RU2520771C1 - Жидкостный ракетный двигатель по схеме с дожиганием генераторного газа - Google Patents

Жидкостный ракетный двигатель по схеме с дожиганием генераторного газа Download PDF

Info

Publication number
RU2520771C1
RU2520771C1 RU2012148273/06A RU2012148273A RU2520771C1 RU 2520771 C1 RU2520771 C1 RU 2520771C1 RU 2012148273/06 A RU2012148273/06 A RU 2012148273/06A RU 2012148273 A RU2012148273 A RU 2012148273A RU 2520771 C1 RU2520771 C1 RU 2520771C1
Authority
RU
Russia
Prior art keywords
turbopump
pump
fuel
engine
tna
Prior art date
Application number
RU2012148273/06A
Other languages
English (en)
Other versions
RU2012148273A (ru
Inventor
Петр Сергеевич Лёвочкин
Владимир Константинович Чванов
Вадим Ильич Семенов
Дмитрий Сергеевич Пушкарев
Александр Анатольевич Тюрин
Original Assignee
Открытое акционерное общество "НПО Энергомаш имени академика В.П. Глушко"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "НПО Энергомаш имени академика В.П. Глушко" filed Critical Открытое акционерное общество "НПО Энергомаш имени академика В.П. Глушко"
Priority to RU2012148273/06A priority Critical patent/RU2520771C1/ru
Publication of RU2012148273A publication Critical patent/RU2012148273A/ru
Application granted granted Critical
Publication of RU2520771C1 publication Critical patent/RU2520771C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • F02K9/46Feeding propellants using pumps
    • F02K9/48Feeding propellants using pumps driven by a gas turbine fed by propellant combustion gases or fed by vaporized propellants or other gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • F02K9/46Feeding propellants using pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • F02K9/56Control
    • F02K9/563Control of propellant feed pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/53Hydrodynamic or hydrostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes

Abstract

Изобретение относится к жидкостным ракетным двигателям (ЖРД), в частности к многокамерным ракетным двигателям. Жидкостный ракетный двигатель, включающий камеры (не менее двух) с трактами регенеративного охлаждения и смесительные головки; турбонасосную систему питания (ТНА) газогенераторов и камер двигателя; систему управления и регулирования, имеющую пускоотсечные клапаны, регулятор тяги и дроссель соотношения компонентов топлива, согласно изобретению турбонасосная система питания двигателя содержит два турбонасосных агрегата, питаемых двумя автономными окислительными газогенераторами, при этом первый и второй ТНА имеют одинаковую мощность и включают соосно установленные и последовательно расположенные на одном валу насос горючего, насос окислителя и газовую турбину, причем насос горючего второго ТНА выполнен двухступенчатым, кроме того, выходы из насосов горючего и окислителя первого ТНА соединены трубопроводами со входами насосов горючего и окислителя второго ТНА, насос окислителя второго ТНА соединен со смесительными головками указанных газогенераторов через трубопроводы, в которых установлены пускоотсечные клапаны, а выход из первой ступени насоса горючего второго ТНА соединен со смесительными головками камер двигателя через дроссель соотношения компонентов топлива, пускоотсечные клапаны, трубопроводы и тракты регенеративного охлаждения камер, а выход из второй ступени насоса горючего второго ТНА соединен со смесительными головками газогенераторов через трубопровод и регулятор тяги. Изобретение обеспечивает снижение динамических нагрузок на ТНА с одновременным увеличением тяги. 1 ил.

Description

Область техники
Данное изобретение относится к жидкостным ракетным двигателям (ЖРД), в частности к многокамерным двигателям, выполненным по схеме с дожиганием окислительного (восстановительного) газа.
Предшествующий уровень техники
Одним из направлений развития ракетно-космической техники является создание более мощных транспортных ракетно-космических комплексов, способных выводить на околоземную орбиту большие массы полезных грузов.
В связи с этим перспективным является использование самого мощного ЖРД РД171М, разработки ОАО «НПО Энергомаш». Двигатели этой серии успешно эксплуатируются в составе ракеты-носителя «Зенит».
РД171М - многокамерный ЖРД, выполнен по схеме с дожиганием окислительного газа в камерах двигателя. Включает: четыре камеры, каждая из которых имеет тракт регенеративного охлаждения; смесительную головку и сверхзвуковое сопло; турбонасосный агрегат (ТНА), который включает соосно установленные и последовательно соединенные на одном валу насос окислителя, двухступенчатый насос горючего и осевую газовую турбину; два газогенератора, вырабатывающих газ с избытком окислителя, который является рабочим телом турбины; систему управления и регулирования двигателя, включающую пускоотсечные клапаны, регулятор тяги и дроссель соотношения компонентов топлива; бустерные насосные агрегаты, установленные на входах основных насосов ТНА (см. Двигатели 1944-2000: авиационные, ракетные, морские, промышленные. М.: АКС Конверсалт, 2000, стр.268-269). Прототип предлагаемого изобретения.
По своим характеристикам и параметрам РД171М находится на предельно высоком уровне, превзойти который, используя известные схемы, конструктивные решения и виды топлив, применяемых в ЖРД, не представляется возможным.
Форсирование этого двигателя (увеличение тяги за счет повышения давления в камере сгорания) приведет к повышению энергетических характеристик ТНА и значительному росту динамических нагрузок на двигатель.
Кроме того, дальнейшее повышение давления в камере этих двигателей ограничивается жаропрочностью ротора турбины, а также большой высотой лопаток турбины, что приводит к образованию в них трещин.
Раскрытие изобретения
Задачей изобретения является снижение динамических нагрузок на ТНА и двигатель в целом, с одновременным увеличением энергетических характеристик двигателя.
Эта задача решена за счет того, что в жидкостном ракетном двигателе по схеме с дожиганием генераторного газа, включающем камеры (не менее двух) с трактами регенеративного охлаждения и смесительными головками, турбонасосную систему питания газогенератора и камер двигателя, систему управления и регулирования, включающую пускоотсечные клапаны, регулятор тяги и дроссель соотношения компонентов топлива, причем турбонасосная система питания двигателя содержит два турбонасосных агрегата, питаемых двумя автономными окислительными газогенераторами, при этом первый и второй ТНА имеют одинаковые мощности и включают соосно установленные и последовательно расположенные на одном валу насос горючего, насос окислителя и газовую турбину, причем насос горючего второго ТНА выполнен двухступенчатым; кроме того, выходы из насосов горючего и окислителя первого ТНА соединены трубопроводами со входами насосов горючего и окислителя второго ТНА, насос окислителя второго ТНА соединен со смесительными головками указанных газогенераторов через трубопроводы, в которых установлены пускоотсечные клапаны, а выход из первой ступени насоса горючего второго ТНА соединен со смесительными головками камер двигателя через дроссель соотношения компонентов топлива, пускоотсечные клапаны, трубопроводы и тракты регенеративного охлаждения камер, а выход из второй ступени насоса горючего второго ТНА соединен со смесительными головками газогенераторов через трубопровод и регулятор тяги.
Технический результат заключается в повышении энергетических характеристик двигателя (тяги) и одновременным уменьшением динамических нагрузок на двигатель за счет применения двух ТНА равной мощности со сниженными уровнями динамических нагрузок.
Краткое описание чертежей
На рисунке приведена упрощенная пневмогидравлическая схема многокамерного ЖРД с дожиганием генераторного газа с избытком окислителя в камерах двигателя.
Описание изобретения
ЖРД на рисунке содержит: камеры 1 и 1′ с трактами регенеративного охлаждения 2 и 2′, смесительные головки 3 и 3′; два турбонасосных агрегата (ТНА) 4 и 5, обеспечивающие подачу жидкого топлива (жидкого кислорода и керосина); два окислительных газогенератора 6 и 7. Первый ТНА 4 включает в себя соосно установленные и последовательно расположенные на валу шнекоцентробежный насос горючего 8, шнекоцентробежный насос окислителя 9 и газовую осевую турбину 10. Второй ТНА 5 включает в себя соосно установленные и последовательно расположенные на одном валу центробежный насос окислителя 11, центробежный двухступенчатый насос горючего (первая ступень 12, вторая ступень 13) и газовую осевую турбину 14. Выход из насоса горючего 8 первого ТНА соединен трубопроводом 15 с входом насоса горючего первой ступени 12 второго ТНА, а выход из насоса окислителя 9 первого ТНА соединен трубопроводом 16 со входом насоса окислителя 11 второго ТНА. Коллекторами турбин 17 и 18 турбины 10 и 14 соединены через газовод 21 с двумя окислительными газогенераторами 6 и 7, а газоводами 19 и 20 с форсуночными головками 3 и 3′ камер двигателя. Газоводы 19 и 20 объединены газовой магистралью 22. Выход из первой ступени 12 насоса горючего второго ТНА соединен со смесительными головками 3 и 3′ камер двигателя через последовательно соединенные дроссель соотношения компонентов топлива 23, трубопровод 24, пускоотсечной клапан 25, трубопроводы 26 и 27 и тракты регенеративного охлаждения 2 и 2'. Выход из второй ступени 13 насоса горючего второго ТНА соединен со смесительными головками окислительных газогенераторов 6 и 7 через трубопровод 28, регулятор тяги 29, разветвленный трубопровод 30 и пускоотсечные клапаны 31 и 32. Выход из насоса окислителя 11 второго ТНА соединен со смесительными головками окислительных газогенераторов через раздвоенный трубопровод 33 и пускоотсечные клапаны 34 и 35.
В схеме двигателя применен бустерный преднасос 36, выход из которого через трубопровод 37 соединен со входом насоса окислителя 9 первого ТНА, и бустерный преднасос горючего 38, выход которого через трубопровод 39 соединен со входом насоса горючего 8 первого ТНА.
Бустерный преднасос окислителя 36 приводится во вращение газовой турбиной 40, рабочим телом которой является окислительный газ, отбираемый по трубопроводу 41 из газоводов 19 или 20. Бустерный преднасос горючего 38 приводится во вращение гидравлической турбиной 42, рабочим телом которой является горючее, отбираемое с выхода насоса горючего 8 первого ТНА и подаваемое через трубопровод 43.
Замена в двигателе одного мощного ТНА на два одинаковых по мощности ТНА, питаемые двумя автономными окислительными газогенераторами при последовательном и соответствующем соединении насосов горючего и окислителя обоих ТНА, позволяет увеличить суммарные напоры насосов двух ТНА при меньших значениях динамических нагрузок. Такое решение позволило повысить энергетические характеристики двигателя - увеличить давление в камере двигателя и его тягу, а также обеспечить надежную работу при его многократном применении.
Работа устройства
Горючее поступает в бустерный насос 38, из которого по трубопроводу 39 подается в насос 8 первого ТНА, а затем по трубопроводу 15 подается на вход первой ступени насоса 12 второго ТНА. После этого основная часть горючего через дроссель соотношения компонентов топлива 23 подается по трубопроводу 24, через пускоотсечной клапан 25 и трубопроводы 26 и 27 в тракты регенеративного охлаждения камер 2 и 2′, после чего поступает в смесительные головки 3 и 3′. Оставшаяся часть горючего, пройдя вторую ступень 13 насоса горючего второго ТНА, подается в смесительные головки газогенераторов 6 и 7 через последовательно соединенные трубопровод 28, регулятор тяги 29, разветвленный трубопровод 30 и пускоотсечные клапаны 31 и 32.
Окислитель (сжиженный кислород) поступает в бустерный преднасос 36, из которого по трубопроводу 37 подается в насос 9 первого ТНА, а из него по трубопроводу 16 поступает в насос 11 второго ТНА, затем по разветвленному трубопроводу 33 и через пускоотсечные клапаны 34 и 35 подается в смесительные головки двух газогенераторов 6 и 7. От сгорания жидких топливных компонентов в окислительных газогенераторах 6 и 7 образуется генераторный газ с избытком окислителя, который поступает к турбинам 10 и 14, которые приводят во вращение насосы двух ТНА. Отработанные на турбине газы поступают в газоводы 19 и 20, а из них в смесительные головки 3 и 3′ камер двигателя. В их рабочем пространстве отработанные газы дожигаются с керосином. Высокотемпературные продукты сгорания расширяются в реактивном сопле, создавая тягу.
Для предложенной схемы двигателя в целях сравнения проведена энергетическая увязка параметров для двигателя РД171М и заявляемого двигателя при увеличении тяги на 25% по сравнению с аналогом. Расчеты показали, что применение двух ТНА, топливные насосы которых последовательно соединены между собой, позволяет увеличить тягу двигателя на 25% при снижении мощности каждого ТНА на 35-40%.
Промышленное применение
Наиболее целесообразной областью применения для предлагаемого изобретения является ЖРД с тягой от 200 до 1000 тс и выше, где достигается наибольший (в количественном выражении) технический результат. Это изобретение позволит модернизировать отечественный ЖРД РД171М, повысив его тягу до 1000 тс и более.

Claims (1)

  1. Жидкостный ракетный двигатель (ЖРД) по схеме с дожиганием генераторного газа, включающий камеры (не менее двух) с трактами регенеративного охлаждения и смесительные головки; турбонасосную систему питания (ТНА) газогенераторов и камер двигателя; систему управления и регулирования, имеющую пускоотсечные клапаны, регулятор тяги и дроссель соотношения компонентов топлива, отличающийся тем, что турбонасосная система питания двигателя содержит два турбонасосных агрегата, питаемых двумя автономными окислительными газогенераторами, при этом первый и второй ТНА имеют одинаковую мощность и включают соосно установленные и последовательно расположенные на одном валу насос горючего, насос окислителя и газовую турбину, причем насос горючего второго ТНА выполнен двухступенчатым, кроме того, выходы из насосов горючего и окислителя первого ТНА соединены трубопроводами со входами насосов горючего и окислителя второго ТНА, насос окислителя второго ТНА соединен со смесительными головками указанных газогенераторов через трубопроводы, в которых установлены пускоотсечные клапаны, а выход из первой ступени насоса горючего второго ТНА соединен со смесительными головками камер двигателя через дроссель соотношения компонентов топлива, пускоотсечные клапаны, трубопроводы и тракты регенеративного охлаждения камер, а выход из второй ступени насоса горючего второго ТНА соединен со смесительными головками газогенераторов через трубопровод и регулятор тяги.
RU2012148273/06A 2012-11-14 2012-11-14 Жидкостный ракетный двигатель по схеме с дожиганием генераторного газа RU2520771C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012148273/06A RU2520771C1 (ru) 2012-11-14 2012-11-14 Жидкостный ракетный двигатель по схеме с дожиганием генераторного газа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012148273/06A RU2520771C1 (ru) 2012-11-14 2012-11-14 Жидкостный ракетный двигатель по схеме с дожиганием генераторного газа

Publications (2)

Publication Number Publication Date
RU2012148273A RU2012148273A (ru) 2014-05-20
RU2520771C1 true RU2520771C1 (ru) 2014-06-27

Family

ID=50695537

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012148273/06A RU2520771C1 (ru) 2012-11-14 2012-11-14 Жидкостный ракетный двигатель по схеме с дожиганием генераторного газа

Country Status (1)

Country Link
RU (1) RU2520771C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2692598C1 (ru) * 2018-07-31 2019-06-25 Акционерное общество "НПО Энергомаш имени академика В.П.Глушко" Жидкостный ракетный двигатель
RU2703076C1 (ru) * 2019-07-01 2019-10-16 Акционерное общество "Конструкторское бюро химавтоматики" Многокамерный жидкостный ракетный двигатель с дожиганием с управляемым вектором тяги
RU2725345C1 (ru) * 2019-10-01 2020-07-02 Акционерное общество "Конструкторское бюро химавтоматики" Многокамерный жидкостный ракетный двигатель с дожиганием с управляемым вектором тяги
RU2742516C1 (ru) * 2019-08-08 2021-02-08 Александр Вячеславович Дыбой Двигательная установка с ракетным двигателем
RU2765219C1 (ru) * 2020-11-10 2022-01-26 Акционерное общество "КБхиммаш им. А.М. Исаева" Жидкостный ракетный двигатель, выполненный по схеме без дожигания в камере

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112901353B (zh) * 2021-02-01 2022-04-12 中国科学院力学研究所 一种碳氢燃料主动冷却超燃冲压发动机起动系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1998410A (en) * 1933-10-16 1935-04-16 Gray Telephone Pay Station Com Telephone toll collecting apparatus
US3541793A (en) * 1967-04-05 1970-11-24 Bolkow Gmbh Liquid fueled rocket engine system
RU2158839C2 (ru) * 1999-01-21 2000-11-10 Открытое акционерное общество "НПО Энергомаш им. акад. В.П. Глушко" Жидкостный ракетный двигатель с дожиганием турбогаза
RU2232915C2 (ru) * 2002-03-14 2004-07-20 ОАО "НПО Энергомаш им. акад. В.П. Глушко" Жидкостный ракетный двигатель с дожиганием турбогаза

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1998410A (en) * 1933-10-16 1935-04-16 Gray Telephone Pay Station Com Telephone toll collecting apparatus
US3541793A (en) * 1967-04-05 1970-11-24 Bolkow Gmbh Liquid fueled rocket engine system
RU2158839C2 (ru) * 1999-01-21 2000-11-10 Открытое акционерное общество "НПО Энергомаш им. акад. В.П. Глушко" Жидкостный ракетный двигатель с дожиганием турбогаза
RU2232915C2 (ru) * 2002-03-14 2004-07-20 ОАО "НПО Энергомаш им. акад. В.П. Глушко" Жидкостный ракетный двигатель с дожиганием турбогаза

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2692598C1 (ru) * 2018-07-31 2019-06-25 Акционерное общество "НПО Энергомаш имени академика В.П.Глушко" Жидкостный ракетный двигатель
RU2703076C1 (ru) * 2019-07-01 2019-10-16 Акционерное общество "Конструкторское бюро химавтоматики" Многокамерный жидкостный ракетный двигатель с дожиганием с управляемым вектором тяги
RU2742516C1 (ru) * 2019-08-08 2021-02-08 Александр Вячеславович Дыбой Двигательная установка с ракетным двигателем
RU2725345C1 (ru) * 2019-10-01 2020-07-02 Акционерное общество "Конструкторское бюро химавтоматики" Многокамерный жидкостный ракетный двигатель с дожиганием с управляемым вектором тяги
RU2765219C1 (ru) * 2020-11-10 2022-01-26 Акционерное общество "КБхиммаш им. А.М. Исаева" Жидкостный ракетный двигатель, выполненный по схеме без дожигания в камере

Also Published As

Publication number Publication date
RU2012148273A (ru) 2014-05-20

Similar Documents

Publication Publication Date Title
RU2520771C1 (ru) Жидкостный ракетный двигатель по схеме с дожиганием генераторного газа
RU2158839C2 (ru) Жидкостный ракетный двигатель с дожиганием турбогаза
CN107503862A (zh) 一种固液混合火箭组合循环推进系统及其控制方法
EP1992788B1 (en) Aircraft combination engines plural airflow conveyances system
CN105723080A (zh) 储压驱动的循环
RU2561757C1 (ru) Трехкомпонентный воздушно-реактивный двигатель
RU2545615C1 (ru) Турбонасосный агрегат жидкостного ракетного двигателя
RU2095607C1 (ru) Жидкостный ракетный двигатель на криогенном топливе
RU135000U1 (ru) Углеродно-водородный прямоточный двигатель
RU2594828C1 (ru) Двигательная установка гиперзвукового самолета
RU2484285C1 (ru) Кислородно-водородный жидкостный ракетный двигатель
RU2476708C1 (ru) Жидкостный ракетный двигатель
RU2295052C2 (ru) Жидкостная ракетная двигательная установка
RU2116491C1 (ru) Способ работы жидкостного ракетного двигателя и жидкостный ракетный двигатель
RU2476709C1 (ru) Жидкостный ракетный двигатель
RU2381152C1 (ru) Многоступенчатая ракета-носитель с атомными ракетными двигателями
RU2591361C1 (ru) Двигательная установка гиперзвукового самолета
Zhou et al. Design and analysis of rocket engine system with electric pump as subsystem
RU2301352C1 (ru) Жидкостный ракетный двигатель (варианты)
RU2481488C1 (ru) Трехкомпонентный жидкостный ракетный двигатель
RU2755848C1 (ru) Криогенный жидкостный ракетный двигатель комбинированной схемы (варианты)
RU37774U1 (ru) Жидкостный ракетный двигатель с турбонасосной подачей двухкомпонентного кислородно-углеводородного топлива
RU2539315C1 (ru) Турбонасосный агрегат жидкостного ракетного двигателя
RU2495273C1 (ru) Жидкостный ракетный двигатель
RU2484287C1 (ru) Трехкомпонентный жидкостный ракетный двигатель

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210101

NF4A Reinstatement of patent

Effective date: 20211112