RU42641U1 - Система теплоснабжения (варианты) - Google Patents
Система теплоснабжения (варианты) Download PDFInfo
- Publication number
- RU42641U1 RU42641U1 RU2004124797/22U RU2004124797U RU42641U1 RU 42641 U1 RU42641 U1 RU 42641U1 RU 2004124797/22 U RU2004124797/22 U RU 2004124797/22U RU 2004124797 U RU2004124797 U RU 2004124797U RU 42641 U1 RU42641 U1 RU 42641U1
- Authority
- RU
- Russia
- Prior art keywords
- heat
- supply
- condenser
- refrigeration unit
- line
- Prior art date
Links
Landscapes
- Other Air-Conditioning Systems (AREA)
Abstract
Полезная модель предназначена для систем теплоснабжения жилых, общественных и производственных зданий и промышленного технологического оборудования. Для снижения потерь тепла в окружающую среду и уменьшения потребляемой для этого энергии система теплоснабжения снабжена холодильной установкой, конденсатор которой включен гидравлически в подающую, а испаритель - в обратную магистраль теплоносителя. Во втором варианте система дополнительно снабжена связанным гидравлически с подающей магистралью и с ее ответвлением через редукционное устройство теплообменником. Использование полезной модели позволит уменьшить в несколько раз потери тепла через магистрали теплоносителя и до 1,64...1,84 раза потребляемую для этого энергию.
Description
Полезная модель предназначена для снижения потерь тепла и уменьшения потребляемой для этого энергии и может быть использована в системах теплоснабжения жилых, общественных и производственных зданий и промышленного технологического оборудования.
Предшествующий уровень техники.
Известны производственные, квартальные и районные системы теплоснабжения, содержащие котельную, размещенную в наружной среде (в грунте или на опорах в воздухе) тепловую сеть, имеющую подающую и обратную магистрали теплоносителя и паропровод.
Недостатком таких систем являются большие потери тепла в окружающую среду (более 50% от получаемой при сжигании топлива тепловой энергии). Это обусловлено высокой температурой теплоносителя в подающей (до 150°С), обратной (до 70°С) магистралях и паропроводе (до 180°С). [1, стр. 227-250].
Запасы органического топлива на земле и в ее недрах ограничены. Использование органического и ядерного топлива имеют огромную потенциальную и реальную угрозу для всей биосферы. Экономический эффект только от замещения 1% потребляемого сегодня в России топлива составит более 1 млрд долларов США [2, стр. 50, 51].
Меньшие потери тепла в окружающую среду (менее 50% от получаемой при сжигании топлива тепловой энергии) имеет система теплоснабжения, содержащая теплоэлектроцентраль с теплосиловой установкой, имеющей конденсатор водяного пара, и размещенную в окружающей среде тепловую сеть с подающей и обратной магистралями теплоносителя и паропроводом [3, стр. 323-325 (прототип)].
Уменьшение потерь тепла в такой системе обеспечивается благодаря преобразованию в теплосиловой установке части (до 33%) получаемой при сжигании топлива тепловой энергии в электрическую. Коэффициент полезного действия теплосиловых установок большинства действующих электростанций составляет 15...20% [4, стр. 93].
Однако и в этой системе потери тепла составляют десятки процентов. При этом уменьшается значение коэффициента полезного действия теплосиловой установки в связи с необходимостью увеличения температуры конденсации водяного пара для обеспечения требуемых параметров теплоносителя в системе теплоснабжения.
Раскрытие изобретения.
Задачей, решаемой полезной моделью, является снижение тепловых потерь в окружающую среду путем охлаждения теплоносителя на входе в обратную и нагревания на выходе из подающей магистралей с помощью холодильной установки и уменьшения потребляемой для этого энергии.
Для этого в первом варианте системы теплоснабжения, содержащей подающую и обратную магистрали теплоносителя, она снабжена размещенной перед потребителем тепла холодильной установкой. Конденсатор этой установки включен гидравлически в подающую, а испаритель - в обратную магистраль.
В системе теплоснабжения первого варианта остаются неизменными потери тепла в окружающую среду через паропровод.
Для снижения потерь тепла при доставке пара потребителю и уменьшения потребляемой при этом энергии во втором варианте системы теплоснабжения, содержащей подающую к потребителю тепла, обратную и подпиточную магистрали теплоносителя, она снабжена размещенной перед потребителем тепла и пара холодильной установкой. Конденсатор этой установки включен гидравлически в подающую, а испаритель - в обратную магистраль. Система снабжена дополнительно включенным гидравлически в подающую магистраль на участке между конденсатором холодильной
установки и потребителем тепла теплообменником и ответвлением подающей магистрали. Ответвление связано гидравлически с теплообменником через редукционное (дросселирующее) устройство.
Для снижения потребляемой холодильной установкой обоих вариантов системы теплоснабжения мощности холодильная установка выполнена с несколькими, имеющими разный уровень температуры конденсации хладагента и соединенными последовательно по ходу теплоносителя, конденсаторами и с несколькими, имеющими разный уровень температуры кипения хладагента и соединенными последовательно по ходу теплоносителя, испарителями.
Краткое описание чертежей.
На чертежах условно изображены гидравлические схемы системы теплоснабжения:
на фиг.1 показан пример исполнения первого варианта системы теплоснабжения;
на фиг.2 - второго варианта системы теплоснабжения.
Система теплоснабжения содержит, например, конденсатор 1 теплосиловой установки теплоэлектроцентрали (не показана), подающую 2 и обратную 3 магистрали теплоносителя, циркуляционный насос 4, радиаторы 5 системы отопления (не показана) и холодильную установку 6, имеющую, например, три парокомпрессионные холодильные машины 7, 8, 9. Холодильные машины имеют соответственно компрессоры 10, 11 и 12, конденсаторы 13, 14 и 15, терморегулирующие вентили 16, 17 и 18 и испарители 19, 20 и 21. Конденсаторы 13, 14 и 15 имеют разный уровень температуры конденсации хладагента и включены последовательно в магистраль 2. Испарители 19, 20 и 21 имеют разный уровень температуры кипения хладагента и включены последовательно в магистраль 3.
Второй вариант системы дополнительно содержит подпиточную магистраль 22 с насосом 23, включенный в магистраль 2 на участке между
конденсатором 15 и радиаторами 5 теплообменник 24 и ответвление 25 магистрали 2 с установленным перед теплообменником 24 регулирующим вентилем 26.
В качестве конденсатора 1 могут быть использованы также производственные, квартальные или районные котельные, естественные или искусственные водоемы, геотермальные воды или теплообменник, установленный в наружном воздухе.
В качестве радиаторов 5 могут быть также использованы теплообменники системы горячего водоснабжения, калориферы системы воздушного отопления или технологическое оборудование по тепловой обработке продукции предприятий, например, пищевой промышленности.
В качестве холодильных машин могут быть также использованы и любые другие, имеющие конденсатор и испаритель.
Количество конденсаторов и испарителей может быть и любым другим.
В качестве регулирующего вентиля 26 может быть использовано и любое другое редукционное (дросселирующее) устройство, обеспечивающее снижение давления и разбрызгивание воды в теплообменнике 24.
При поступлении к конденсатору 1 из магистрали 3 воды с температурой, например, tk1=8°С температура воды на выходе из конденсатора 1 повышается до значения tk2=20°С за счет тепла, выделяемого при конденсации водяного пара в конденсаторе 1 при температуре tk=20°C.
При температуре грунта в зоне размещения магистралей 2 и 3 tгp=10°C температура воды на входе в холодильную установку 6 может составить tвk1=15°С, а выходе - tво1=3°C. В этом случае теряемое из магистрали 2 в грунт тепло (tk2-tвk1=5°C) компенсируется притоком в магистраль 3 тепла из грунта (tk1-tво1=5°C).
Требуемое значение температуры воды на входе в радиаторы 5 (tвkн=95°C) (фиг.1) или в теплообменник 24 (фиг.2) (tвkн=130°С) обеспечивается путем ступенчатого нагревания ее в конденсаторах 13, 14 и 15
за счет тепла, перекачиваемого холодильными машинами 7, 8 и 9 из магистрали 3 через испарители 19, 20 и 21 от воды с температурой на выходе из радиаторов 5 tвоп=60°С.
В представленном на фиг.2 втором варианте системы теплоснабжения при открывании вентиля 26 вода с температурой 130°С по ответвлению 25 поступает в теплообменник 24. При дросселировании в вентиле 26 вода разбрызгивается в теплообменнике 24 и превращается в пар за счет тепла, поступающего из магистрали 2 через теплопередающую поверхность теплообменника 24. Расход превратившейся в пар воды компенсируется из подпиточной магистрали 22 насосом 23.
Значение температур воды могут быть и любые другие, обеспечивающие требуемый уровень температур в потребителе тепла.
Лучший вариант осуществления полезной модели.
Лучшим вариантом осуществления полезной модели является использование ее в составе системы теплоснабжения с теплоэлектроцентралью при температуре воды на входе в конденсатор 1 ниже температуры окружающей магистраль 3 среды и с холодильной установкой, имеющей несколько конденсаторов и испарителей.
При приведенных в описании чертежей значениях температур воды потери тепла через магистраль 2 компенсируются теплопритоками в магистраль 3. При этом затраты энергии на привод холодильной установки 6 компенсируются увеличением коэффициента полезного действия теплосиловой установки теплоэлектроцентрали в связи со снижением температуры воды на входе в конденсатор 1.
Кроме того, при использовании второго варианта отпадает необходимость прокладки в тепловой сети паропровода от теплосиловой установки. В таблицах 1 и 2 представлены результаты расчетов показателей холодильной установки при приведенных в описании чертежей значениях температур воды.
Расчетные показатели холодильной установки системы теплоснабжения первого варианта.
Таблица 1 | ||||||
Показатели | Количество холодильных машин в установке, n | |||||
1 | 2 | 3 | 4 | 5 | ||
Отопительный коэффициент холодильной машины, μi | 1 | 2,30 | 3,19 | 3,85 | 4,34 | 4,73 |
2 | - | 3,02 | 3,60 | 4,06 | 4,43 | |
3 | - | - | 3,41 | 3,86 | 4,18 | |
4 | - | - | - | 3,66 | 3,99 | |
5 | - | - | - | - | 3,83 | |
Отопительный коэффициент установки, μуп | 2,30 | 3,11 | 3,62 | 3,97 | 4,23 | |
Коэффициент энергетической эффективности установки, ηуп | 1,00 | 1,35 | 1,57 | 1,73 | 1,84 |
Расчетные показатели холодильной установки системы теплоснабжения второго варианта.
Таблица 2 | ||||||
Показатели | Количество холодильных машин в установке, n | |||||
1 | 2 | 3 | 4 | 5 | ||
Отопительный коэффициент холодильной машины, μi | 1 | 1,94 | 2,88 | 3,18 | 3,60 | 3,95 |
2 | - | 2,32 | 2,75 | 3,11 | 3,42 | |
3 | - | - | 2,49 | 2,80 | 3,08 | |
4 | - | - | - | 2,59 | 2,84 | |
5 | - | - | - | - | 2,66 | |
Отопительный коэффициент установки, μуп | 1,94 | 2,60 | 2,81 | 3,03 | 3,19 | |
Коэффициент энергетической эффективности установки, ηуп | 1,00 | 1,34 | 1,45 | 1,56 | 1,64 |
Значения μi определялись по формуле
где kн=0,465±0,02 - коэффициент необратимости выпускаемых промышленностью парокомпрессионных холодильных установок холодильной мощностью до 1000 кВт с винтовым компрессором;
- холодильный коэффициент i-й холодильной машины;
- температура кипения хладагента в испарителе i-й холодильной машины, °К;
- температура конденсации хладагента в конденсаторе i-й холодильной машины, °К;
- температура кипения хладагента в испарителе первой от конденсатора 1 холодильной машины, °К;
Tкn=Tвкn+5 - температура конденсации хладагента в конденсаторе последней от конденсатора 1 холодильной машины, К.
- отношение отопительного коэффициента холодильной установки с n холодильными машинами к отопительному коэффициенту холодильной установки с одной холодильной машиной.
Согласно приведенным в таблицах 1 и 2 значениям отопительного коэффициента установки μуп возрастает с увеличением количества холодильных машин. В связи с этим потребляемая холодильной установкой мощность уменьшается в зависимости от количества холодильных машин в установке до ηуп=1,84 раза при использовании первого и до 1,64 раза - второго варианта системы теплоснабжения.
Промышленная применимость
Использование полезной модели не требует разработки принципиально новой аппаратуры и агрегатов. Для этого могут быть применены выпускаемые промышленностью приведенные на фиг.1 и 2 элементы схемы системы теплоснабжения.
Список использованной литературы.
1. Грингауз Ф.И. Санитарно-технические работы. Издание восьмое. М., Высшая школа, 1979 г.
2. Беляев Ю.П.Проблемы долгосрочного развития энергетики. "Промышленная энергетика", №4, 2003 г.
3. Кириллин В.А., Сычев А.Е., Шейндлин А.Е. Техническая термодинамика. Издание четвертое. Энергоатомиздат. М., 1983 г.
4. Дроздов В.Ф. Санитарно-технические устройства зданий. М., Стройиздат, 1980 г.
Claims (4)
1. Система теплоснабжения, содержащая подающую потребителю тепла и обратную магистрали теплоносителя, отличающаяся тем, что она снабжена размещенной перед потребителем тепла холодильной установкой, конденсатор этой установки включен гидравлически в подающую, а испаритель - в обратную магистраль.
2. Система по п.1, отличающаяся тем, что холодильная установка выполнена с несколькими, имеющими разный уровень температуры конденсации хладагента и соединенными последовательно по ходу теплоносителя, конденсаторами и с несколькими, имеющими разный уровень температуры кипения хладагента и соединенными последовательно по ходу теплоносителя, испарителями.
3. Система теплоснабжения, содержащая подающую к потребителю тепла, обратную и подпиточную магистрали, отличающаяся тем, что она снабжена размещенной перед потребителем тепла холодильной установкой, конденсатор которой включен гидравлически в подающую, а испаритель - в обратную магистраль, включенным гидравлически в подающую магистраль на участке между конденсатором и потребителем тепла теплообменником и ответвлением подающей магистрали, связанным гидравлически с теплообменником через редукционное устройство.
4. Система по п.3, отличающаяся тем, что холодильная установка выполнена с несколькими, имеющими разный уровень температуры конденсации хладагента и соединенными последовательно по ходу теплоносителя, конденсаторами и с несколькими, имеющими разный уровень температуры кипения хладагента и соединенными последовательно по ходу теплоносителя, испарителями.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2004124797/22U RU42641U1 (ru) | 2004-08-16 | 2004-08-16 | Система теплоснабжения (варианты) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2004124797/22U RU42641U1 (ru) | 2004-08-16 | 2004-08-16 | Система теплоснабжения (варианты) |
Publications (1)
Publication Number | Publication Date |
---|---|
RU42641U1 true RU42641U1 (ru) | 2004-12-10 |
Family
ID=37439323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2004124797/22U RU42641U1 (ru) | 2004-08-16 | 2004-08-16 | Система теплоснабжения (варианты) |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU42641U1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006115432A1 (fr) * | 2005-04-18 | 2006-11-02 | Anatolij Ivanovich Malakhov | Systeme d'alimentation en chaleur |
-
2004
- 2004-08-16 RU RU2004124797/22U patent/RU42641U1/ru not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006115432A1 (fr) * | 2005-04-18 | 2006-11-02 | Anatolij Ivanovich Malakhov | Systeme d'alimentation en chaleur |
EA009243B1 (ru) * | 2005-04-18 | 2007-12-28 | Анатолий Иванович Малахов | Система теплоснабжения |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2542222A (en) | Thermal energy network | |
CN203657051U (zh) | 一种直凝式空气源热泵地暖系统 | |
CN102278836B (zh) | 一种分置式水/地能冷暖生活热水一体中央空调机组 | |
CN204254716U (zh) | 一种单热型地源热泵系统 | |
CN108870598A (zh) | 一种分离式热管蓄能空调系统 | |
CN201028893Y (zh) | 一种地源热泵空调系统 | |
WO2014111061A1 (zh) | 一种冷热内平衡机组 | |
KR101548009B1 (ko) | 순환수 전환에 의한 지열 히트펌프 시스템 | |
Wang et al. | A highly efficient solution for thermal compensation of ground-coupled heat pump systems and waste heat recovery of kitchen exhaust air | |
CN102829520A (zh) | 多用户地源热泵空调系统 | |
CN109028269A (zh) | 一种吸收式热泵机组及回收低温水源余热的供热系统 | |
CN104633977A (zh) | 一种多用途能量平衡机组 | |
CN208332748U (zh) | 太阳能空气源双源热泵机组 | |
RU42641U1 (ru) | Система теплоснабжения (варианты) | |
Kanog˘ lu et al. | Incorporating a district heating/cooling system into an existing geothermal power plant | |
JP6060463B2 (ja) | ヒートポンプシステム | |
CN102221251B (zh) | 一种分置降压式水/地能冷暖生活热水一体中央空调机组 | |
RU2310136C2 (ru) | Система теплоснабжения (варианты) | |
RU2374564C1 (ru) | Способ работы теплового генератора без потребления электрической энергии и устройство для его осуществления | |
WO2006033596A1 (fr) | Systeme d'alimentation de chaleur | |
RU2767253C1 (ru) | Система кондиционирования с использованием холода естественного источника | |
RU2738527C1 (ru) | Теплонасосная установка для отопления и охлаждения помещений | |
JP2017067299A (ja) | 冷温熱発生装置 | |
KR20150029109A (ko) | 이중 저수지를 이용한 냉난방 시스템 | |
RU2809315C1 (ru) | Теплонасосная отопительная система |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Utility model has become invalid (non-payment of fees) |