RU2545615C1 - Турбонасосный агрегат жидкостного ракетного двигателя - Google Patents

Турбонасосный агрегат жидкостного ракетного двигателя Download PDF

Info

Publication number
RU2545615C1
RU2545615C1 RU2014110408/06A RU2014110408A RU2545615C1 RU 2545615 C1 RU2545615 C1 RU 2545615C1 RU 2014110408/06 A RU2014110408/06 A RU 2014110408/06A RU 2014110408 A RU2014110408 A RU 2014110408A RU 2545615 C1 RU2545615 C1 RU 2545615C1
Authority
RU
Russia
Prior art keywords
pump
shaft
fuel pump
tna
rocket engine
Prior art date
Application number
RU2014110408/06A
Other languages
English (en)
Inventor
Николай Борисович Болотин
Original Assignee
Николай Борисович Болотин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Борисович Болотин filed Critical Николай Борисович Болотин
Priority to RU2014110408/06A priority Critical patent/RU2545615C1/ru
Application granted granted Critical
Publication of RU2545615C1 publication Critical patent/RU2545615C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • F02K9/46Feeding propellants using pumps
    • F02K9/48Feeding propellants using pumps driven by a gas turbine fed by propellant combustion gases or fed by vaporized propellants or other gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/04Units comprising pumps and their driving means the pump being fluid driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • F04D13/14Combinations of two or more pumps the pumps being all of centrifugal type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Изобретение относится к ракетной технике, конкретно к турбонасосным агрегатам. В турбонасосном агрегате жидкостного ракетного двигателя, содержащем установленные на валу рабочее колесо насоса окислителя, рабочее колесо насоса горючего и рабочее колесо турбины, размещенные в корпусе турбонасосного агрегата, при этом он содержит электрогенератор, имеющий статор и ротор с валом, вал электрогенератора соединен с валом турбонасосного агрегата, при этом между валом турбонасосного агрегата и валом электрогенератора установлена магнитная муфта. Между насосом окислителя и насосом горючего может быть установлена магнитная муфта. Между насосом горючего и дополнительным насосом горючего может быть установлена магнитная муфта. Изобретение обеспечивает предотвращение взрыва ТНА на старте или в полете. 3 з.п. ф-лы, 4 ил.

Description

Изобретение относится к ракетной технике, конкретно к жидкостным ракетным двигателям ЖРД, работающим на криогенном окислителе и на углеводородном горючем.
Известен жидкостный ракетный двигатель по патенту РФ на изобретение №2095607, предназначенный для использования в составе космических разгонных блоков, ступеней ракетоносителей, и как маршевый двигатель космических аппаратов включает в себя камеру сгорания с регенеративным трактом охлаждения турбонасосный агрегат - ТНА. ТНА содержит насосы подачи компонентов - горючего и окислителя с турбиной на одном валу, в который введен конденсатор. Выход конденсатора по линии хладагента соединен с входом в камеру сгорания и с входом в тракт регенеративного охлаждения камеры сгорания. Выход из конденсатора по линии теплоносителя соединен с входом в насос одного из компонентов. Выход из насоса того же компонента сообщен с входом конденсатора по линии хладагента. Второй вход конденсатора сообщен с выходом турбины. Выход насоса другого компонента сообщен с входом в камеру сгорания.
Недостатком ТНА двигателя является ухудшение кавитационных свойств насоса при перепуске конденсата. Такое свойство насоса неминуемо приводит в уменьшению расхода одного из компонентов топлива через ТНА, падению тяги ракеты в несколько раз и срыву программы полета ракеты или к катастрофе.
Известны способ работы ЖРД и жидкостный ракетный двигатель по патенту РФ на изобретение №2187684. Способ работы жидкостного ракетного двигателя заключается в подаче компонентов топлива в камеру сгорания двигателя, газификации одного из компонентов в тракте охлаждения камеры сгорания, подводе его на турбину турбонасосного агрегата с последующим сбросом в форсуночную головку камеры сгорания. Часть расхода одного из компонентов топлива направляют в камеру сгорания, а оставшуюся часть газифицируют и направляют на турбины турбонасосных агрегатов. Отработанный на турбинах газообразный компонент смешивают с жидким компонентом, поступающим в двигатель при давлении, превышающем давление насыщенных паров получаемой смеси. Жидкостный ракетный двигатель содержит камеру сгорания с трактом регенеративного охлаждения, насосы подачи компонентов топлива и турбину. Насосы и турбины скомпонованы в два ТНА: основной и бустерный. Двигатель содержит установленные последовательно перед насосом подачи одного из компонентов топлива основного турбонасосного агрегата насос бустерного турбонасосного агрегата и смеситель. Выход насоса основного турбонасосного агрегата соединен как с форсуночной головкой камеры сгорания, так и с трактом регенеративного охлаждения камеры сгорания. Тракт регенеративного охлаждения, в свою очередь, связан с турбинами основного и бустерного турбонасосных агрегатов, выходы которых соединены со смесителем.
Недостатком этой схемы является то, что тепловой энергии, снимаемой при охлаждении камеры сгорания, может оказаться недостаточно для привода турбонасосного агрегата двигателя очень большой мощности.
Известен ЖРД по патенту РФ на изобретение №2190114, МПК 7 F02K 9/48, опубл. 27.09.2002 г. Этот ЖРД включает в себя камеру сгорания с трактом регенеративного охлаждения, турбонасосный агрегат ТНА с насосами окислителя и горючего, выходные магистрали которых соединены с головкой камеры сгорания, основную турбину и контур привода основной турбины. В контур привода основной турбины входят последовательно соединенные между собой насос горючего и тракт регенеративного охлаждения камеры сгорания, соединенный с входом в основную турбину. Выход из турбины ТНА соединен с входом второй ступени насоса горючего.
Этот двигатель имеет существенный недостаток. Перепуск подогретого в тракте регенеративного охлаждения камеры сгорания горючего на вход во вторую ступень насоса горючего приведет к его кавитации и к последствиям, указанным выше. Большинство ЖРД используют такие компоненты топлива, что расход окислителя почти всегда больше расхода горючего. Следовательно, для мощных ЖРД, имеющих большую тягу и большое давление в камере сгорания, эта схема неприемлема, т.к. расхода горючего будет недостаточно для охлаждения камеры сгорания и привода основной турбины.
Кроме того, не проработана система запуска ЖРД, система воспламенения компонентов топлива и система выключения ЖРД и его очистки от остатков горючего в тракте регенеративного охлаждения камеры сгорания.
Известен жидкостный ракетный двигатель и способ его запуска по патенту РФ на изобретение №2232915, опубл. 10.09.2003 г (прототип), который содержит камеру сгорания, турбонасосный агрегат, газогенератор, систему запуска, средства для зажигания компонентов топлива и топливные магистрали. Выход насоса окислителя соединен с входом в газогенератор. Выход первой ступени насоса горючего соединен с каналами регенеративного охлаждения камеры и со смесительной головкой. Выход второй ступени насоса горючего (дополнительного насоса горючего) соединен с регулятором расхода с электроприводом. Другой вход регулятора соединен с пусковым бачком со штатным горючим. Выход из регулятора соединен с газогенератором. Выход из газогенератора соединен с входом в турбину турбонасосного агрегата, выход из которой соединен со смесительной головкой. Регулятор расхода снабжен гидроприводом предварительной ступени, который через кавитирующий жиклер и гидрореле соединен с пусковым бачком со штатным горючим. Гидрореле соединено со второй ступенью насоса горючего. Дроссель, установленный на выходе первой ступени насоса горючего, выполнен совместно с управляемым клапаном предварительной ступени.
Недостатком такой схемы является пожар или взрыв ТНА и ракеты на старте или в полете вследствие низкой надежности уплотнения между турбиной и насосом окислителя, между насосом окислителя и горючего, а также между насосом горючего и дополнительным насосом горючего из-за действия на них большого перепада давления: 300…400 кгс/см2 для современных ЖРД. Например, при использовании в качестве компонентов ракетного топлива водорода и кислорода самые незначительные утечки этих компонентов приводят к образованию «гремучей смеси» и практически всегда - к взрыву ракеты.
Задачи создания изобретения: предотвращение взрыва ТНА или ракеты на старте или в полете.
Решение указанной задачи достигнуто в турбонасосном агрегате жидкостного ракетного двигателя, содержащем установленные на валу рабочее колесо насоса окислителя, рабочее колесо насоса горючего и рабочее колесо турбины, размещенные в корпусе турбонасосного агрегата, тем, что он содержит электрогенератор, имеющий статор и ротор с валом, вал электрогенератора соединен с валом турбонасосного агрегата, при этом между валом турбонасосного агрегата и валом электрогенератора установлена магнитная муфта.
Между насосом окислителя и насосом горючего может быть установлена магнитная муфта.
Турбонасосный агрегат жидкостного ракетного двигателя содержит дополнительный насос горючего, вал которого соединен через мультипликатор с валом турбонасосного агрегата, а вал электрогенератора соединен с валом дополнительного насоса горючего.
Между насосом горючего и дополнительным насосом горючего может быть установлена магнитная муфта.
Сущность изобретения поясняется на фиг. 1…4, где:
- на фиг. 1 приведена схема первого варианта ТНА,
- на фиг. 2 приведена схема второго варианта ТНА,
- на фиг. 3 приведена схема первого варианта ТНА с магнитной муфтой,
- на фиг. 4 приведена схема второго варианта ТНА с магнитной муфтой.
Турбонасосный агрегат жидкостного ракетного двигателя ТНА (Фиг. 1…4) содержит турбину 1 с рабочим колесом турбины 2, насос окислителя 3 с рабочим колесом 4, насос горючего 5 с рабочим колесом 6, вал ТНА 7, установленный на опорах 8 и 9. На валу ТНА 7 установлены рабочие колеса 2, 4 и 6 (детали ротора). Все детали ротора ТНА размещены внутри корпуса 10.
ТНА содержит электрогенератор 11, имеющий статор 12 с обмоткой возбуждения 13 и ротор 14 с постоянными магнитами 15 и валом 16 ротора 14. К обмотке возбуждения 13 присоединены выводящие провода 17.
К выводящим проводам 17 могут быть подсоединены все потребители электроэнергии на ракете, которые обычно подключены к бортовой аккумуляторной батарее, имеющей малую мощность при большом весе.
Возможен второй вариант ТНА (фиг.2), который дополнительно содержит дополнительный насос горючего 18, имеющий рабочее колесо 19 дополнительного насоса горючего 18 и вал 20 дополнительного насоса горючего 18, который выполнен параллельно валу ТНА 7 и соединен с ним через мультипликатор 21. В этом варианте вал 16 электрогенератора 11 соединен с валом 20 дополнительного насоса горючего 18.
Между валом ТНА 7 и валом 16 электрогенератором 11 в первом варианте может быть установлена магнитная муфта 22 (фиг.3).
Магнитная муфта 22 может быть установлена между валами ТНА 7 и валом 16 электрогенератора 11 во втором варианте (фиг.4). Это облегчит герметизацию между электрогенератором 11 и дополнительным насосом горючего 18.
Наличие магнитных муфт 22 между электрогенератором 11 и насосами горючего 5 или дополнительным насосом горючего 18 обеспечивает полную герметичность всех модулей друг относительно друга, наличие мультипликатора 21 обеспечивает согласование оборотов вращения турбины 1 и дополнительного насоса горючего 18 и электрогенератора 11 и позволят уменьшить их габариты. Одновременно обеспечивается модульность конструкции.
В результате появилась реальная возможность спроектировать все основные узлы ТНА, в том числе турбину и насосы на оптимальные параметры, в том числе по частотам вращения, и согласовать частоты вращения за счет применения одного мультипликатора между, а это позволило минимизировать вес ТНА, что имеет решающее значение в ракетной технике.
Применение изобретения позволило:
1. Обеспечить многофункциональность ТНА, конкретно позволило преобразовать химическую энергию в электрическую.
2. Обеспечить модульность конструкции ТНА.
3. Спроектировать все узлы ТНА: турбину и насос на оптимальные параметры, в том числе частоты вращения, и согласовать частоты вращения за счет применения одного мультипликатора между турбиной и насосами или нескольких мультипликаторов.
4. Повысить надежность ТНА за счет отсутствия уплотнения по валу электрогенератора, его полной герметичности за счет применения магнитной муфты.

Claims (4)

1. Турбонасосный агрегат жидкостного ракетного двигателя, содержащий установленные на валу рабочее колесо насоса окислителя, рабочее колесо насоса горючего и рабочее колесо турбины, размещенные в корпусе турбонасосного агрегата, отличающийся тем, что он содержит электрогенератор, имеющий статор и ротор с валом, вал электрогенератора соединен с валом турбонасосного агрегата, при этом между валом турбонасосного агрегата и валом электрогенератора установлена магнитная муфта.
2. Турбонасосный агрегат жидкостного ракетного двигателя по п. 1, отличающийся тем, что между насосом окислителя и насосом горючего установлена магнитная муфта.
3. Турбонасосный агрегат жидкостного ракетного двигателя по п. 1, отличающийся тем, что он содержит дополнительный насос горючего, вал которого соединен через мультипликатор с валом мурбонасосного агрегата, а вал электрогенератора соединен с валом дополнительного насоса горючего.
4. Турбонасосный агрегат жидкостного ракетного двигателя по п. 3, отличающийся тем, что между насосом горючего и дополнительным насосом горючего установлена магнитная муфта.
RU2014110408/06A 2014-03-18 2014-03-18 Турбонасосный агрегат жидкостного ракетного двигателя RU2545615C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014110408/06A RU2545615C1 (ru) 2014-03-18 2014-03-18 Турбонасосный агрегат жидкостного ракетного двигателя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014110408/06A RU2545615C1 (ru) 2014-03-18 2014-03-18 Турбонасосный агрегат жидкостного ракетного двигателя

Publications (1)

Publication Number Publication Date
RU2545615C1 true RU2545615C1 (ru) 2015-04-10

Family

ID=53295478

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014110408/06A RU2545615C1 (ru) 2014-03-18 2014-03-18 Турбонасосный агрегат жидкостного ракетного двигателя

Country Status (1)

Country Link
RU (1) RU2545615C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106286318A (zh) * 2016-05-18 2017-01-04 华信咨询设计研究院有限公司 磁力透平泵及控制方法
CN109826723A (zh) * 2019-01-30 2019-05-31 北京星际荣耀空间科技有限公司 一种火箭发动机用涡轮泵电动启动器及涡轮泵
RU2711887C1 (ru) * 2016-09-14 2020-01-23 АйЭйчАй КОРПОРЕЙШН Жидкостная ракетная двигательная установка со вспомогательной элктрической мощностью
CN110821712A (zh) * 2019-10-23 2020-02-21 西安航天动力研究所 一种低温涡轮泵高温燃气出口端连接结构
RU2729310C1 (ru) * 2019-08-04 2020-08-05 Андрей Владимирович Иванов Жидкостный ракетный двигатель

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6226980B1 (en) * 1999-01-21 2001-05-08 Otkrytoe Aktsionernoe Obschestvo Nauchno-Proizvodstvennoe Obiedinenie “Energomash” Imeni Akademika V.P. Glushko Liquid-propellant rocket engine with turbine gas afterburning
RU2232915C2 (ru) * 2002-03-14 2004-07-20 ОАО "НПО Энергомаш им. акад. В.П. Глушко" Жидкостный ракетный двигатель с дожиганием турбогаза
RU2233772C2 (ru) * 1998-12-31 2004-08-10 Спейс Аксесс, Ллс Система запуска и транспортирования полезной нагрузки
US20090288390A1 (en) * 2008-05-23 2009-11-26 Thomas Clayton Pavia Simplified thrust chamber recirculating cooling system
RU2447311C2 (ru) * 2008-09-17 2012-04-10 Владислав Сергеевич Буриков Способ работы и устройство реактивного двигателя (варианты)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2233772C2 (ru) * 1998-12-31 2004-08-10 Спейс Аксесс, Ллс Система запуска и транспортирования полезной нагрузки
US6226980B1 (en) * 1999-01-21 2001-05-08 Otkrytoe Aktsionernoe Obschestvo Nauchno-Proizvodstvennoe Obiedinenie “Energomash” Imeni Akademika V.P. Glushko Liquid-propellant rocket engine with turbine gas afterburning
RU2232915C2 (ru) * 2002-03-14 2004-07-20 ОАО "НПО Энергомаш им. акад. В.П. Глушко" Жидкостный ракетный двигатель с дожиганием турбогаза
US20090288390A1 (en) * 2008-05-23 2009-11-26 Thomas Clayton Pavia Simplified thrust chamber recirculating cooling system
RU2447311C2 (ru) * 2008-09-17 2012-04-10 Владислав Сергеевич Буриков Способ работы и устройство реактивного двигателя (варианты)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106286318A (zh) * 2016-05-18 2017-01-04 华信咨询设计研究院有限公司 磁力透平泵及控制方法
RU2711887C1 (ru) * 2016-09-14 2020-01-23 АйЭйчАй КОРПОРЕЙШН Жидкостная ракетная двигательная установка со вспомогательной элктрической мощностью
CN109826723A (zh) * 2019-01-30 2019-05-31 北京星际荣耀空间科技有限公司 一种火箭发动机用涡轮泵电动启动器及涡轮泵
RU2729310C1 (ru) * 2019-08-04 2020-08-05 Андрей Владимирович Иванов Жидкостный ракетный двигатель
CN110821712A (zh) * 2019-10-23 2020-02-21 西安航天动力研究所 一种低温涡轮泵高温燃气出口端连接结构

Similar Documents

Publication Publication Date Title
RU2545615C1 (ru) Турбонасосный агрегат жидкостного ракетного двигателя
US8381508B2 (en) Closed-cycle rocket engine assemblies and methods of operating such rocket engine assemblies
RU2352804C1 (ru) Жидкостный ракетный двигатель
RU2302547C1 (ru) Жидкостный ракетный двигатель
RU2561757C1 (ru) Трехкомпонентный воздушно-реактивный двигатель
RU2386844C1 (ru) Трехкомпонентный жидкостный ракетный двигатель и способ его работы
RU2545613C1 (ru) Жидкостный ракетный двигатель
RU2299345C1 (ru) Жидкостный ракетный двигатель и способ его запуска
RU2318129C1 (ru) Турбонасосный агрегат жидкостного ракетного двигателя
RU2300657C1 (ru) Жидкостный ракетный двигатель
RU2539315C1 (ru) Турбонасосный агрегат жидкостного ракетного двигателя
RU2594828C1 (ru) Двигательная установка гиперзвукового самолета
RU2302548C1 (ru) Турбонасосный агрегат жидкостного ракетного двигателя
RU2531833C1 (ru) Жидкостный ракетный двигатель
RU2544684C1 (ru) Жидкостный ракетный двигатель
RU2376483C1 (ru) Атомный газотурбинный двигатель с форсажем
RU2574192C1 (ru) Агрегат подачи топлива жидкостного ракетного двигателя
RU2431053C1 (ru) Жидкостный ракетный двигатель и блок сопел крена
RU2591361C1 (ru) Двигательная установка гиперзвукового самолета
RU2495273C1 (ru) Жидкостный ракетный двигатель
RU2362899C1 (ru) Агрегат подачи горючева в двс
RU2383766C1 (ru) Турбонасосный агрегат трехкомпонентного ракетного двигателя
RU2560656C1 (ru) Турбонасосный агрегат жидкостного ракетного двигателя
RU2514466C1 (ru) Жидкостный ракетный двигатель
RU2531831C1 (ru) Жидкостный ракетный двигатель