RU2809266C1 - Жидкостная ракетная двигательная установка - Google Patents

Жидкостная ракетная двигательная установка Download PDF

Info

Publication number
RU2809266C1
RU2809266C1 RU2023102539A RU2023102539A RU2809266C1 RU 2809266 C1 RU2809266 C1 RU 2809266C1 RU 2023102539 A RU2023102539 A RU 2023102539A RU 2023102539 A RU2023102539 A RU 2023102539A RU 2809266 C1 RU2809266 C1 RU 2809266C1
Authority
RU
Russia
Prior art keywords
fuel
oxidizer
additive
gas generator
autonomous
Prior art date
Application number
RU2023102539A
Other languages
English (en)
Inventor
Борис Григорьевич Дегтярь
Original Assignee
Борис Григорьевич Дегтярь
Filing date
Publication date
Application filed by Борис Григорьевич Дегтярь filed Critical Борис Григорьевич Дегтярь
Application granted granted Critical
Publication of RU2809266C1 publication Critical patent/RU2809266C1/ru

Links

Images

Abstract

Изобретение относится к устройству жидкостных ракетных двигателей. Жидкостная ракетная двигательная установка (ЖРДУ) состоит из тяговой камеры сгорания и унифицированных автономных систем питания камеры сгорания компонентами топлив как в жидкой, так и в газообразной фазе. Автономность обеспечена тем, что питание присадочным окислителем восстановительного газогенератора автономной системы питания камеры сгорания (КС) горючим осуществляется от автономной вытеснительной системы подачи присадочного окислителя, а питание присадочным горючим окислительного газогенератора автономной системы питания КС окислителем осуществляется от автономной вытеснительной системы подачи присадочного горючего. Изобретение обеспечивает повышение эффективности управления режимом работы ЖРДУ, регулируя расходы и давления окислителя и горючего в КС путем изменения режимов работы турбонасосных агрегатов, а также регулируя расходы присадочных компонентов в газогенераторы. 1 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение относится к области ракетной техники, конкретно к устройству жидкостных ракетных двигательных установок (ЖРДУ).
Известна ЖРДУ [1], которая состоит: из тяговой КС; системы питания КС окислителем, включающую бак окислителя с расположенными в донной части агрегатами системы питания КС окислителем: насосом окислителя, турбиной окислительного газа, окислительным жидкостным газогенератором; напорной магистрали подачи окислителя в КС и подачи присадочного окислителя в восстановительный газогенератор системы питания КС горючим; системы питания КС горючим включающую: бак горючего с расположенными в донной части агрегатами системы питания КС горючим: насосом горючего, восстановительным жидкостным газогенератором, турбиной восстановительного газа; напорной магистрали подачи горючего в КС и подачи присадочного горючего в окислительный газогенератор системы питания КС окислителем.
Недостатком известной ЖРДУ является то, что системы питания КС горючим и окислителем не являются автономными, так как восстановительный газогенератор системы питания КС горючим питается окислителем от насоса окислителя системы питания КС окислителем, а окислительный газогенератор системы питания КС окислителем питается горючим от насоса горючего системы питания КС горючим. Таким образом, работа системы питания КС горючим зависит от работы системы питания КС окислителем, а работа системы питания КС окислителем зависит от работы системы питания КС горючим, что существенно усложняет управление режимами работы КС и ЖРДУ в целом. При этом значительно повышается стоимость и время на конструирование, изготовление и экспериментальную отработку систем питания КС горючим и окислителем.
Задачей, на решение которой направлено заявляемое изобретение, является обеспечение автономной работы систем питания КС горючим и окислителем.
При этом решаются и другие задачи, такие как: повышение эффективности систем управления ЖРДУ и ракетой в целом; автономная экспериментальная отработка КС и систем питания компонентами топлива КС; упрощение структурно-компоновочной схемы ЖРДУ; разработка широкой линейки ЖРДУ различной мощности и различного назначения с применением различных компонентов.
Данные задачи решаются благодаря тому, что расход топлива на привод газовых турбин ЖРДУ, выполненных по открытой схеме (без дожигания генераторного газа), не превышает (2-3) % от общего расхода топлив на создание тяги ЖРДУ, при этом расход присадочного окислителя в восстановительный газогенератор во много раз меньше расхода горючего, а расход присадочного горючего в окислительный газогенератор во много раз меньше расхода окислителя, поэтому количество присадочного окислителя, необходимое для привода насоса горючего, во много раз меньше количества окислителя на создание тяги ЖРДУ, а количество присадочного горючего, необходимого для привода насоса окислителя, во много раз меньше количества горючего на создание тяги ЖРДУ. Следовательно, становится очевидным осуществлять подачу присадочного окислителя в восстановительный газогенератор системы питания КС горючим с помощью автономной вытеснительной системы подачи присадочного окислителя в восстановительный газогенератор, состоящей из топливного бака присадочного окислителя и аккумулятора высокого давления, а подачу присадочного горючего в окислительный газогенератор системы питания КС окислителем с помощью автономной вытеснительной системы подачи присадочного горючего в окислительный газогенератор, состоящей из топливного бака присадочного горючего и аккумулятора высокого давления.
Таким образом, данная задача решается за счет того, что заявленная жидкостная ракетная двигательная установка, включающая напорные магистрали окислителя и горючего; тяговую камеру сгорания; систему питания горючим, включающую: топливный бак горючего, с расположенными в углублении донной части топливного бака горючего агрегатами системы подачи горючего: насоса горючего, турбины восстановительного газа, восстановительного жидкостного газогенератора, с подачей горючего в камеру сгорания и восстановительный газогенератор по напорной магистрали горючего; систему питания окислителем, включающую: топливный бак окислителя с расположенными в углублении донной части топливного бака окислителя агрегатами системы подачи окислителя: насоса окислителя, турбины окислительного газа, окислительного жидкостного газогенератора, с подачей окислителя в камеру сгорания и окислительный газогенератор по напорной магистрали окислителя: отличающийся тем, что подача присадочного окислителя в восстановительный газогенератор системы питания КС горючим осуществляется с помощью автономной вытеснительной системы подачи присадочного окислителя в восстановительный газогенератор: состоящей из топливного бака присадочного окислителя и аккумулятора высокого давления, а подача присадочного горючего в окислительный газогенератор системы питания КС окислителем осуществляется с помощью автономной вытеснительной системы подачи присадочного горючего в окислительный газогенератор, состоящей из топливного бака присадочного горючего и аккумулятора высокого давления.
Следует заметить, что заявленная жидкостная ракетная двигательная установка может отличаться тем, что компоненты топлива окислитель и горючее могут подаваться в камеру сгорания в газообразном виде.
Техническим результатом, обеспечиваемым совокупностью признаков, является автономная работа систем питания КС горючим и окислителем, позволяющая эффективно управлять режимами работы ЖРДУ и ракеты в целом, регулируя расходы и давления окислителя и горючего в КС путем изменения режимов работы турбонасосных агрегатов, регулируя расходы присадочных компонентов в газогенераторы, что легко осуществить при вытеснительной системе подачи присадочных компонентов топлива в газогенераторы.
Сущность изобретения поясняется чертежами, на которых изображено: на фиг. 1 - Схема ЖРДУ без дожигания продуктов газогенерации в КС 11, работающей по схеме «жидкость+жидкость», и с автономными системами питания КС окислителем и горючим: 1, 7 - пуско-отсечные пневмоклапаны горючего и окислителя, соответственно; 2, 8 - насосы горючего и окислителя, соответственно; 3, 6 - топливные баки с горючим и окислителем, соответственно; 4, 5 - восстановительный и окислительный жидкостные газогенераторы, соответственно; 9, 10 - турбина окислительного и турбина восстановительного газа, соответственно; 11 - КС «жидкость+жидкость»; 12, 13 - заборные устройство горючего и окислителя, соответственно: 14 - напорная магистраль горючего; 15 - напорная магистраль окислителя; 16 - выхлопной патрубок турбины
восстановительного газа; 17-выхлопной патрубок турбины окислительного газа; (18, 19, 20, 21) - автономная вытеснительная система подачи присадочного окислителя в восстановительный газогенератор: 18 - мембрана принудительного прорыва; 19 - топливный бак присадочного окислителя; 20 - пуско-отсечной пневмоклапан; 21 - газовый аккумулятор высокого давления; (22, 23, 24, 25) - автономная вытеснительная система подачи присадочного горючего в окислительный газогенератор: 22 - мембрана принудительного прорыва; 23 - топливный бак присадочного горючего; 24 -пуско-отсечной пневмоклапан; 25 - газовый аккумулятор высокого давления.
На фиг. 2 - Схема ЖРДУ с дожиганием продуктов газогенерации в КС 11, работающей по схеме «газ+газ», и с автономными системами питания КС окислительными и восстановительными продуктами газогенерации: 1, 7 - пуско-отсечные пневмоклапаны горючего и окислителя, соответственно; 2, 8 - насосы горючего и окислителя, соответственно; 3, 6- топливные баки с горючим и окислителем, соответственно; 4, 5 - восстановительный и окислительный жидкостные газогенераторы, соответственно; 9, 10 - турбина окислительного и турбина восстановительного газа, соответственно; 11 - КС «газ - газ»; 12, 13 - заборные устройство горючего и окислителя, соответственно: 14 - напорная магистраль горючего; 15 - напорная магистраль восстановительного газа; 16 - напорная магистраль окислительного газа; (17, 18, 19, 20) - автономная вытеснительная система подачи присадочного окислителя в восстановительный газогенератор: 17 - мембрана принудительного прорыва; 18 - топливный бак присадочного окислителя; 19 - пуско-отсечной пневмоклапан; 20 - газовый аккумулятор высокого давления; (21, 22, 23, 24) - вытеснительная система подачи присадочного горючего в окислительный газогенератор: 21 - мембрана принудительного прорыва; 22 - топливный бак присадочного горючего; 23 - пуско-отсечной пневмоклапан; 24 - газовый аккумулятор высокого давления.
ЖРДУ, на самовоспламеняющихся компонентах топлива без дожигания продуктов газогенерации в КС 11 (фиг. 1), работает следующим образом. Подается давление на пневмоклапаны 1 и 7. При срабатывании пневмоклапана 1 горючее самотеком под действием гидростатического давления или давления предварительного наддува топливного бака 3 поступают в восстановительный газогенератор 4 и в КС 11. При срабатывании пневмоклапана 7 окислитель самотеком под действием гидростатического давления или давления предварительного наддува топливного бака 6 поступают в окислительный газогенератор 5 и в КС 11.
Одновременно подается давление на пневмоклапаны 20 и 24. При срабатывании пневмоклапана 20 газ из аккумуляторов высокого давления 21 поступает в свободное газовое пространство топливного бака присадочного окислителя 19, под давлением газа мембрана принудительного прорыва 18 прорывается и присадочный окислитель поступает в восстановительный газогенератор 4, где соприкасается с горчим и воспламеняется. Восстановительный газ из газогенератора 4 поступает на турбину 10, и далее часть восстановительного газа поступает на наддув топливного бака горючего, а другая часть на выхлопной патрубок 16. Турбина 10 приводит во вращение насос горючего 2, который под давлением подает горючее в газогенератор 4 и через рубашку охлаждения в КС 11. При срабатывании пневмоклапана 24 газ из аккумуляторов высокого давления 25 поступает в свободное газовое пространство топливного бака присадочного горючего 23, под давлением газа мембрана принудительного прорыва 22 прорывается и присадочное горючее поступает в окислительный газогенератор 5, где соприкасается с окислителем и воспламеняется. Окислительный газ из газогенератора 5 поступает на турбину 9, и далее часть окислительного газа поступает на наддув топливного бака окислителя, а другая часть на выхлопной патрубок 17. Турбина 9 приводит во вращение насос окислителя 8, который под давлением подает окислитель в газогенератор 5 и в КС 11.
Компоненты топлива, поступившие в КС 11, соприкасаются и воспламеняются, КС и агрегаты системы питания выходят на режим. При несамовоспламеняющихся компонентах топлива в газогенераторах и КС устанавливается система зажигания, которая включается одновременно с пуско-отсечными клапанами. Для выключения ЖРДУ подается сигнал на пуско-отсечные клапаны 1,7, 20, 24 клапаны закрываются подача компонентов топлива прекращается.
ЖРДУ с дожиганием продуктов газогенерации в КС 11 по схеме «газ+газ» (фиг. 2), работает аналогичным образом и отличается только тем, что компоненты топлива подаются в КС 11 в газообразном виде.
Предлагаемая ЖРДУ может быть использована в качестве базового модулям многоразовых космических транспортных систем и мобильных ракет морского базирования.
Литература.
1. Пат. 2772670 Российская Федерация, МПК F02K 9/42. Жидкостная ракетная двигательная установка / Б.Г. Дегтярь; заявитель и патентообладатель Дегтярь Борис Григорьевич. - №2020141523; заявл. 15.12.2020; опубл. 23.05.2022, Бюл. №15.

Claims (2)

1. Жидкостная ракетная двигательная установка, включающая напорные магистрали окислителя и горючего; тяговую камеру сгорания; систему питания горючим, включающую: топливный бак горючего с расположенными в углублении донной части топливного бака горючего агрегатами системы подачи горючего: насоса горючего, турбины восстановительного газа, восстановительного жидкостного газогенератора с подачей горючего в камеру сгорания и восстановительный газогенератор по напорной магистрали горючего; систему питания окислителем, включающую: топливный бак окислителя с расположенными в углублении донной части топливного бака окислителя агрегатами системы подачи окислителя: насоса окислителя, турбины окислительного газа, окислительного жидкостного газогенератора с подачей окислителя в камеру сгорания и окислительный газогенератор по напорной магистрали окислителя, отличающаяся тем, что подача присадочного окислителя в восстановительный газогенератор системы питания КС горючим осуществляется с помощью автономной вытеснительной системы подачи присадочного окислителя в восстановительный газогенератор, состоящий из топливного бака присадочного окислителя и аккумулятора высокого давления, а подача присадочного горючего в окислительный газогенератор системы питания КС окислителем осуществляется с помощью автономной вытеснительной системы подачи присадочного горючего в окислительный газогенератор, состоящий из топливного бака присадочного горючего и аккумулятора высокого давления.
2. Жидкостная ракетная двигательная установка по п. 1, отличающаяся тем, что компоненты топлива окислитель и горючее подаются в камеру сгорания в газообразном виде.
RU2023102539A 2023-02-03 Жидкостная ракетная двигательная установка RU2809266C1 (ru)

Publications (1)

Publication Number Publication Date
RU2809266C1 true RU2809266C1 (ru) 2023-12-08

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1213497A (en) * 1967-04-05 1970-11-25 Messerschmitt Boelkow Blohm Liquid fuelled rocket propulsion unit
RU2173399C2 (ru) * 1999-11-30 2001-09-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" Жидкостный ракетный двигатель
RU2290525C2 (ru) * 2005-02-22 2006-12-27 Александр Михайлович Захаров Способ создания тяги жрд и устройство для его реализации

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1213497A (en) * 1967-04-05 1970-11-25 Messerschmitt Boelkow Blohm Liquid fuelled rocket propulsion unit
RU2173399C2 (ru) * 1999-11-30 2001-09-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" Жидкостный ракетный двигатель
RU2290525C2 (ru) * 2005-02-22 2006-12-27 Александр Михайлович Захаров Способ создания тяги жрд и устройство для его реализации
RU2772670C1 (ru) * 2020-12-15 2022-05-23 Борис Григорьевич Дегтярь Жидкостная ракетная двигательная установка

Similar Documents

Publication Publication Date Title
EP1022454B1 (en) Liquid propellant rocket engine
EP3447274B1 (en) Electric power-assisted liquid-propellant rocket propulsion system
US11181076B2 (en) Rocket engine bipropellant supply system including an electrolyzer
US8572948B1 (en) Rocket engine propulsion system
US5572864A (en) Solid-fuel, liquid oxidizer hybrid rocket turbopump auxiliary engine
KR20070078978A (ko) 램제트/스크램제트 엔진을 시동하기 위한 다목적 가스발생기를 가진 시스템과 램제트/스크램제트 엔진을시동하기 위한 방법
US5444973A (en) Pressure-fed rocket booster system
US20160131085A1 (en) Stored pressure driven cycle
US5267437A (en) Dual mode rocket engine
US2689454A (en) Rocket engine
RU2520771C1 (ru) Жидкостный ракетный двигатель по схеме с дожиганием генераторного газа
RU2386844C1 (ru) Трехкомпонентный жидкостный ракетный двигатель и способ его работы
RU2302547C1 (ru) Жидкостный ракетный двигатель
RU2809266C1 (ru) Жидкостная ракетная двигательная установка
RU2382223C1 (ru) Трехкомпонентный жидкостный ракетный двигатель и способ его работы
RU2299345C1 (ru) Жидкостный ракетный двигатель и способ его запуска
RU2095607C1 (ru) Жидкостный ракетный двигатель на криогенном топливе
RU2065985C1 (ru) Трехкомпонентный жидкостный ракетный двигатель
RU2300657C1 (ru) Жидкостный ракетный двигатель
EP4030046B1 (en) Multi-time ignition starting apparatus for a rocket engine, and rocket engine having same
US3128601A (en) Pre-burner rocket control system
RU2065068C1 (ru) Экспериментальный жидкостный ракетный двигатель с дожиганием
RU2116491C1 (ru) Способ работы жидкостного ракетного двигателя и жидкостный ракетный двигатель
RU92107U1 (ru) Гибридная ракетная двигательная установка (варианты)
RU2742516C1 (ru) Двигательная установка с ракетным двигателем