RU55145U1 - Система воздушных сигналов вертолета - Google Patents

Система воздушных сигналов вертолета Download PDF

Info

Publication number
RU55145U1
RU55145U1 RU2005140768/22U RU2005140768U RU55145U1 RU 55145 U1 RU55145 U1 RU 55145U1 RU 2005140768/22 U RU2005140768/22 U RU 2005140768/22U RU 2005140768 U RU2005140768 U RU 2005140768U RU 55145 U1 RU55145 U1 RU 55145U1
Authority
RU
Russia
Prior art keywords
helicopter
converters
pneumatic
differential
pneumoelectric
Prior art date
Application number
RU2005140768/22U
Other languages
English (en)
Inventor
Алексей Владимирович Бердников
Владимир Кузьмич Козицын
Николай Николаевич Макаров
Александр Азикович Порунов
Вячеслав Владимирович Солдаткин
Владимир Михайлович Солдаткин
Original Assignee
Казанский государственный технический университет им. А.Н. Туполева
Открытое акционерное общество "Ульяновское конструкторское бюро приборостроения"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Казанский государственный технический университет им. А.Н. Туполева, Открытое акционерное общество "Ульяновское конструкторское бюро приборостроения" filed Critical Казанский государственный технический университет им. А.Н. Туполева
Priority to RU2005140768/22U priority Critical patent/RU55145U1/ru
Application granted granted Critical
Publication of RU55145U1 publication Critical patent/RU55145U1/ru

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

Полезная модель относится к устройствам для измерения высотно-скоростных параметров вертолета. В системе воздушных сигналов вертолета, содержащей проточный многоканальный аэрометрический приемник, полости дросселированного статического давления и 2n - трубок полного давления которого, подключены ко входам пневмоэлектрических преобразователей, электроизмерительные схемы которых через последовательно соединенные мультиплексор и аналого-цифровой преобразователь подключены к микропроцессору, выход которого является выходом системы по высотно-скоростным параметрам полета вертолета, новым является то, что в ней использованы n дифференциальных пневмоэлектрических преобразователей, пневматические входы каждого из которых подключены к трубкам полного давления, расположенным на одной оси в противоположных направлениях. В качестве пневмоэлектрических преобразователей могут быть использованы дифференциальные термоанемометрические преобразователи расхода газа. Применение дифференциальных пневмоэлектрических преобразователей для преобразования массива давлений, воспринимаемых трубками полного давления многоканального проточного аэрометрического приемника в электрический сигнал, позволяет существенно упростить конструктивное и аппаратное исполнение системы воздушных сигналов вертолета, вдвое уменьшив количество пневмоэлектрических преобразователей при сохранении ее метрологических характеристик и повышении ее надежности.

Description

Полезная модель относится к устройствам для измерения высотно-скоростных параметров вертолета.
Известны способы и устройства для измерения высотно-скоростных параметров самолета, в которых реализуется аэрометрический метод измерения. В таких устройствах с помощью приемника воздушного давления воспринимаются статическое и полное давление набегающего воздушного потока, по которым определяются барометрическая высота, индикаторная (приборная) и истинная воздушная скорость (Браславский Д.А. Приборы и датчики летательных аппаратов. М.: Машиностроение, 1970. 392 с.) - [1]. С помощью установленных в набегающем потоке приемников также воспринимают давления, которые характеризуют угловое положение вектора воздушной скорости в связанной системе координат - углы атаки и скольжения (Петунин А.Н. Методы и техника измерения параметров газового потока. М.: Машиностроение, 1972. 392 с.) - [2]. Однако применение таких устройств на вертолете позволяет достаточно точно измерить барометрическую высоту и воздушную скорость только при скоростях полета более 50...70 км/ч, когда приемники давления выходят за пределы вихревой колонны, создаваемой несущим винтом вертолета и обеспечивается помехоустойчивое восприятие и преобразование воспринимаемых воздушных давлений. Диапазон измерения углов атаки и скольжения указанных устройств также ограничен значениями ±30°, в то время как для вертолета рабочими являются полеты вперед-назад, вправо-влево, а также полеты в области малых и околонулевых скоростей.
Для получения информации о высотно-скоростных параметрах в области малых скоростей полета вертолета в известных системах воздушных сигналов (СВС) вертолета применяют несколько проточных приемников давления, размещаемых симметрично относительно продольной оси вертолета (Козицын В.К., Макаров Н.Н., Порунов А.А., Солдаткин В.М. Анализ принципов построения СВС вертолета // Авиакосмическое приборостроение,
2003. №10. С.2-13) - [3]. Экспериментальные исследования такой СВС, разработанной МПКБ «Восход» [3], показали, что при скоростях полета менее 30 км/ч погрешность измерения угла скольжения достигает ±2°, а при скоростях более 70 км/ч, когда носовая часть фюзеляжа вертолета (где установлены проточные приемники) выходит из вихревой колонны, погрешность уменьшается до ±0,4°. Однако одним из основных недостатков такой СВС является ограниченный диапазон измерения, составляющий по углу скольжения β=±20°.
В последние годы за рубежом и у нас в стране находят применение СВС вертолета со свободно-ориентируемым приемником давления типа Lassie, ХМ-143 и СВС-В1 - [3], которые позволяют получать информацию о параметрах вектора воздушной скорости вертолета и при скоростях полета менее 50...70 км/ч, когда приемник давления находится в створе вихревой колонны. Однако за счет подвижных механических элементов, поворачивающихся в кардановом подвесе, усложняется конструкция приемника, затрудняется съем первичных пневматических сигналов (давлений), снижается надежность работы и увеличивается стоимость системы.
Указанные недостатки отсутствуют в системе воздушных сигналов вертолета на основе неподвижного многоканального (многофункционального) проточного аэрометрического приемника (преобразователя) и струйно-конвективных (термоанемометрических) измерительных каналов (преобразователей), взятой в качестве прототипа (Порунов А.А., Солдаткин В.В. Структура и алгоритмы системы воздушных сигналов вертолета на основе многофункционального аэрометрического преобразователя // Сборник материалов Второго Международного симпозиума «Авиакосмические приборные технологии», 17-20 сентября 2002 года. Санкт-Петербург. СПбГУАП. С.33-35) - [4]. В основу построения такой системы воздушных сигналов положена обработка массива первичных информативных сигналов-давлений, воспринимаемых многоканальным проточным аэрометрическим преобразователем
(приемником), выполненным, например, согласно патента РФ (патент РФ №2042137, МПК G 01 Р 5/16. Многоканальный аэрометрический преобразователь // Порунов А.А., Олин В.Н., Захарова Н.С., 1995) - [5].
Система содержит многоканальный аэрометрический приемник (АМП), полости воспринимаемых давлений которого пневматическими каналами соединены со входом осредняющей камеры и со входом струйно-конвективных преобразователей (СКП). Полость статического давления АМП пневматическим каналом связана со входом датчика статического давления, формирующего электрический сигнал, пропорциональный статическому давлению. На выходе осредняющей камеры формируется опорное давление, которое по пневмоканалам подается на другие входы СКП и на вход компенсационного СКП, на выходе электроизмерительной схемы которого формируется компенсационный (опорный) сигнал. Электроизмерительные схемы СКП формируют электрические сигналы, пропорциональные давлениям. Выходы электроизмерительных схем СКП соединены со входами схем обработки аналоговых сигналов, другие входы которых соединены с выходом электроизмерительной схемы компенсационного СКП. Компенсационный сигнал используется в качестве опорного для реализации дифференциального способа обработки аналоговых сигналов, что позволяет уменьшить аддитивную составляющую погрешности из-за изменения параметров окружающей среды. Выходы схем обработки аналоговых сигналов подключены к мультиплексору, соединенного с аналого-цифровым преобразователем (АЦП), подключенным к микропроцессору.
При работе системы воспринимаемые АМП давления с помощью СКП и электроизмерительных схем преобразуются в электрические сигналы, пропорциональные давлениям, которые через схемы обработки аналоговых сигналов, мультиплексор и АЦП поступают в микропроцессор. Микропроцессор, обрабатывая поступившие сигналы в соответствии с разработанными алгоритмами, формирует выходные сигналы по величине воздушной скорости Vв, углу атаки α и углу скольжения β. Обрабатывая сигнал с выхода датчика
статического давления, на выходе микропроцессора формируется выходной сигнал по барометрической высоте полета Н и вертикальной скорости Vу=dH/dt.
Применение многоканального проточного аэрометрического приемника позволяет расширить диапазон измерения по углу скольжения до ±180°, обеспечить помехоустойчивое измерение угла атаки, воздушной скорости, барометрической высоты и вертикальной скорости вертолета, в том числе при малых скоростях полета. При этом использование струйно-конвективных измерительных каналов преобразования аэрометрических сигналов (давлений) в электрический сигнал, благодаря их высокой чувствительности в диапазоне малых перепадов давлений, позволяет расширить нижнюю границу рабочих скоростей полета до 3...5 км/ч.
Недостатком такой системы воздушных сигналов является усложнение конструктивной схемы и аппаратной реализации системы, вызванное большим количеством пневмоэлектрических, например термоанемометрических измерительных каналов преобразования массива первичных пневматических сигналов - давлений в электрические сигналы, по которым проводится определение угла скольжения вертолета. Следует отметить, что к используемым пневмоэлектрическим предъявляются жесткие требования к идентичности и стабильности их статических характеристик, что практически трудно осуществить для большого числа преобразователей, например шести или восьми, в условиях реальной эксплуатации. Это приводит к снижению технологичности и повышению стоимости системы или ее дополнительному усложнению за счет реализации структурных методов повышения точности, например использования цепей адаптивной автоподстройки пневмоэлектрических каналов. Так как число пневмоэлектрических преобразователей определяется количеством трубок полного давления, равным шести или восьми, то это усложняет и аппаратную реализацию системы.
Технический результат, на достижение которого направлена заявляемая полезная модель, заключается в упрощении конструктивной схемы, повышении
технологичности и снижении стоимости системы за счет уменьшения числа пневмоэлектрических преобразователей в канале измерения угла скольжения.
Технический результат достигается тем, что в системе воздушных сигналов вертолета, содержащей проточный многоканальный аэрометрический приемник, полости дросселированного статического давления и 2n - трубок полного давления которого, подключены ко входам пневмоэлектрических преобразователей, где n=2, 3..., электроизмерительные схемы которых через последовательно соединенные мультиплексор и аналого-цифровой преобразователь подключены к микропроцессору, выход которого является выходом системы по высотно-скоростным параметрам полета вертолета, новым является то, что в ней использованы n - дифференциальных пневмоэлектрических преобразователей, пневматические входы каждого из которых подключены к трубкам полного давления, расположенным на одной оси в противоположных направлениях. В качестве пневмоэлектрических преобразователей использованы дифференциальные термоанемометрические преобразователи расхода газа.
Сущность полезной модели поясняется на Фиг.1, 2, 3, где:
Фиг.1 - структурно-функциональная схема системы воздушных сигналов вертолета.
Фиг.2 и Фиг.3 - угловые характеристики трубок полного давления. Здесь: 1 - многоканальный аэрометрический приемник; 2 - шесть соосно расположенных трубок полного давления с шагом 60°; 3 - пневмоэлектрические, например термоанемометрические преобразователи полного и дросселированного давлений; 4 - пневмоэлектрический преобразователь статического давления; 5 - электроизмерительные схемы, 6 - мультиплексор, 7 - аналого-цифровой преобразователь, 8 - микропроцессор-вычислитель.
Неподвижный проточный многоканальный аэрометрический приемник (АМП) 1 устанавливают на фюзеляже или над втулкой несущего винта вертолета и ориентируют по осям связанной (скоростной) системы координат, в
которой положение вектора воздушной скорости вертолета определяется углами атаки α и скольжения β. Полости трубок полного давления 2, расположенных попарно на одной оси в противоположных направлениях, подключены ко входам пневмоэлектрических преобразователей 3, выходные сигналы электроизмерительных схем 5 которых соответствуют величинам давлений pi, воспринимаемых соответствующими трубками полного давления с учетом знака давления, определяемым угловым положением вектора воздушной скорости. Выходы электроизмерительных схем 5 подключены к мультиплексору 6 и, далее на аналого-цифровой преобразователь 7. Выходной код аналого-цифрового преобразователя 7, содержащий информацию о величинах давлений рi, регистрируемых поочередно, поступает на микропроцессорный вычислитель 8. Сигнал с каналов статического давления и каналов измерения угла атаки α через свой пневмоэлектрический преобразователь 4 и электроизмерительную схему 5 также подается через мультиплексор и аналого-цифровой преобразователь на микропроцессорный вычислитель.
При работе системы воздушных сигналов вертолета воспринимаемые трубками полного давления 2 АМП давления pi пневмоэлектрическими преобразователями преобразуются в электрические сигналы Ui, которые подаются в вычислитель для обработки.
Алгоритм обработки массива информативных сигналов определяется спецификой угловых характеристик соосных трубок полного давления, расположенных в противоположных направлениях и подключенных ко входам дифференциальных пневмоэлектрических преобразователей, представленных на Фиг.2.
Сигналы на выходе дифференциальных пневмоэлектрических преобразователей имеют области положительного скоростного напора, соответствующие встречному взаимному расположению трубки полного давления, подключенной к положительному входу дифференциального пневмоэлектрического преобразователя, и вектора скорости воздушного потока, и области
отрицательного напора, соответствующие ориентации трубки приемника по направлению вектора скорости воздушного потока. Введем следующие обозначения для полученных информативных сигналов U1, U2, U3.
При инвертированном расположении трубок для электрических сигналов дифференциальных пневмоэлектрических преобразователей справедлива иллюстрация, приведенная на Фиг.3. При этом для полученных информативных сигналов U4, U5, U6 справедливы следующие соотношения:
U4=-U1, U5=-U2, U6=-U3.
Работа разработанного алгоритма обработки массива сигналов Ul...U6 начинается с определения максимального из сигналов
при этом вначале производится поиск максимального из сигналов первых трех датчиков, после чего сигналы датчиков инвертируются и процесс поиска максимума продолжается.
Номер k канала с максимальным уровнем сигнала определяет первое приближение углового положения вектора воздушной скорости β0.
Например, в соответствии с результатами, представленными на Фиг.2 и Фиг.3, расчеты первого приближения сведены в Таблицу 1.
Таблица 1
Номер канала с максимальным сигналом 1 2 3 4 5 6
Угловое положение ВВС, β0, град. 0 (360) 300 240 180 120 60
Юстировка начального углового положения осуществляется при установке аэрометрического приемника на объекте.
Вторым этапом обработки массива сигналов является определение знака отклонения углового положения вектора воздушной скорости от направления приемника с максимальным сигналом. Для этого производится сравнение по величине информативных сигналов соседних с каналом максимального сигнала аэрометрического приемника и в зависимости от этого определяется знак приращения углового положения ±k*Δβ.
Результаты определения знака отклонения Δβ сведены в Таблицу 2.
Таблица 2.
Номер канала с макс. сигналом 1 2 3 4 5 6
Сравниваемые сигналы U6<U2
(-U3<U2)
U1<U3 U2<U4
(U2-U1)
U3<U5
(U3<-U2)
U4<U6 U5<U1
(-U2<U1)
Условие выполняется k=-1
Условие не выполняется k=1
Уточнение величины приращения Δβ производится исходя из решения уравнения вида
где ƒ(Δβ), ƒ(60-Δβ) - нормированные угловые характеристики трубок полного давления многоканального проточного аэрометрического приемника в диапазоне углов 0...30 и 30...60 град., рассчитанные аналогично выбранному прототипу. Тогда угол скольжения вертолета β=β0+k*Δβ.
Восстановление истинной величины сигнала, соответствующего вектору воздушной скорости, действующему под углом Δβ к приемнику, производится в соответствии с выражением
Угол атаки α, барометрическая высота Н и вертикальная скорость Vу вертолета определяются аналогично прототипу.
Таким образом, применение дифференциальных пневмоэлектрических преобразователей для преобразования массива давлений, воспринимаемых трубками полного давления многоканального проточного аэрометрического приемника в электрический сигнал, позволяет существенно упростить конструктивное и аппаратное исполнение системы воздушных сигналов вертолета, вдвое уменьшив количество пневмоэлектрических преобразователей при сохранении ее метрологических характеристик и повышении ее надежности.

Claims (2)

1. Система воздушных сигналов вертолета, содержащая проточный многоканальный аэрометрический приемник, полости дросселированного статического давления и 2n-трубок полного давления которого, подключены ко входам пневмоэлектрических преобразователей, где n=2, 3..., электроизмерительные схемы которых через последовательно соединенные мультиплексор и аналого-цифровой преобразователь подключены к микропроцессору, выход которого является выходом системы по высотно-скоростным параметрам полета вертолета, отличающаяся тем, что в ней использованы n-дифференциальных пневмоэлектрических преобразователей, пневматические входы каждого из которых подключены к трубкам полного давления, расположенным на одной оси в противоположных направлениях.
2. Система по п.1, отличающаяся тем, что в качестве пневмоэлектрических преобразователей использованы дифференциальные термоанемометрические преобразователи расхода газа.
Figure 00000001
RU2005140768/22U 2005-12-07 2005-12-07 Система воздушных сигналов вертолета RU55145U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005140768/22U RU55145U1 (ru) 2005-12-07 2005-12-07 Система воздушных сигналов вертолета

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005140768/22U RU55145U1 (ru) 2005-12-07 2005-12-07 Система воздушных сигналов вертолета

Publications (1)

Publication Number Publication Date
RU55145U1 true RU55145U1 (ru) 2006-07-27

Family

ID=37058641

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005140768/22U RU55145U1 (ru) 2005-12-07 2005-12-07 Система воздушных сигналов вертолета

Country Status (1)

Country Link
RU (1) RU55145U1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2518871C2 (ru) * 2011-07-27 2014-06-10 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ-КАИ) Система воздушных сигналов вертолета

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2518871C2 (ru) * 2011-07-27 2014-06-10 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н. Туполева (КГТУ-КАИ) Система воздушных сигналов вертолета

Similar Documents

Publication Publication Date Title
US5423209A (en) Truncated pyramid-shape multi-hole pitot probe and flight velocity detection system using said truncated pyramid-shape multi-hole pitot probe
EP0778951B1 (en) Multi-parameter air data sensing technique
Kaimal et al. Some errors in the measurement of Reynolds stress
CN106225786B (zh) 一种自适应的行人导航系统零速区间检测方法
EP3223020A1 (en) Hybrid air data system using lidar and legacy air data sensors
Gardner et al. Review of measurement techniques for unsteady helicopter rotor flows
CN112257186B (zh) 针对小型四旋翼飞行器气动参数的时域辨识方法
RU2307358C1 (ru) Система воздушных сигналов вертолета
RU2427844C1 (ru) Система воздушных сигналов вертолета
JPH10332728A (ja) 四角錐台型5孔プローブを用いた広速度域飛行速度ベクトル計測システム
RU55145U1 (ru) Система воздушных сигналов вертолета
CN105737793A (zh) 滚转角测量单元及测量方法
RU2382988C1 (ru) Бесплатформенная инерциальная система ориентации на &#34;грубых&#34; чувствительных элементах
CN209553488U (zh) 一种空速变距螺旋桨以及飞机桨距控制系统
RU2426995C1 (ru) Система измерения малых воздушных скоростей вертолета
CN112345199B (zh) 一种暂冲式高速风洞迎角传感器振动影响修正方法
RU2307357C1 (ru) Способ измерения воздушных сигналов вертолета и система для его осуществления
RU2007144736A (ru) Способ формирования сигналов управления симметричной ракетой
RU55479U1 (ru) Система воздушных сигналов вертолета
CN112762960A (zh) 一种飞行器所处风场的在线计算方法
RU94346U1 (ru) Система измерения малых воздушных скоростей вертолета
RU2518871C2 (ru) Система воздушных сигналов вертолета
RU2336533C2 (ru) Аэромеханический способ измерения воздушно-скоростных параметров траектории полета и устройство для его осуществления
Makshakov et al. Determination method of the aircrafts flying height using absolute pressure sensors
RU100279U1 (ru) Система воздушных сигналов вертолета

Legal Events

Date Code Title Description
MG1K Anticipatory lapse of a utility model patent in case of granting an identical utility model

Ref document number: 2005140813

Country of ref document: RU

Effective date: 20070927