RU2818200C1 - Способ получения покрытия кобальт-карбид вольфрама с использованием импульсного режима электролиза - Google Patents
Способ получения покрытия кобальт-карбид вольфрама с использованием импульсного режима электролиза Download PDFInfo
- Publication number
- RU2818200C1 RU2818200C1 RU2023130558A RU2023130558A RU2818200C1 RU 2818200 C1 RU2818200 C1 RU 2818200C1 RU 2023130558 A RU2023130558 A RU 2023130558A RU 2023130558 A RU2023130558 A RU 2023130558A RU 2818200 C1 RU2818200 C1 RU 2818200C1
- Authority
- RU
- Russia
- Prior art keywords
- cobalt
- coating
- coatings
- electrolyte
- temperature
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 76
- 239000011248 coating agent Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 20
- COLZOALRRSURNK-UHFFFAOYSA-N cobalt;methane;tungsten Chemical compound C.[Co].[W] COLZOALRRSURNK-UHFFFAOYSA-N 0.000 title abstract description 4
- 238000005868 electrolysis reaction Methods 0.000 title description 2
- 239000003792 electrolyte Substances 0.000 claims abstract description 25
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 235000010299 hexamethylene tetramine Nutrition 0.000 claims abstract description 14
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 14
- 238000003756 stirring Methods 0.000 claims abstract description 14
- 235000019270 ammonium chloride Nutrition 0.000 claims abstract description 12
- GFHNAMRJFCEERV-UHFFFAOYSA-L cobalt chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Co+2] GFHNAMRJFCEERV-UHFFFAOYSA-L 0.000 claims abstract description 12
- 239000002131 composite material Substances 0.000 claims abstract description 10
- 230000008021 deposition Effects 0.000 claims abstract description 10
- 229960004011 methenamine Drugs 0.000 claims description 13
- 238000000151 deposition Methods 0.000 abstract description 8
- 238000009713 electroplating Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000001556 precipitation Methods 0.000 abstract 1
- 238000002360 preparation method Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 16
- 238000004070 electrodeposition Methods 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 229910017052 cobalt Inorganic materials 0.000 description 9
- 239000010941 cobalt Substances 0.000 description 9
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 238000005452 bending Methods 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000383 hazardous chemical Substances 0.000 description 3
- 239000004312 hexamethylene tetramine Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 231100000086 high toxicity Toxicity 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- RRIWRJBSCGCBID-UHFFFAOYSA-L nickel sulfate hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-]S([O-])(=O)=O RRIWRJBSCGCBID-UHFFFAOYSA-L 0.000 description 2
- 229940116202 nickel sulfate hexahydrate Drugs 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- GUTLYIVDDKVIGB-AHCXROLUSA-N Cobalt-55 Chemical compound [55Co] GUTLYIVDDKVIGB-AHCXROLUSA-N 0.000 description 1
- GUTLYIVDDKVIGB-OUBTZVSYSA-N Cobalt-60 Chemical compound [60Co] GUTLYIVDDKVIGB-OUBTZVSYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 101100328536 Mus musculus Cntd1 gene Proteins 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical class [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- GUTLYIVDDKVIGB-YPZZEJLDSA-N cobalt-57 Chemical compound [57Co] GUTLYIVDDKVIGB-YPZZEJLDSA-N 0.000 description 1
- GUTLYIVDDKVIGB-IGMARMGPSA-N cobalt-59 atom Chemical compound [59Co] GUTLYIVDDKVIGB-IGMARMGPSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004372 laser cladding Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- LAIZPRYFQUWUBN-UHFFFAOYSA-L nickel chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Ni+2] LAIZPRYFQUWUBN-UHFFFAOYSA-L 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Abstract
Изобретение относится к области гальваностегии, в частности к получению покрытий кобальт-карбид вольфрама, используемых для придания поверхности деталей и оснастки высокой твердости и износостойкости. Способ включает приготовление электролита и осаждение покрытия Co-WC с использованием растворимых или нерастворимых анодов. Электролит содержит гексагидрат хлорида кобальта (II) 35-40 г/л, хлорид аммония 100-150 г/л, уротропин 45-55 г/л, порошок WC 5-20 г/л. Осаждение проводят при рН = 6,5-6,8, температуре 18-25°С, перемешивании электролита магнитной мешалкой со скоростью 300-600 об/мин и с использованием униполярного гальваностатического режима импульсного тока при плотности тока в импульсе 7-10 А/дм2, длительности импульса 10 мс, скважности тока 2. Техническим результатом является получение твердых, износостойких композиционных электрохимических покрытий Co-WC при температуре 18-25°С, обладающих высокой адгезионной прочностью. 7 пр.
Description
Изобретение относится к области гальваностегии. Покрытия кобальт-карбид вольфрама используются для придания поверхности деталей и оснастки высокой твердости и износостойкости.
Для повышения поверхностной твердости и износостойкости часто используют покрытия хромом. Данные покрытия обладают высокой адгезионной прочностью, твердостью, износостойкостью и надежно защищают изделия из стали от коррозии [1]. Однако высокая агрессивность к большинству конструкционных материалов и экологическая опасность, а также токсичность для живых организмов соединений шестивалентного хрома инициируют работы по поиску альтернативы хромовым покрытиям [2, 3].
Наиболее перспективными для замены гальванических покрытий хромом являются композиционные покрытия, в которых дисперсной фазой являются ультрадисперсные алмазы, карбиды металлов, включенные в металлическую матрицу, которая хорошо смачивает частицы дисперсной фазы и обладает высокой адгезионной прочностью к поверхности материала-основы.
Для формирования на стали композиционного электрохимического покрытия Ni-WC предлагается следующий состав электролита: гексагидрат сульфата никеля 250 г/л , гексагидрат хлорида никеля 35 г/л, борная кислота 40 г/л. Добавление дисперсной фазы в виде частиц порошка карбида вольфрама 2 г/л. Электроосаждение ведут при плотности тока 20 А/дм2, температуре 50°С, активном перемешивании магнитной мешалкой со скоростью 300 об/мин [4]. Высокая токсичность никеля и его способность вызывать аллергию при контакте с кожей являются сдерживающими факторами для широкого распространения. Смачиваемость частиц WC никелем ниже, чем кобальтом.
Для нанесения покрытия Ni-Co-WC предлагается электролит следующего состава: гексагидрат сульфата никеля 250 г/л, гексагидрат хлорида кобальта 16 г/л, борная кислота 32 г/л. Добавление дисперсной фазы в виде частиц порошка карбида вольфрама 2...8 г/л. Электроосаждение ведут при плотности тока 50 А/дм2, температуре 50°С, активном перемешивании магнитной мешалкой со скоростью 300 об/мин [5]. Смачиваемость частиц WC сплавом Ni-Co значительно выше, чем никелем. Недостатками данного способа являются: высокая токсичность и аллергенность никеля, а также трудности промышленной реализации данной технологии, связанные с анализом и корректировкой состава электролита для формирования трехкомпонентного покрытия.
Покрытие Ni-WC также получают способом лазерного нанесения. Используется технология лазерной наплавки с помощью лазера мощностью 1700 Вт, диаметр пятна лазера 3 мм, скорость сканирования составила 100 мм/мин [6]. Данная технология является более дорогой по сравнению с гальваническим осаждением и не подходит для обработки больших деталей сложной геометрической формы.
Учитывая лучшую смачиваемость частиц WC кобальтом, меньшую токсичность кобальта по сравнению с никелем, международные ограничения применения никеля в качестве покрытий (Директива Европейского Сообщества 76/769/ЕЕС), более высокую твердость покрытий Co-WC по сравнению с покрытиями Ni-WC, наиболее перспективным является использование кобальта в качестве металлической матрицы для композиционных электрохимических покрытий, обеспечивающих высокую поверхностную твердость и износостойкость.
Из применяемых в настоящее время электролитов наиболее близким по составу и технологическим характеристикам является электролит, имеющий следующий состав: гексагидрат хлорида кобальта (II) 35...40 г/л, хлорид аммония 100...150 г/л, уротропин 45...55 г/л, порошок WC – 5-20 г/л, рН = 6,5…6,8. Процесс электроосаждения проводят при перемешивании магнитной мешалкой со скоростью 300…600 об/мин, плотности тока 3,5…4,5 А/дм2 и температуре 18...25°С, скорость осаждения 115…145 мкм/час. Уротропин улучшает смачиваемость поверхности детали с покрытием и подавляет кислотную коррозию металлов. [7].
Покрытия, полученные из данного состава электролита, являются твердыми (до 5,315 ГПа), износостойкими и полублестящими только при температуре 50°С. Также недостатком данного метода является значительная зависимость состава покрытия и, следовательно, его свойств, от состава электролита и режима электролиза.
Техническим результатом предлагаемого способа является получение твердых, износостойких композиционных электрохимических покрытий
Co-WC при температуре 18…25°С, обладающих высокой адгезионной прочностью.
Co-WC при температуре 18…25°С, обладающих высокой адгезионной прочностью.
Это достигается тем, что осаждение ведется из электролита следующего состава: гексагидрат хлорида кобальта (II) 35...40 г/л, хлорид аммония 100...150 г/л, уротропин 45...55 г/л, порошок WC – 5-20 г/л, рН = 6,5…6,8. Процесс электроосаждения проводят с использованием растворимых (кобальт) и нерастворимых (графит) анодов, при перемешивании магнитной мешалкой со скоростью 300…600 об/мин, с использованием униполярного гальваностатического режима импульсного тока при плотности тока 7…10 А/дм2, времени импульса 10 мс, времени паузы 10 мс (скважность 2) и температуре 18...25°С. Скорость осаждения при этом составит 170…240 мкм/час. Уротропин улучшает смачиваемость поверхности детали с покрытием и подавляет кислотную коррозию металлов.
Предлагаемый раствор прост в приготовлении, а также не содержит токсичные добавки, позволяет работать как с растворимыми, так и с нерастворимыми анодами. Из этого электролита при указанных режимах с использованием импульсного тока прямоугольной формы формируются равномерные полублестящие покрытия с высокой адгезионной прочностью. Твердость и износостойкость получаемых покрытий выше, чем у прототипа.
Не выявлены решения, имеющие признаки заявляемого способа.
Способ нанесения гальванических покрытий кобальт-карбид вольфрама осуществляется следующим образом: расчетные количества хлористого кобальта, хлористого аммония и уротропина последовательно растворяют в дистиллированной воде. Полученный раствор перемешивают до растворения всех реагентов, при необходимости корректируют значение рН. Затем добавляют навеску порошка WC при постоянном перемешивании и доводят объем электролита до требуемого значения дистиллированной водой.
Преимущества промышленного использования заявленного способа:
1. Предлагаемый электролит малокомпонентен, не содержит токсичных органических добавок, позволяет получать покрытия с высоким значением выхода по току.
2. Электролит может работать как с инертными, так и с растворимыми анодами.
3. Светлые, полублестящие композиционные покрытия Co-WC с высокой адгезионной прочностью из данного электролита получаются при температурах 18...25°С.
4. Скорость осаждения покрытия при импульсном токе увеличивается в 1,5 раза по сравнению со скоростью осаждения при постоянном токе.
Примеры практической реализации способа.
1. Состав электролита: гексагидрат хлорида кобальта (II) 35 г/л, хлорид аммония 100 г/л, уротропин 45 г/л, порошок WC – 5,1 г/л, рН = 6,5. Процесс электроосаждения проводят при перемешивании магнитной мешалкой со скоростью 300 об/мин, плотности тока 7 А/дм2, температуре 18°С и скорости осаждения 170 мкм/час Аноды инертные (графит). Катодный выход по току кобальта 52%. Покрытия светлые, мелкокристаллические. Содержание WC в покрытии 10,0±0,77%. Покрытия выдерживают испытания на адгезионную прочность методами нанесения сетки царапин и изгиба образца до излома. Микротвердость покрытия 5,852±0,33 ГПа. Износостойкость покрытия составляет 4200±120 двойных возвратно поступательных движений (ДВПД) индентора на 1 мкм толщины покрытия при нагрузке на индентор 2 Н.
2. Состав электролита: гексагидрат хлорида кобальта (II) 35 г/л, хлорид аммония 100 г/л, уротропин 45 г/л, порошок WC – 5 г/л, рН = 6,5. Процесс электроосаждения проводят при перемешивании магнитной мешалкой со скоростью 300 об/мин, плотности тока 9 А/дм2 и температуре 25°С. Аноды инертные (графит). Катодный выход по току кобальта 57%. Покрытия светлые, мелкокристаллические. Содержание WC в покрытии 11,1±0,62%. Покрытия выдерживают испытания на адгезионную прочность методами нанесения сетки царапин и изгиба образца до излома. Микротвердость покрытия 6,008±0,28 ГПа. Износостойкость покрытия составляет 4140±120 двойных возвратно поступательных движений (ДВПД) индентора на 1 мкм толщины покрытия при нагрузке на индентор 2 Н.
3. Состав электролита: гексагидрат хлорида кобальта (II) 35 г/л, хлорид аммония 100 г/л, уротропин 45 г/л, порошок WC – 5 г/л, рН = 6,5. Процесс электроосаждения проводят при перемешивании магнитной мешалкой со скоростью 300 об/мин, плотности тока 7 А/дм2 и температуре 19°С. Аноды кобальтовые. Катодный выход по току кобальта 55%. Покрытия светлые, мелкокристаллические. Содержание WC в покрытии 10,1±0,72%. Покрытия выдерживают испытания на адгезионную прочность методами нанесения сетки царапин и изгиба образца до излома. Микротвердость покрытия 5,96±0,28 ГПа. Износостойкость покрытия составляет 4140±120 двойных возвратно поступательных движений (ДВПД) индентора на 1 мкм толщины покрытия при нагрузке на индентор 2 Н.
4. Состав электролита: гексагидрат хлорида кобальта (II) 40 г/л, хлорид аммония 150 г/л, уротропин 55 г/л, порошок WC – 20 г/л, рН = 6,8. Процесс электроосаждения проводят при перемешивании магнитной мешалкой со скоростью 300 об/мин, плотности тока 9 А/дм2 и температуре 20°С. Аноды инертные (графит). Катодный выход по току кобальта 67%. Покрытия светлые, мелкокристаллические. Содержание WC в покрытии 21,0±1,54%. Покрытия выдерживают испытания на адгезионную прочность методами нанесения сетки царапин и изгиба образца до излома. Микротвердость покрытия 11,15±0,435 ГПа. Износостойкость покрытия составляет 5500±150 двойных возвратно поступательных движений (ДВПД) индентора на 1 мкм толщины покрытия при нагрузке на индентор 2 Н.
5. Состав электролита: гексагидрат хлорида кобальта (II) 40 г/л, хлорид аммония 150 г/л, уротропин 55 г/л, порошок WC – 20 г/л, рН = 6,8. Процесс электроосаждения проводят при перемешивании магнитной мешалкой со скоростью 600 об/мин, плотности тока 9 А/дм2 и температуре 25°С. Аноды инертные (графит). Катодный выход по току кобальта 64%. Покрытия светлые, мелкокристаллические. Содержание WC в покрытии 18,5±1,9%. Покрытия выдерживают испытания на адгезионную прочность методами нанесения сетки царапин и изгиба образца до излома. Микротвердость покрытия 7,85±0,2 ГПа. Износостойкость покрытия составляет 5760±120 двойных возвратно поступательных движений (ДВПД) индентора на 1 мкм толщины покрытия при нагрузке на индентор 2 Н.
6. Состав электролита: гексагидрат хлорида кобальта (II) 40 г/л, хлорид аммония 125 г/л, уротропин 50 г/л, порошок WC – 10 г/л, рН = 6,8. Процесс электроосаждения проводят при перемешивании магнитной мешалкой со скоростью 300 об/мин, плотности тока 8,5 А/дм2 и температуре 24°С. Аноды инертные (графит). Катодный выход по току кобальта 60%. Покрытия светлые, мелкокристаллические. Содержание WC в покрытии 16,5±1,31%. Покрытия выдерживают испытания на адгезионную прочность методами нанесения сетки царапин и изгиба образца до излома. Микротвердость покрытия 7,597±0,23 ГПа. Износостойкость покрытия составляет 5580±150 двойных возвратно поступательных движений (ДВПД) индентора на 1 мкм толщины покрытия при нагрузке на индентор 2 Н.
7. Состав электролита: гексагидрат хлорида кобальта (II) 40 г/л, хлорид аммония 125 г/л, уротропин 50 г/л, порошок WC – 10 г/л, рН = 6,8. Процесс электроосаждения проводят при перемешивании магнитной мешалкой со скоростью 600 об/мин, плотности тока 8 А/дм2 и температуре 23°С. Аноды инертные (графит). Катодный выход по току кобальта 59%. Покрытия светлые, мелкокристаллические. Содержание WC в покрытии 25,0±1,1%. Покрытия выдерживают испытания на адгезионную прочность методами нанесения сетки царапин и изгиба образца до излома. Микротвердость покрытия 7,226±0,26 ГПа. Износостойкость покрытия составляет 5400±180 двойных возвратно поступательных движений (ДВПД) индентора на 1 мкм толщины покрытия при нагрузке на индентор 2 Н.
ЛИТЕРАТУРА
1. Солодкова, Л. Н. Электролитическое хромирование: приложение к журналу "Гальванотехника и обработка поверхности" / Л. Н. Солодкова ; Л. Н. Солодкова, В. Н. Кудрявцев ; под ред. В. Н. Кудрявцева. – Москва : Глобус, 2007. – 191 с.
2. Технический регламент Евразийского экономического союза "Об ограничении применения опасных веществ в изделиях электротехники и радиоэлектроники" (ТР ЕАЭС 037/2016). URL: https://docs.cntd.ru/document/420387089?ysclid=lciz6uxe25600302990 (дата обращения: 05.01.2023).
3. Directive 2011/65/EU RoHS of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (Директива ЕС 2011/65/EU RoHS Европейского парламента и Совета ЕС от 8 июня 2011 г. по ограничению содержания вредных веществ в электрическом и электронном оборудовании). URL:https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011L0065 (дата обращения: 05.01.2023).
4. Surender M., Balasubramaniam R., Basu B. Electrochemical behavior of electrodeposited Ni–WC composite coatings //Surface and Coatings Technology. – 2004. – Т. 187. – №. 1. – С. 93-97.
5. Elkhoshkhany N., Hafnway A., Khaled A. Electrodeposition and corrosion behavior of nano-structured Ni-WC and Ni-Co-WC composite coating //Journal of Alloys and Compounds. – 2017. – Т. 695. – С. 1505-1514.
6. Liu Y. et al. Wear and heat shock resistance of Ni-WC coating on mould copper plate fabricated by laser //Journal of materials research and technology. – 2020. – Т. 9. – №. 4. – С. 8283-8288
7. Zhang Y. G. et al. Electrodeposition, microstructure and property of Co–WC composite coatings //Materials Research Express. – 2020. – Т. 6. – №. 12. – С. 126438.
Claims (1)
- Способ нанесения композиционных электрохимических покрытий Co-WC, включающий приготовление электролита и осаждение покрытия Co-WC с использованием растворимых или нерастворимых анодов из электролита, содержащего гексагидрат хлорида кобальта (II) 35-40 г/л, хлорид аммония 100-150 г/л, уротропин 45-55 г/л, порошок WC 5-20 г/л при рН = 6,5-6,8, при температуре 18-25°С и перемешивании магнитной мешалкой со скоростью 300-600 об/мин, отличающийся тем, что осаждение проводят с использованием униполярного гальваностатического режима импульсного тока, при плотности тока в импульсе 7-10 А/дм2, длительности импульса 10 мс, скважности тока 2.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2818200C1 true RU2818200C1 (ru) | 2024-04-25 |
Family
ID=
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2463392C1 (ru) * | 2011-06-09 | 2012-10-10 | Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого | Способ нанесения покрытий с карбидами вольфрама |
CN102719862B (zh) * | 2012-07-07 | 2015-04-01 | 西安科技大学 | 在W18Cr4V钢表面制备Co-WC复合镀层的方法 |
RU2796775C1 (ru) * | 2023-02-13 | 2023-05-29 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет" (ФГБОУ ВО "ПГУ") | Способ нанесения композиционного электрохимического покрытия кобальт-карбид вольфрама |
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2463392C1 (ru) * | 2011-06-09 | 2012-10-10 | Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого | Способ нанесения покрытий с карбидами вольфрама |
CN102719862B (zh) * | 2012-07-07 | 2015-04-01 | 西安科技大学 | 在W18Cr4V钢表面制备Co-WC复合镀层的方法 |
RU2796775C1 (ru) * | 2023-02-13 | 2023-05-29 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет" (ФГБОУ ВО "ПГУ") | Способ нанесения композиционного электрохимического покрытия кобальт-карбид вольфрама |
Non-Patent Citations (1)
Title |
---|
Zhang, Y.G. et.al. Electrodeposition, microstructure and property of Co-WC composite coatings. Materials Research Express, 2020, 6(12), 126438. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Beltowska-Lehman et al. | Optimisation of the electrodeposition process of Ni-W/ZrO2 nanocomposites | |
Laszczyńska et al. | Electrodeposition and characterization of Ni–Mo–ZrO2 composite coatings | |
Ranjith et al. | Ni–Co–TiO2 nanocomposite coating prepared by pulse and pulse reversal methods using acetate bath | |
Yari et al. | Deposition and characterization of nanocrystalline and amorphous Ni–W coatings with embedded alumina nanoparticles | |
Góral et al. | Influence of current density on microstructure and properties of electrodeposited nickel-alumina composite coatings | |
Fayomi et al. | Investigation on microstructural, anti-corrosion and mechanical properties of doped Zn–Al–SnO2 metal matrix composite coating on mild steel | |
Böck et al. | Effect of additive and current mode on surface morphology of palladium films from a non-aqueous deep eutectic solution (DES) | |
CA1118710A (en) | Hard, heat-resistant nickel electrodeposits | |
Büker et al. | Influence of carboxylic acids on the performance of trivalent chromium electrolytes for the deposition of functional coatings | |
Tian et al. | Induced electrodeposition of alloy coatings from baths containing different systems of complexing agents: Preparation and enhanced properties of Co-Mo-Ni-W coatings | |
Benballa et al. | Zinc–nickel codeposition in ammonium baths | |
Zhang et al. | Electrodeposition of Cu-Zn alloy from EMImTfO ionic liquid/ethanol mixtures for replacing the cyanide zincate layer on Al alloy | |
Shetty et al. | Development of Ni-Co-CNT composite coatings for corrosion protection of mild steel in 5% NaCl | |
RU2818200C1 (ru) | Способ получения покрытия кобальт-карбид вольфрама с использованием импульсного режима электролиза | |
Barbano et al. | New electrolytic bath for electrodeposition of protective binary FeMo and ternary FeMoP films | |
Tafreshi et al. | Effect of PTFE on characteristics, corrosion, and tribological behavior of Zn–Ni electrodeposits | |
RU2796775C1 (ru) | Способ нанесения композиционного электрохимического покрытия кобальт-карбид вольфрама | |
Diafi et al. | The influence of co2+ concentration on the electrodeposition of ZnNi films to obtain the ZnNi–co composite coatings | |
Oriňáková et al. | Electrodeposition of composite Ni–B coatings in a stirred heterogeneous system | |
Amadeh et al. | Corrosion behavior of pulse electrodeposited nanostructure Ni–SiC composite coatings | |
JP2007308801A (ja) | ニッケル・コバルト・リン電気メッキの組成物及びその用途 | |
Karabulut et al. | Effect of H₃BO₃ on the Corrosion Properties of Ni-B Based Electroplating Coatings | |
Kir et al. | Effect of hard chrome plating parameters on the wear resistance of low carbon steel | |
Bigos et al. | Electrodeposition and properties of nanocrystalline Ni-based alloys with refractory metal from citrate baths | |
Mbugua et al. | The Influence of Co Concentration on the Properties of Conventionally Electrodeposited Ni–Co–Al 2 O 3–SiC Nanocomposite Coatings |