RU2808039C1 - Способ каталитической переработки растительных масел в углеводороды дизельной фракции - Google Patents

Способ каталитической переработки растительных масел в углеводороды дизельной фракции Download PDF

Info

Publication number
RU2808039C1
RU2808039C1 RU2022133061A RU2022133061A RU2808039C1 RU 2808039 C1 RU2808039 C1 RU 2808039C1 RU 2022133061 A RU2022133061 A RU 2022133061A RU 2022133061 A RU2022133061 A RU 2022133061A RU 2808039 C1 RU2808039 C1 RU 2808039C1
Authority
RU
Russia
Prior art keywords
solvent
hydrocarbons
processing
deoxygenation
raw materials
Prior art date
Application number
RU2022133061A
Other languages
English (en)
Inventor
Антонина Анатольевна Степачёва
София Денисовна Емельянова
Елена Олеговна Щипанская
Мария Евгеньевна Маркова
Борис Борисович Тихонов
Юрий Юрьевич Косивцов
Михаил Геннадьевич Сульман
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет"
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет"
Application granted granted Critical
Publication of RU2808039C1 publication Critical patent/RU2808039C1/ru

Links

Abstract

Изобретение относится к области производства углеводородного топлива, полученного из возобновляемого сырья растительного происхождения. Изобретение касается способа каталитической переработки растительных масел в углеводороды дизельной фракции, включающего одностадийную переработку деоксигенированием сырья в среде сверхкритического растворителя при температуре от 240 до 280°С в присутствии растворителя, находящегося в сверхкритическом состоянии, и гетерогенного катализатора, при этом переработка осуществляется при начальном давлении азота 1,9-2,1 МПа в течение 1-3 часов при скорости перемешивания от 450 мин-1 до 550 мин-1, реакционная смесь содержит 0,05-0,15 г гетерогенного катализатора, 0,5-1,5 г растительного масла и 20-30 мл растворителя, растворитель представляет собой смесь пропанола-2 и н-гексана в объемном соотношении 30-50:70-50 об.%, а гетерогенный катализатор содержит 1 масс.% палладия, 3 масс.% оксида меди (I) в качестве активной фазы и 96 масс.% сверхсшитого полистирола в качестве носителя. Технический результат - повышение выхода углеводородов дизельной фракции нефти, снижение давления процесса деоксигенирования и отсутствие необходимости использования водородсодержащего газа. 25 пр., 1 табл.

Description

Изобретение относится к химической промышленности, а именно к области производства углеводородного топлива, полученного из возобновляемого сырья растительного происхождения. Изобретение может быть применено на предприятиях химической и нефтеперерабатывающей промышленности для получения жидкого углеводородного топлива дизельного типа.
Известен способ получения реактивных и дизельных топлив из смеси растительного и нефтяного сырья (RU 2737724 С1, приоритет - 02.12.2020, C10G 3/00, C10G 65/04, C10G 65/12, C10G 45/08), заключающийся в гидрогенизационной переработке смеси дистиллятов растительного и нефтяного происхождения при массовом соотношении 5,0-40,0:95,0-60,0% соответственно. Способ включает две стадии: гидроооблагораживание и депарафинизация в присутствии алюмокобальтмолибденового или алюмоникельмолибденового катализатора гидроочистки. Первую стадию осуществляют при давлении 3-8 МПа, температуре 330-400°С, объемной скорости подачи сырья 0,5-1,5 час-1, соотношении водородсодержащий газ/сырье 500-1500 н.об./об. Вторую стадию осуществляют при давлении 3-6 МПа, температуре 300-420°С, объемной скорости подачи сырья 0,5-2,0 час-1, соотношении водородсодержащий газ/сырье 500-1500 н.об./об. Суммарный выход реактивного и дизельного топлива по данному способу составляет 94 масс. % в пересчете на сырье.
Однако способ осуществляется в 2 стадии, что приводит к увеличению затрат на получение топлива. Кроме того, процесс проводится при температуре выше 300°С в присутствии водородсодержащего газа с высоким соотношением газ-сырье, что также приводит к высоким затратам.
Известен способ промышленного получения углеводородов, пригодных для дизельного топлива, из возобновляемых источников (RU 2397199С2, приоритет - 16.01.2006, C10G 3/00, С07С 1/20, С07С 1/207, С07С 9/14, С07С 9/22), который включает проведение реакции селективного декарбоксилирования/декарбонилирования сырья, содержащего С824 жирные кислоты, сложные эфиры С824 жирных кислот, триглицериды C824 жирных кислот. Способ заключается в превращении сырья в присутствии растворителя или смеси растворителей, катализатора, содержащего от 0,5 до 20,0 масс. % металла, принадлежащего к группе VIII, или от 2,0 до 55,0 масс. % никеля на мезопористом носителе, при температуре 200-400°С и давлении 0,1-15 МПа. Способ использует газовую смесь, содержащую инертный газ (например, азот, гелий, аргон) и водород от 2,0 до 15,0 об. %. Выход углеводородов по данному способу составляет от 70 до 98% в пересчете на сырье.
Однако для данного способа характерно использование газовой смеси, содержащей водород в больших количествах, а также использование катализатора с высоким содержанием активного металла, что приводит к удорожанию процесса получения углеводородов.
Известен способ получения углеводородных фракций, которые можно использовать в качестве компонентов дизельного топлива (RU 2464297 C1, приоритет - 20.10.2012, C10G 3/00, C10G 45/62, C10G 65/02), включающий превращение растительных масел (подсолнечного, рапсового, арахисового, касторового, пальмового, соевого, конопляного, оливкового, льняного, горчичного или талового масел) или жиров (свиного жира, свиного сала, или лярда) в две стадии. Стадию 1 (стадия гидроочистки) проводят при давлении от 2,5 до 7,0 МПа и температуре от 240 до 450°С в присутствии водорода и гетерогенного катализатора, содержащего металл или металлы (Pd, Pt, Ni, Ni-Mo, Ni-W, Co-Mo и Co-W). Стадию 2 (стадия гидроизомеризации) проводят при давлении от 2,5 до 7,0 МПа и температуре от 250 до 450°С в присутствии водорода и гетерогенного катализатора, содержащего смесь SiO2/Al2O3 в мольном соотношении от 30 до 500 и металл (Pt, Pd, Ni, Со) в количестве от 1 до 50 масс. %.
Однако способ подразумевает проведение процесса получения углеводородов в две стадии, использование водорода и катализатора с высоким содержанием активного металла.
Общими для представленных способов являются осуществление способа минимум в две стадии, использование водородсодержащего газа, проведение процессов при температурах преимущественно выше 300°С. Это способствует увеличению себестоимости производства продукта, что снижает его конкурентоспособность по сравнению с производством аналогичного продукта из нефтяного сырья. Согласно всем указанным выше способам, выход углеводородного продукта переработки растительных масел составляет от 70 до 98% по массе в пересчете на сырье.
Наиболее близким к предлагаемому способу является способ переработки C18 жирных кислот (А.А. Степачева, М.Е. Маркова, А.В. Гавриленко, В.Г. Матвеева, М.Г. Сульман, Э.М. Сульман, Ni-содержащий катализатор для деоксигенирования жирных кислот// Научно-технический вестник Поволжья, №5, 2018, с. 59-61), включающий одностадийную переработку (деоксигенирование) сырья в среде сверхкритического растворителя, при этом переработку проводят при начальном давлении азота 3,0 МПа, температуре от 240 до 300°С в присутствии растворителя н-гексана, находящегося в сверхкритическом состоянии, и гетерогенного катализатора, содержащего 5-10 масс. % оксида никеля в качестве активной фазы и сверхсшитый полистирол или шунгит в качестве носителя.
Однако для указанного способа характерно высокое содержание активной фазы в гетерогенном катализаторе, низкий выход разветвленных углеводородов (от 5 до 15 масс. %) и присутствие ненасыщенных углеводородов в продукте (от 2 до 8 масс. %).
Технической проблемой, решаемой при создании изобретения, является разработка эффективного энергосберегающего одностадийного способа переработки сырья биологического происхождения (растительных масел) с получением жидких углеводородов дизельной фракции.
Техническим результатом изобретения является повышение выхода углеводородов дизельной фракции нефти, снижение давления процесса деоксигенирования и отсутствие необходимости от использования водородсодержащего газа за счет использования смеси растворителей в сверхкритическом состоянии и катализатора на основе оксида меди и палладия, нанесенных на сверхсшитый полистирол.
Решение поставленной проблемы и заявленный технический результат достигаются за счет того, что способ каталитической переработки растительных масел в углеводороды дизельной фракции включает одностадийную переработку сырья деоксигенированием в среде сверхкритического растворителя при температуре от 240°С до 280°С в присутствии растворителя, находящегося в сверхкритическом состоянии, и гетерогенного катализатора, при этом переработка осуществляется при начальном давлении азота 1,9-2,1 МПа в течение 1-3 часов при скорости перемешивания от 450 мин-1 до 550 мин-1, реакционная смесь содержит 0,05- 0,15 г гетерогенного катализатора, 0,5-1,5 г растительного масла и 20-30 мл растворителя, растворитель представляет собой смесь пропанола-2 и н- гексана в объемном соотношении 30-50 : 70-50 об. %, а гетерогенный катализатор содержит 1 масс. % палладия, 3 масс. % оксида меди (I) в качестве активной фазы и 96 масс. % сверхсшитого полистирола в качестве носителя.
Предлагаемый способ обладает следующими преимуществами по сравнению с имеющимися аналогами:
- процесс деоксигенирования проводится в присутствии смеси н- гексан-пропанол-2, что позволяет получать водород in situ за счет дегидрирования пропанола-2 и исключить использование газообразного водорода в процессе;
- в качестве катализатора используется смесь палладия (1 масс. %) и оксида меди (I) (3 масс. %), нанесенная на сверхсшитый полистирол, что позволяет совместить каталитические свойства палладия и оксида меди (палладий катализирует процесс деоксигенирования, оксид меди (I) катализирует процесс дегидрирования пропанола-2) и поверхностные свойства сверхсшитого полистирола в одной каталитической системе и проводить деоксигенирование растительных масел с высоким выходом углеводородов дизельной фракции;
- процесс деоксигенирования проводится в одну стадию под начальным давлением азота 1,9-2,1 МПа, что существенно снижает затраты на проведение процесса;
- использование растворителя в сверхкритическом состоянии облегчает массоперенос и позволяет значительно снизить время проведения процесса.
В качестве сырья (растительных масел) возможно использовать подсолнечное масло, кукурузное масло, рапсовое масло или их смесь.
Процесс переработки растительных масел проводится в реакторе автоклавного типа. Реактор автоклавного типа необходим для обеспечения поддержания давления в системе и сверхкритического состояния растворителя.
В качестве растворителя используют смесь пропанола-2 и н-гексана. Пропанол-2 необходим в качестве источника атомарного водорода, н-гексан необходим для обеспечения полного растворения растительного масла.
Продувка реактора азотом перед процессом переработки необходима для удаления кислорода воздуха из реактора и предотвращения окисления растительного масла.
Использование азота в процессе деоксигенирования необходимо для создания начального давления в реакторе, а также для предотвращения резкого закипания растворителя и перевода его в сверхкритическое состояние. Рост общего давления в реакторе осуществляется в процессе нагрева за счет перехода растворителя в паровую фазу, общее давление зависит от начального давления азота и температуры деоксигенирования.
Использование давления азота менее 1,9 МПа приводит к снижению общего давления в реакторе-автоклаве и недостижению сверхкритического состояния растворителя, что ведет к замедлению деоксигенирования и необходимости увеличения времени процесса, что требует дополнительных энергозатрат. Использование давления азота более 2,1 МПа нецелесообразно, так как приводит к значительному увеличению общего давления в реакторе- автоклаве, что вызывает необходимость использования более прочного материала реактора и ведет к удорожанию процесса.
Уменьшение температуры ниже 240°С приводит к недостижению критической точки пропанола-2 и н-гексана и недостижению сверхкритического состояния растворителя, что ведет к замедлению деоксигенирования и необходимости увеличения времени процесса, что требует дополнительных энергозатрат.Увеличение температуры выше 280°С приводит к ускорению процессов крекинга и получению углеводородов с меньшим числом атомов углерода в молекуле, что нецелесообразно.
Уменьшение времени деоксигенирования менее 1 часа ведет к снижению конверсии растительного масла и снижению выхода углеводородов дизельной фракции. Увеличение времени деоксигенирования более 3 часов нецелесообразно, так как не приводит к увеличению выхода углеводородов и требует дополнительных энергозатрат.
Используемая скорость перемешивания от 450 мин-1 до 550 мин-1 необходима для обеспечения равномерного перемешивания компонентов реакционной смеси. При уменьшении скорости перемешивания менее 450 мин-1 возможно неравномерное распределение катализатора по реакционной смеси, а также возникновение внешнедиффузионного торможения на поверхности катализатора, что существенно снижает эффективность процесса. Увеличение скорости перемешивания больше 550 мин-1 нецелесообразно, так как не приводит к дальнейшему улучшению эффективности процесса.
Использование катализатора в количестве менее 0,05 г на 20-30 мл реакционной смеси нецелесообразно, так как приводит к снижению скорости деоксигенирования и при этом не достигается требуемая конверсия растительного масла. Использование катализатора в количестве более 0,15 г на 20-30 мл реакционной смеси нецелесообразно, так как не приводит к существенному увеличению скорости деоксигенирования и ведет к удорожанию процесса.
Использование растительного масла в количестве менее 0,5 г на 20-30 мл реакционной смеси нецелесообразно, так как приводит к удорожанию процесса. Использование растительного масла в количестве более 1,5 г на20- 30 мл реакционной смеси замедляет деоксигенирование и приводит к необходимости увеличения времени процесса, что требует дополнительных энергозатрат.
Использование суммарного объема растворителя менее 20 мл приводит к снижению количества пропанола-2, который является донором водорода, и получению ненасыщенных углеводородов. Использование суммарного объема растворителя более 30 мл не приводит к существенному изменению скорости деоксигенирования и нецелесообразно, так как ведет к значительному разбавлению реакционной смеси, т.е. снижению выхода углеводородов дизельной фракции.
Уменьшение содержания пропанола-2 меньше 30 об. % приводит к снижению количества образуемого insitu водорода и получению ненасыщенных углеводородов в процессе диоксигенирования. Увеличение содержания пропанола-2 больше 50 об. % не приводит к значительному повышению эффективности деоксигенирования (увеличению выхода углеводородов дизельной фракции) и нецелесообразно.
Увеличение количества н-гексана более 70 об. % приводит к снижению количества образуемого insitu водорода и получению ненасыщенных углеводородов в процессе диоксигенирования. Уменьшение количества н- гексана менее 50 об. % не приводит к значительному увеличению выхода углеводородов дизельной фракции и нецелесообразно.
Сущность изобретения иллюстрируется следующими примерами. В таблице 1 приведены условия проведения процесса каталитической переработки растительных масел в углеводороды дизельной фракции по примерам 1-25 и результаты проведенных экспериментов в виде выхода С12- C18 углеводородов (масс. %) и конверсии сырья (масс. %).
Пример 1
В реактор вносили 0,1 г катализатора (соотношение компонентов катализатора: палладий - 1,0 масс. %, оксид меди (I) - 3 масс. %, сверхсшитый полистирол - 96,0 масс. %.) и 12,5 мл растворителя (н-гексан - 60 об. %; пропанол-2 40 об. %), далее вносили смесь, содержащую 1,5 г подсолнечного масла и 12,5 мл растворителя (н-гексан - 60 об. %; пропанол-2 40 об. %), проводили герметизацию реактора и его продувку азотом. Процесс деоксигенирования проводили под начальным давлением азота 2,0 МПа при температуре 270°С в течение 1 часа при перемешивании на магнитной мешалке со скоростью от 450 мин-1 до 550 мин-1. После проведения процесса деоксигенирования реакционную смесь охлаждали до комнатной температуры, отфильтровывали. Отфильтрованную жидкую смесь подвергали перегонке с разделением на 3 фракции: кипящие при температурах 60-90°С, 90-200°С и 200-310°С. Первая фракция содержала смесь растворителей (н-гексан, пропанол-2). Вторая фракция содержала углеводороды с числом атомов углерода 7-11. Третья фракция содержала углеводороды с числом атомов углерода 12-18.
Используемое сырье содержало триглицериды жирных кислот и свободные жирные кислоты в следующем соотношении (в пересчете на свободные кислоты): стеариновая кислота 1,93 масс. %, пальмитиновая кислота 4,66 масс. %, миристиновая кислота 0,06 масс. %, арахиновая кислота 0,75 масс. %, олеиновая кислота 38,6 масс. %, линолевая кислота 53,2 масс. %, линоленовая кислота 0,8 масс. %.
Эффективность деоксигенирования оценивали по выходу углеводородов с числом атомов углерода 12-18, а также по конверсии сырья.
Выход углеводородов определяли по формуле (1):
где η - выход углеводородов с числом атомов углерода 12-18, %;
∑m12-18 - суммарная масса углеводородов с числом атомов углерода 12-18, г;
mсырья - масса растительного масла, взятая для конверсии, г.
Конверсию сырья определяли по формуле (2):
где χ -конверсия сырья, %;
∑Скисл.0 - исходная суммарная концентрация кислородсодержащих соединений (триглицеридов жирных кислот и свободных жирных кислот) в растворителе, масс. %;
∑Скисл - суммарная концентрация кислородсодержащих соединений (триглицеридов жирных кислот и свободных жирных кислот) в растворителе после деоксигенирования, масс. %.
Результаты представлены в таблице 1.
Пример 2
Аналогичен примеру 1, однако переработку проводили в течение 2 часов.
Результаты представлены в таблице 1.
Пример 3
Аналогичен примеру 1, однако переработку проводили в течение 3 часов.
Результаты представлены в таблице 1.
Пример 4
Аналогичен примеру 1, однако переработку проводили при температуре 240°С.
Результаты представлены в таблице 1.
Пример 5
Аналогичен примеру 1, однако переработку проводили при температуре 250°С.
Результаты представлены в таблице 1.
Пример 6
Аналогичен примеру 1, однако переработку проводили при температуре 260°С.
Результаты представлены в таблице 1.
Пример 7
Аналогичен примеру 1, однако переработку проводили при температуре 280°С.
Результаты представлены в таблице 1.
Пример 8
Аналогичен примеру 1, однако переработку проводили под начальным давлением азота 1,9 МПа.
Результаты представлены в таблице 1.
Пример 9
Аналогичен примеру 1, однако переработку проводили под начальным давлением азота 2,5 МПа.
Результаты представлены в таблице 1.
Пример 10
Аналогичен примеру 1, однако переработку проводили под начальным давлением азота 3,0 МПа.
Результаты представлены в таблице 1.
Пример 11
Аналогичен примеру 1, однако растворитель содержал пропанол-2 в количестве 15 об. % и н-гексан в количестве 85 об. %.
Результаты представлены в таблице 1.
Пример 12
Аналогичен примеру 1, однако растворитель содержал пропанол-2 в количестве 20 об. % и н-гексан в количестве 80 об. %.
Результаты представлены в таблице 1.
Пример 13
Аналогичен примеру 1, однако растворитель содержал пропанол-2 в количестве 30 об. % и н-гексан в количестве 70 об. %.
Результаты представлены в таблице 1.
Пример 14
Аналогичен примеру 1, однако растворитель содержал пропанол-2 в количестве 50 об. % и н-гексан в количестве 50 об. %.
Результаты представлены в таблице 1.
Пример 15
Аналогичен примеру 1, однако масса масла составляла 0,5 г.
Результаты представлены в таблице 1.
Пример 16
Аналогичен примеру 1, однако масса масла составляла 1,0 г.
Результаты представлены в таблице 1.
Пример 17
Аналогичен примеру 1, однако масса катализатора составляла 0,05 г.
Результаты представлены в таблице 1.
Пример 18
Аналогичен примеру 1, однако масса катализатора составляла 0,15 г.
Результаты представлены в таблице 1.
Пример 19
Аналогичен примеру 1, однако общий объем растворителя составлял 20 мл.
Результаты представлены в таблице 1.
Пример 20
Аналогичен примеру 1, однако общий объем растворителя составлял 30 мл.
Результаты представлены в таблице 1.
Пример 21
Аналогичен примеру 1, однако вместо подсолнечного масла использовали рапсовое масло.
Используемое сырье содержало триглицериды жирных кислот и свободные жирные кислоты в следующем соотношении (в пересчете на свободные кислоты): стеариновая кислота 0,72 масс. %, пальмитиновая кислота 2,28 масс. %, гадолеиновая кислота 8,8 масс. %, эруковая кислота 31,2 масс. %, олеиновая кислота 24,3 масс. %, линолевая кислота 21,3 масс. %, линоленовая кислота 11,4 масс. %.
Результаты представлены в таблице 1.
Пример 22
Аналогичен примеру 1, однако вместо подсолнечного масла использовали кукурузное масло.
Используемое сырье содержало триглицериды жирных кислот и свободные жирные кислоты в следующем соотношении (в пересчете на свободные кислоты): стеариновая кислота 1,85 масс. %, пальмитиновая кислота 10,5 масс. %, миристиновая кислота 0,02 масс. %, арахиновая кислота 0,43 масс. %, олеиновая кислота 27,3 масс. %, линолевая кислота 53,5 масс. %, линоленовая кислота 6,4 масс. %.
Результаты представлены в таблице 1.
Пример 23
Аналогичен примеру 1, однако растворитель содержал н-гексан в количестве 100 об. %.
Результаты представлены в таблице 1.
Пример 24 (по прототипу)
Катализатор содержал следующее соотношение компонентов: содержание соединений никеля - 10,0 масс. %, сверхсшитый полистирол - 90,0 масс. %. В реактор вносили 0,1 г катализатора и 12,5 мл растворителя, далее добавляли смесь, содержащую 1,5 г смеси свободных жирных кислот с числом атомов углерода 18 и 12,5 мл растворителя. Растворитель содержал н-гексана в количестве 100 об. %. Далее проводили герметизацию реактора и его продувку азотом. Процесс деоксигенирования проводили под начальным давлением азота 3,0 МПа при температуре 290°С в течение 1 часа при перемешивании со скоростью от 450 мин-1 до 500 мин-1.
Используемое сырье содержало свободные жирные кислоты в следующем соотношении: стеариновая кислота 1,8 масс. %, олеиновая кислота 32,96 масс. %, линолевая кислота 65,24 масс.
Эффективность деоксигенирования определяли аналогично примеру 1.
Результаты представлены в таблице 1.
Пример 25
Аналогичен примеру 24, однако растворитель содержал пропанол-2 в количестве 40 об. % и н-гексан в количестве 60 об. %.
Результаты представлены в таблице 1.
Как видно из результатов экспериментов, приведенных в таблице 1, предлагаемый способ отличается от прототипа более высоким выходом насыщенных углеводородов с числом атомов углерода 12-18 за счет использования пропанола-2 в качестве источника водорода, образуемого in situ, значительно меньшим содержанием активного металла в катализаторе деоксигенирования, более низкими значениями температуры процесса и начального давления азота. Увеличение давления и температуры в процессе деоксигенирования выше обозначенных в примере 1 нецелесообразно, так как это не приводит к более высокой конверсии сырья и снижает выход углеводородов с числом атомов углерода 12-18. Снижение давления и температуры в процессе деоксигенирования приводит к неполной конверсии сырья, а также к снижению дисперсности активной фазы.
Предложенный способ каталитической переработки растительных масел в углеводороды дизельной фракции позволяет проводить одностадийный процесс деоксигенирования с получением насыщенных алканов с числом атомов углерода 12-18 с выходом более 98%.
Полученные результаты свидетельствуют о том, что использование сверхкритического растворителя, который позволяет получать водород in situ, в сочетании с катализатором на основе палладия и оксида меди (I) нанесенных на поверхность сверхсшитого полистирола, является перспективной возможностью интенсификации процесса переработки кислородсодержащего растительного сырья в углеводороды дизельной фракции.

Claims (1)

  1. Способ каталитической переработки растительных масел в углеводороды дизельной фракции, включающий одностадийную переработку сырья деоксигенированием в среде сверхкритического растворителя при температуре от 240 до 280°С в присутствии растворителя, находящегося в сверхкритическом состоянии, и гетерогенного катализатора, отличающийся тем, что переработка осуществляется при начальном давлении азота 1,9-2,1 МПа в течение 1-3 часов при скорости перемешивания от 450 мин-1 до 550 мин-1, реакционная смесь содержит 0,05-0,15 г гетерогенного катализатора, 0,5-1,5 г растительного масла и 20-30 мл растворителя, растворитель представляет собой смесь пропанола-2 и н-гексана в объемном соотношении 30-50:70-50 об.%, а гетерогенный катализатор содержит 1 масс.% палладия, 3 масс.% оксида меди (I) в качестве активной фазы и 96 масс.% сверхсшитого полистирола в качестве носителя.
RU2022133061A 2022-12-16 Способ каталитической переработки растительных масел в углеводороды дизельной фракции RU2808039C1 (ru)

Publications (1)

Publication Number Publication Date
RU2808039C1 true RU2808039C1 (ru) 2023-11-22

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2397199C2 (ru) * 2005-01-14 2010-08-20 Несте Ойл Ойй Способ промышленного получения углеводородов
RU2464297C2 (ru) * 2006-11-15 2012-10-20 Эни С.П.А. Способ получения углеводородных фракций из смесей биологического происхождения
US20160348009A1 (en) * 2015-05-28 2016-12-01 Research & Business Foundation Sungkyunkwan University Method for upgrading bio-oil using supercritical alcohols and upgraded bio-oil by the method
EP2612900B1 (en) * 2012-01-05 2020-05-06 Korea Institute of Science and Technology Method for producing renewable fuel using supercritical fluid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2397199C2 (ru) * 2005-01-14 2010-08-20 Несте Ойл Ойй Способ промышленного получения углеводородов
RU2464297C2 (ru) * 2006-11-15 2012-10-20 Эни С.П.А. Способ получения углеводородных фракций из смесей биологического происхождения
EP2612900B1 (en) * 2012-01-05 2020-05-06 Korea Institute of Science and Technology Method for producing renewable fuel using supercritical fluid
US20160348009A1 (en) * 2015-05-28 2016-12-01 Research & Business Foundation Sungkyunkwan University Method for upgrading bio-oil using supercritical alcohols and upgraded bio-oil by the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
А.А. Степачева, М.Е. Маркова, А.В. Гавриленко, В.Г. Матвеева, М.Г. Сульман, Э.М. Сульман, Ni-содержащий катализатор для деоксигенирования жирных кислот// Научно-технический вестник Поволжья, N5, 2018, с. 59-61. *

Similar Documents

Publication Publication Date Title
Phimsen et al. Oil extracted from spent coffee grounds for bio-hydrotreated diesel production
EP1396531B1 (en) Process for producing a hydrocarbon component of biological origin
US10144880B2 (en) Conversion of triacylglycerides-containing oils to jet fuel range hydrocarbons
JP6083945B2 (ja) 超臨界流体を利用した再生燃料の製造方法
KR20110076883A (ko) 수소화전환 공정 및 촉매
CN112189046B (zh) 生物喷气燃料的制造方法
CN102041023A (zh) 一种掺炼生物油脂改进渣油加氢的方法
CN104250558A (zh) 一种脂肪酸酯加氢生产正构烷烃的方法
KR101607868B1 (ko) 비식용 유지를 이용한 고품질 바이오항공유 제조방법 및 이에 의해 제조된 바이오항공유
CN113502174B (zh) 一种由聚烯烃废塑料直接制备航空汽油及航空煤油的方法
RU2808039C1 (ru) Способ каталитической переработки растительных масел в углеводороды дизельной фракции
KR20150107730A (ko) 트리아실글리세라이드를 함유한 오일의 전환
WO2011027044A1 (fr) Procede de conversion de charges issues de sources renouvelables en co-traitement avec une charge petroliere mettant en oeuvre un catalyseur a base de molybdene
CN106010627A (zh) 一种催化脂肪酸或脂肪酸酯加氢脱氧制备长链烷烃燃料的方法
CN109294613B (zh) 一种油脂类原料制备烃燃料的方法
CN113713809B (zh) 适用于催化愈创木酚低温选择性加氢制备含氧产物的催化剂及其制备和应用
CN106190282A (zh) 一种生物质热解油加工方法
Stepacheva et al. Hydrocarbon production in supercritical solvent: a new way for deoxygenation
EP3919588A1 (en) Method and system for preparing fuel by using high acid value biological oil and fat
Al Alwan Biofuels production via catalytic hydrocracking of ddgs corn oil and hydrothermal decarboxylation of oleic acid over transition metal carbides supported on Al-Sba-15
CN114763492B (zh) 一种生物柴油生产方法
CN111040801B (zh) 糖平台化合物制备长链烷烃的中间产物的处理方法及装置
CN109868152B (zh) 一种采用微藻油一釜法制备绿色柴油的方法
Jeon et al. Review on the production of renewable biofuel: Solvent-free deoxygenation
Nguyen et al. Upgrading Bio-Oil Obtained From Microalgae Over Ni/Biochar Catalyst For Hydrocarbon Synthesis