-3. Газообразный гелий-3 из баллона конденсируется на внешней стенке цилиндрической камеры диаметром 28 мм, заполненной жидким гелием-4, находящимся под откачкой. Конденсат скапливается в нижней части вставки внутри стакана с двойными стенками, между которыми создается вакуум. Держатель с образцами крепится ко дну камеры с помощью тонкостенной трубки из нержавеющей стали. Держатель образца снабжен нагревателем, который позволяет поднимать температуру образца при работе с конденсированным гелием-3 вплоть до комнатной Вставка собрана из тонкостенных трубок из нержавеющей стали. Недостатком данной конструкции является уменьшение проходного отверстия в тракте откачки гелия-3 и связанное с этим некоторое повышение минимально достижимой температуры. Минимальная рабочая температура составляла 0.37 К.
Наиболее близким по технической сущности и достигаемому эффекту является криостат, описанный в работе «Оптический криостат для исследований при температурах до 0,5 К», ПТЭ. №6, 1979 г., авторы Л.П.Межов-Деглин, В.И.Ревенко, А.Ф.Дитте. Этот криостат, включающий в себя вакуумированный корпус с оптически прозрачными окнами, содержит сосуд с ожиженным гелием-3, находящимся в тепловом контакте с хладопроводом и закрепленной на нем стеклянной ампулы с размещенным в ней образцом, заполненной гелием-4. Описываемый криостат изначально сконструирован для оптических исследований свойств твердого гелия. Однако он был использован и для оптических исследований свойств образцов, помещаемых внутри стеклянной ампулы и охлаждаемых жидким или твердым гелием-4. Криостат содержит в верхней части капку, цилиндрический вакуумный наружный кожух, азотный сосуд емкостью 5 л гелиевый сосуд емкостью 6 л, окруженный азотным экраном. Гелиевый и азотный сосуды подвешены к верхнему фланцу кожуха на тонкостенных трубах из нержавеющей стали. Кожух, сосуды, горловина гелиевого сосуда изготовлены также из нержавеющей стали. Большинство вакуумных швов выполнены аргонно-дуговой сваркой, делали после изготовления проходили электрополировку. Нижняя и верхняя части кожуха - съемные, они крепятся на фланце, уплотняемом резиновой прокладкой. Нижние съемные части кожуха, азотного и гелиевого экранов были сделаны фигурными с переходом от цилиндра к прямоугольному параллелепипеду на уровне, где расположена ампула и оптические окна. Ампула располагалась в вакууме, общим для всего криостата, так что вакуумно-плотными должны быть только наружные окна, находящиеся при комнатной температуре. Расстояние между ампулой с образцом и наружным окном составляло 25 мм. Ампула соединялась медным хладопроводом с медным стаканом для жидкого гелия-3 емкостью 150 см3, а внутренний объем ампулы соединялся с наружным резервуаром тонкостенным нержавеющим капилляром. Образец в мягкой бумажной оправке свободно располагался внутри цилиндрической стеклянной ампулы и вмораживался в кристалл твердого гелия.
Однако описанная конструкция имеет недостатки. Использование хладопровода от медного стакана с жидким гелием-3 к ампуле с образцом неизбежно приводит к тепловым потерям и повышению минимально достижимой температуры образца. Кроме этого, используемый способ установки образца в стеклянную ампулу приводит к вибрациям образца, что не позволяет получить высокое пространственное оптическое разрешение.
Задачей полезной модели является гелиевый криостат для оптических исследований, позволяющий проводить исследования оптических свойств полупроводниковых микроструктур интервале температур 0.45-1.6 К и с пространственным оптическим разрешением 1 мкм.
Поставленная задача решается заявляемым гелиевым криостатом для оптических исследований, содержащим внешний корпус, выполненный из верхней и нижней частей, резервуары с жидкими гелием-4, азотом, и гелием-3, два медных экрана, три оптических окна, размещенных на внешнем корпусе и двух медных экранах, который дополнительно снабжен держателем образца, нижняя часть которого выполнена в виде конуса и прижата к конической выемке на дне цилиндрического резервуара с жидким гелием-3, а цилиндрический резервуар с жидким гелием-3 снабжен оптическим окном, расположенным на единой оптической оси с другими окнами,
Конструкция заявляемого гелиевого криостата показана схематически на фиг.1. Исследуемый образец размещается непосредственно в камере с жидким гелием-3 в отличие от описанной выше конструкции. Размещение образца непосредственно в жидком гелии-3 обеспечивает эффективное охлаждение исследуемого образца до 0.45±0.05 К в режиме откачки паров. Прямоугольная конструкция хвостовой части криостата, изображенная на вставке фиг.1, позволяет уменьшить расстояние от поверхности исследуемого образца до внешнего окна криостата (менее 30 мм), что необходимо для использования оптической системы со светосильными объективами, обеспечивающими пространственное разрешение до ~1 мкм. Для уменьшения мощности теплового излучения от теплых частей криостата на камеру с гелием-3 она окружена двумя медными экранами, охлаждаемыми жидким азотом (внешний экран) и жидким гелием-4 (экран, непосредственно окружающий камеру с гелием-3). Для оптических измерений каждый из экранов снабжен окном. В результате на оптической оси помещены четыре окна, расположенные на внешнем корпусе криостата, азотном экране, гелиевом экране и стенке камеры с жидким гелием-3. Результирующая апертура оптического канала криостата составляет 33 градуса, а расстояние от внешнего окна до образца в камере гелия-3 - менее 30 мм. Круглые окна изготовлены из плавленого кварца марки КУ, прозрачного в ультрафиолетовом, видимом и ближнем инфракрасном спектральных диапазонах. Толщина окон, расположенных на экранах, составляют 1.5 мм, окно на камере с гелием-3 - толщиной 2 мм, а внешнее окно - 3 мм. Диаметр окон, установленных на внешнем корпусе и азотном экране равен 28 мм, диаметр окон, установленных на гелиевом экране и на камере с гелием-3 составляет 10 мм. Окна вклеиваются в оправки из нержавеющей стали толщиной менее 150 мкм, которые припаиваются к наружному корпусу и к камере с жидким гелием-3. Для склейки использован отечественный многокомпонентный эпоксидный клей «Криосил», обеспечивающий герметичность соединений при низкой температуре и высокую надежность при многократном термоциклировании (1000 циклов и более). Одним из компонентов клея является мелкодисперсный порошок, обеспечивающий необходимые механические и тепловые свойства клееного шва. Тонкостенные оправки позволяют минимизировать возникающие при охлаждении окон упругие деформации и существенно уменьшить эффект их поляризующего действия. Окна на азотном и гелиевом экранах приклеены к экранам клеем БФ-2. Они эффективно поглощают тепловое излучение и отводят его к охлаждающим экранам. Это значительно уменьшает тепловую нагрузку на камеру с жидким гелием-3 и позволяет поддерживать температуру камеры на уровне около 0.45 К в течение 20 часов после конденсации 25 л газообразного гелием-3 (при нормальных условиях) и откачки его паров. Температура в камере с гелием-3 измерялась с помощью рутениевого термометра. Калибровка сопротивления из RuO2 в диапазоне 1.5-20 К выполнялась по стандартному германиевому сопротивлению, а также по давлению паров гелием-4. Калибровка в диапазоне 0.45-2 К выполнялась по давлению паров гелием-3, точность калибровки во всех диапазонах была не хуже 0.05 К. При работе с внешними непрерывными источниками фотовозбуждения, в частности, с полупроводниковыми лазерами с длинами волн 659 нм и 782 нм, при интегральных мощностях светового потока на образце до 100 мкВт, температура в камере гелием-3 оставалась неизменной с точностью 0.05 К.
Для достижения высокого пространственного разрешения необходимо свести к минимуму механические вибрации и сдвиг образца, связанный с изменением температуры при откачке паров гелием-3. Чтобы предотвратить вибрации образца, нижнюю часть держателя образцов 2 в форме конуса прижимают к конической выемке на дне камеры 14 при помощи сильфона, расположенного в верхней части штока держателя образцов. Положение держателя внутри шахты 5 фиксировано упругими распорками относительно стенок цилиндрической шахты - линии откачки паров гелия-3, жестко соединенной с прямоугольной камерой гелия-3. Это уменьшало вибрации штока в направлении, перпендикулярном оси криостата.
Гелиевый криостат с откачкой паров гелия-3, предназначенный для оптических исследований в интервале температур 0.45-1.6К, работает следующим образом.
Тонкостенная цилиндрическая шахта ⌀24×0.3 мм2, изготовленная из нержавеющей стали, служит линией для откачки паров гелия-3. В нижней части шахта 5 герметично соединена с прямоугольной камерой для образцов 14, изготовленной из листовой меди толщиной 0.8 мм, из которой также изготовлены медные экраны 10 и 12. Образец, закрепленный на держателе, опускают в камеру через отверстие в верхней части шахты 5. Внешний корпус 6 криостата изготовлен из листовой нержавеющей стали толщиной 1.2 мм. Внутри корпуса криостата находятся сосуды для жидкого азота 7 и гелия-4 9, емкостью 5 и 4 л, соответственно, также изготовленные из листовой нержавеющей стали толщиной 1.2 мм (фиг.1). Все вакуумные швы внешнего корпуса и внутренних сосудов криостата выполнены аргонно-дуговой сваркой, детали после изготовления проходили электрополировку. Внутренние части криостата защищены вакуумной рубашкой, а сосуд с гелием-4 защищен также охлаждаемым жидким азотом медным экраном 10. Откачку паров из резервуара гелия-4 производят через разъемное вакуумное кольцевое соединение 4. При откачке паров жидкого гелия-4 из сосуда температуру жидкости можно понизить до 1.5 К, что необходимо для конденсации газообразного гелия-3, который при комнатной температуре хранится в ресивере.
Одновременно понижается температура медного экрана 12, окружающего камеру с гелием-3. Температуру 1.5 К поддерживают постоянной в течение всего эксперимента, а газообразный гелий-3 конденсируется на медных тарелках-радиаторах 11, закрепленных на штоке держателя образца и находящихся в тепловом контакте со стенками сосуда с гелием-4. Жидкий гелий-3 собирается на дне прямоугольной камеры. После конденсации 25 л газообразного гелия-3 уровень жидкости располагается выше оптического окна 13 и полностью закрывает исследуемый образец. Откачку паров гелия-3 производят через разъемное вакуумное кольцевое соединение 3 наружным криосорбционным насосом высокой производительности. При максимальной откачке температура образца понижается до 0.45 К и удерживается на этом уровне не менее 20 часов. Замену образца производят только в теплом состоянии, когда весь гелия-3 находится в ресивере.
Таким образом, заявляемый гелиевый криостат для оптических исследований позволяет проводить оптические исследования свойств полупроводниковых микроструктур при температурах 0.45-1.6 К и с пространственным разрешением 1 мкм.

Claims (1)

  1. Гелиевый криостат для оптических исследований, содержащий внешний корпус, выполненный из верхней и нижней частей, резервуары с жидкими гелием-4, азотом и гелием-3, два медных экрана, три оптических окна, размещенных на внешнем корпусе и двух медных экранах, отличающийся тем, что он дополнительно снабжен держателем образца, нижняя часть которого выполнена в виде конуса и прижата к конической выемке на дне цилиндрического резервуара с жидким гелием-3, а цилиндрический резервуар с жидким гелием-3 снабжен оптическим окном, расположенным на единой оптической оси с другими окнами.
    Figure 00000001
RU2009119194/22U 2009-05-21 2009-05-21 Гелиевый криостат для оптических исследований RU88420U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009119194/22U RU88420U1 (ru) 2009-05-21 2009-05-21 Гелиевый криостат для оптических исследований

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009119194/22U RU88420U1 (ru) 2009-05-21 2009-05-21 Гелиевый криостат для оптических исследований

Publications (1)

Publication Number Publication Date
RU88420U1 true RU88420U1 (ru) 2009-11-10

Family

ID=41355066

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009119194/22U RU88420U1 (ru) 2009-05-21 2009-05-21 Гелиевый криостат для оптических исследований

Country Status (1)

Country Link
RU (1) RU88420U1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113227675A (zh) * 2019-02-07 2021-08-06 苏黎世大学 利用液氦操作的低温恒温器及其操作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113227675A (zh) * 2019-02-07 2021-08-06 苏黎世大学 利用液氦操作的低温恒温器及其操作方法
CN113227675B (zh) * 2019-02-07 2024-03-01 苏黎世大学 利用液氦操作的低温恒温器及其操作方法

Similar Documents

Publication Publication Date Title
US10678039B2 (en) Cooling systems and methods for cryo super-resolution fluorescence light microscopy and other applications
CN106198607B (zh) 一种汽化泡热效应的研究装置
Andrews et al. A liquid nitrogen immersion cryostat for optical measurements
RU88420U1 (ru) Гелиевый криостат для оптических исследований
US20160223803A1 (en) Mounting device for a sample and method for removing a sample
CN106872050A (zh) 一种上端面开窗的液氮杜瓦
CN101856630B (zh) 超流氦恒温浴装置
Roberts An optical absorption cell for use at low temperatures
CN212567966U (zh) 可视化低温脉动热管实验装置
JP2001194278A (ja) 液体試料、特に分析すべき石油製品の試料を含むセルの冷凍用装置
CN105299439B (zh) 可拆卸低温流体可视化视窗、装置和容器
CN111879539A (zh) 可视化低温脉动热管实验装置
McMahon et al. A Low Temperature Infra-Red Transmission Cell
CN204944631U (zh) 测量装置
CN210294043U (zh) 一种碱金属原子蒸汽吸收池
RU2366999C1 (ru) Терморегулируемое криостатное устройство
RU2000120807A (ru) Криостат
CN206410789U (zh) 上端面开窗液氮杜瓦
CN215005007U (zh) 一种极低振动的低温光电测试装置
CN111855579B (zh) 一种碱金属原子蒸气吸收池及其光谱测量方法
CN214471675U (zh) 一种激光器低温测试装置
SU1509660A1 (ru) Измерительна чейка дл исследовани смесей холодильных агентов
JP5622485B2 (ja) 複合極低温冷凍機
RU162592U1 (ru) Криостат
SU763651A1 (ru) Криостат дл охлаждени детекторов

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20150522

NF1K Reinstatement of utility model

Effective date: 20170207

PD1K Correction of name of utility model owner
MM9K Utility model has become invalid (non-payment of fees)

Effective date: 20180522