RU2804346C1 - Способ подземного активационного выщелачивания комплексных руд - Google Patents

Способ подземного активационного выщелачивания комплексных руд Download PDF

Info

Publication number
RU2804346C1
RU2804346C1 RU2023103070A RU2023103070A RU2804346C1 RU 2804346 C1 RU2804346 C1 RU 2804346C1 RU 2023103070 A RU2023103070 A RU 2023103070A RU 2023103070 A RU2023103070 A RU 2023103070A RU 2804346 C1 RU2804346 C1 RU 2804346C1
Authority
RU
Russia
Prior art keywords
ore
leaching
ores
explosive
complex
Prior art date
Application number
RU2023103070A
Other languages
English (en)
Inventor
Анна Вадимовна Рассказова
Артур Геннадьевич Секисов
Александр Юрьевич Лавров
Original Assignee
Федеральное государственное бюджетное учреждение науки Хабаровский Федеральный исследовательский центр Дальневосточного отделения Российской академии наук (ХФИЦ ДВО РАН)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Хабаровский Федеральный исследовательский центр Дальневосточного отделения Российской академии наук (ХФИЦ ДВО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Хабаровский Федеральный исследовательский центр Дальневосточного отделения Российской академии наук (ХФИЦ ДВО РАН)
Application granted granted Critical
Publication of RU2804346C1 publication Critical patent/RU2804346C1/ru

Links

Abstract

Изобретение относится к горнодобывающей промышленности и может быть использовано при подземной разработке комплексных медно-золоторудных месторождений. Способ подземного активационного выщелачивания комплексных руд включает взрывоинъекционную подготовку руд и последовательное выщелачивание из них ценных компонентов растворами соответствующих реагентов. Взрывоинъекционную подготовку руд производят с опережающей пропиткой парами воды, формирующими развитую систему микротрещин с заполнением их поровыми растворами в зонах предразрушения руды, а затем взрывоинъектируют в руду окисляюще-выщелачивающий карбонатный раствор с комплексом сформированных в нем в процессе взаимодействия со взрывными газами перкарбонатными и пероксонитрильными соединениями, после чего орошают руду слабым карбонатным раствором, при этом полученный продуктивный раствор выпускают в нижней части блока и направляют на переработку с извлечением из него ценных компонентов, образующих карбонатные и нитратные комплексы, а затем производят орошение руды растворами с комплексообразователем для извлечения из руды оставшихся сопутствующих ценных компонентов до достижения установленного уровня их извлечения. Технический результат заключается в повышении эффективности процесса посредством решения задачи увеличения сквозного извлечения полезных компонентов при разработке месторождений комплексных руд путем снижения выхода в поровые растворы минералообразующих и сопутствующих рудных элементов при взрывоинъекционной подготовке. 3 ил.

Description

Изобретение относится к горнодобывающей промышленности и может быть использовано при подземной разработке комплексных медно-золоторудных месторождений.
Известен способ разработки месторождений полезных ископаемых с использованием выщелачивания, по которому выемку руды производят камерами, дробленую руду доставляют на поверхность, где ее сортируют и обогащают, при этом хвосты сортировки укладывают в штабели и выщелачивают из них полезные компоненты, а частью отвальных продуктов обогащения закладывают отработанные камеры [1].
Однако известный способ не позволяет производить достаточно полное извлечение полезных компонентов из руд и осуществляется с большими затратами на перемещение руды и сооружение закладочного комплекса и хвостохранилищ.
Известен способ подземной разработки месторождений полезных ископаемых, включающий отработку рудного тела с формированием камер и их последующей закладкой, доставку руды на поверхность и извлечение из нее рудных минералов на обогатительной фабрике [2].
Недостатки известного способа - большие потери руды, оставляемой в целиках, и значительные затраты на складирование некондиционных руд и хвостов обогащения на поверхности.
Известен способ добычи полезных ископаемых с применением выщелачивания, включающий выемку руды камерами, доставку руды на поверхность, ее сортировку, обогащение концентрата, выщелачивание хвостов сортировки и последующую закладку отработанных камер отходами производства - некондиционной рудой и хвостами обогащения с транспортировкой их в отработанные камеры в выщелачивающем растворе, а затем заложенный в камерах материал обрабатывают выщелачивающим раствором [3].
Недостатком данного способа является низкая эффективность селективной выемки руд с различным уровнем содержания ценных компонентов и большие потери руды в целиках.
Наиболее близким по технической сущности к изобретению является способ подземной разработки комплексных медно-золоторудных месторождений с активационным выщелачиванием [4]. Способ включает проведение взрывной подготовки руд и последовательное выщелачивание из них ценных компонентов растворами реагентов. Основные заряды ВВ размещают в сдвоенных скважинах, причем смежно расположенные пучки сдвоенных скважин ориентируют ортогонально, осуществляют обуривание руды скважинами увеличенного диаметра между смежно расположенными пучками сдвоенных скважин с размещением в скважинах увеличенного диаметра дополнительных зарядов ВВ. Кроме зарядов ВВ в скважинах увеличенного диаметра и сдвоенных скважинах размещают тонкостенные трубы с реагентами, а взрывание зарядов ВВ в скважинах увеличенного диаметра осуществляют с увеличенным интервалом замедления относительно смежно расположенных сдвоенных скважин. После взрывоинъекционной подготовки руды в блоке осуществляют повторное обуривание скважинами увеличенного диаметра с размещением во взорванной руде пористых обсадных труб и электродов с последующей подачей в пористые обсадные трубы исходного раствора серной кислоты, последовательно осуществляют пропитку взорванной руды слабоконцентрированным электроактивированным окисляющим раствором серной кислоты и подачу - на размещенные в пористых обсадных трубах электроды - напряжения величиной, обеспечивающей реализацию процесса электролиза в исходном растворе реагентов внутри пористых обсадных труб и инициированных электролизом процессов электродиффузии ионов и молекул электролизных газов через пористые обсадные трубы в объем взорванной руды для разупрочнения отдельностей. Продуцируют серную кислоту непосредственно во взорванной руде и интенсифицируют процесс окисления сульфидных и сульфосолевых минералов, содержащих медь и растворимые в серной кислоте сопутствующие ценные компоненты, производят отключение напряжения на электродах. Взорванную руду орошают первоначально насыщенной кислородом водой, полученный продуктивный раствор выпускают в нижнюю часть блока и направляют по трубопроводу на поверхность для извлечения ценных компонентов, а маточные растворы насыщают кислородом и подают на очередной цикл орошения до извлечения из взорванной руды основной части меди и растворимых в серной кислоте сопутствующих ценных компонентов, после чего в пористые обсадные трубы с электродами подают концентрированный раствор хлорида натрия, который кондиционируют по рН соляной или серной кислотой и подвергают электролизу. Полученный щелочной раствор гипохлорита натрия в результате бародиффузии, инициированной давлением электролизных газов, через пористую обсадную трубу поступает в кислотную среду, окружающую взорванную руду, в результате чего при повышении рН до уровня 6,5-7,3 формируется комплексообразователь для золота - хлорноватистая кислота, при этом после стадии хлоридного электрохимического выщелачивания золота отключают напряжение на электродах, а взорванную руду орошают активным хлоридно-гипохлоритным раствором, полученным в электрохимическом реакторе, при этом полученный продуктивный раствор выпускают в нижней части блока и направляют на переработку с извлечением из него золота и сопутствующих ценных компонентов по трубопроводу на поверхность, а маточные растворы доукрепляют хлоридом натрия, подкисляют, реактивируют и направляют на очередной цикл орошения до достижения установленного уровня извлечения из руды ценных компонентов. [4].
Недостатком данного способа является недостаточно высокая эффективность извлечения ценных компонентов при выщелачивании комплексных руд с различными формами нахождения ценных компонентов, обусловленная интенсивным выходом в поровые растворы минералообразующих и сопутствующих рудных элементов при взаимодействии с реакционно-активными реагентами в процессе их взрывоинъекционного внедрения в рудный массив, вступающих впоследствии в конкурентные побочные реакции с комплексообразователями в основную стадию выщелачивания при орошении рабочими растворами взорванной руды.
Технический результат предлагаемого способа заключается в повышении эффективности процесса посредством решения задачи увеличения сквозного извлечения полезных компонентов при разработке месторождений комплексных руд путем снижения выхода в поровые растворы минералообразующих и сопутствующих рудных элементов при взрывоинъекционной подготовке.
Технический результат достигается за счет того, что в способе подземного активационного выщелачивания комплексных руд, включающем взрывоинъекционную подготовку руд и последовательное выщелачивание из них ценных компонентов растворами соответствующих реагентов, взрывоинъекционную подготовку руд производят с опережающей пропиткой парами воды, формирующими развитую систему микротрещин с заполнением их поровыми растворами в зонах предразрушения руды, а затем взрывоинъектируют в руду окисляюще-выщелачивающий карбонатный раствор с комплексом сформированных в нем в процессе взаимодействия со взрывными газами перкарбонатными и пероксонитрильными соединениями, после чего орошают руду слабым карбонатным раствором, при этом полученный продуктивный раствор выпускают в нижней части блока и направляют на переработку с извлечением из него ценных компонентов, образующих карбонатные и нитратные комплексы, а затем производят орошение руды растворами с комплексообразователем для извлечения из руды оставшихся сопутствующих ценных компонентов до достижения установленного уровня их извлечения.
Возможность формирования требуемой последовательности выполняемых действий предложенными средствами позволяет решить поставленную задачу, определяет новизну, промышленную применимость и изобретательский уровень разработки.
Схемы реализации способа изображены на чертежах. На фиг. 1 - схема конструкции заряда; на фиг. 2 - схема процесса в зонах предразрушения с системой микротрещин; на фиг. 3 - схема последовательности инициирования процессов.
Способ осуществляется следующим образом.
После проведения подготовительных и нарезных выработок осуществляют обуривание руды в блоке скважинами большого диаметра (150-300 мм). В центральной осевой части 1 с зарядом ВВ 2 всех взрывных скважин 3 размещают тонкостенные пластиковые трубки 4 с раствором гидрокарбоната натрия, а в периферийной части - пластиковые трубки 5 с технической водой. При взрывании зарядов ВВ 2 образующиеся взрывные газы разрывают тонкостенные пластиковые трубки 4, размещенные во взрывных скважинах 3, при этом вода в периферийных пластиковых трубках 5 под их воздействием трансформируется в перегретые пары, которые проникают в возникающие в рудном массиве микротрещины 6 при прохождении через него взрывных волн. Наведенные взрывом микротрещины 6 представлены в зоне волнового предразрушения массива, которая простирается на расстояние до 100 и более радиусов 7 заряда ВВ 2. Перегретые пары, находящиеся под высоким давлением, проникая в микротрещины, расширяют их, причем не производят при этом активного выщелачивания минералообразующих элементов, в первую очередь - железа и кальция, являющихся кольматантами в последующих процессах селективного растворения ценных компонентов. Поскольку в водных парах в результате термодиссоциации, даже при околонейтральном рН, значительны концентрации ионов гидроксония (H3O3) и гидроксид-ионов (ОН-), то за счет их бародиффузии в кристаллические решетки рудных минералов и инициируемой ею передислокацией атомов, находящихся в ее узлах, будут формироваться дополнительные дефекты. Эти дефекты - точечные и линейные вакансии - будут развиваться в новые микротрещины при прохождении второй взрывной волны, возникающей в результате скачка давления взрывных газов в результате их проникновении в осевую трубку с раствором гидрокарбоната натрия. В растворе в ходе воздействия на него высокотемпературных взрывных газов образуются окислы углерода и вода НСО3 -+H+=CO2+H2O, а также высоко активные кластеризованные радикалы и ионы СО2→СО2*, CO2*+CO2*=C2O4*, С2О4*=С2О4 +-. При контакте с окислами азота, входящими в состав взрывных газов, образуются и другие высокоактивные окислители, в частности, азотная кислота и пероксонитрил. Вместе с ионизированными парами воды эти активные компоненты будут проникать в поровую воду, находящуюся в сформированных на начальной стадии взрывоинъекционной подготовки, микротрещин 6, обеспечивая их дальнейшее развитие. Таким образом, в предлагаемом способе, за счет опережающего формирования перегретыми ионизированными парами воды системы микротрещин 6 и дополнительных дефектов кристаллических решеток рудных минералов, энергия паров второй волны с реагентами расходуется на развитие контактной поверхности и, в существенно меньшей степени - на химическое взаимодействие с нерудными минералообразующими элементами для последующего реакционного взаимодействия реагентов. В ходе последующего остывания и гидратации при контакте с поровой водой, образованные при воздействии взрывных газов на карбонатный раствор, димерные кластерные соединения углерода и кислорода, продуцируют надугольную кислоту C2O4*+2H2O=H2C2O62. Надугольная кислота при контакте с минеральным веществом диспропорционирует с образованием мононадугольной кислоты и углекислого газа Н2С2О6=H2CO4+СО2 или пероксида водорода и углекислого газа H2C2O62О2+2СО2. Образующаяся мононадугольная кислота (Н2СО4) также с течением времени диспропорционирует с образованием пероксида водорода и угольной кислоты
Важным свойством перкарбонатных соединений является их синергетическое - совместно с другими комплексообразователями - окисляющее воздействие на металлы и серу в составе рудных минералов. Кроме того, перкарбонатные соединения являются комплексообразователями для ряда выщелачиваемых ценных металлов. Например, параллельно с окислительной подготовкой сульфидных и сульфоарсенидных минералов, содержащих химически связанное и инкапсулированное золото, ими будет осуществляться выщелачивание молибдена перкарбонатными растворами, по реакциям
Кроме того, при окислении и растворении серы, переходящей в сульфатную форму, будет образовываться и дополнительный выщелачивающий агент - серная кислота
Рассмотренные процессы при взрывоинъекционном выщелачивании с заявляемой конструкцией зарядов ВВ 2 позволяют осуществить формирование в рудном массиве системы развитых микротрещин 6, окисление и начальное выщелачивание ценных компонентов, образующих соединения с карбонатными комплексами. После взрывоинъекционной подготовки комплексных руд, осуществляют их орошение слабыми растворами комплексообразователей для растворенных и находящихся в поровых растворах компонентов. Для выщелачивания других ценных компонентов из подготовленной взрывоинъекциями руды, в частности золота, осуществляют орошение ее растворами, содержащими соответствующий комплексообразователь (для золота - содержащими хлорноватистую кислоту). За счет сформированной при таком взрыве развитой системе микротрещин и передислокации к их поверхностям атомов химически связанного золота, обеспечивается высокий уровень его извлечения в основном процессе выщелачивания отбитой руды.
Пример выполнения способа выщелачивания золота и молибдена из комплексных руд.
Выщелачивание молибдена и золота производилось в перколяторе, моделирующем блок взорванной руды из упорных бедных золото-молибденовых руд месторождения Гитче-Тырныауз с содержанием золота 3 г/т и порядка 0,2% молибдена, после 3-стадиального дробления до достижения средней крупности - 3,35 мм. Подготовка водными взрывоинъекциями была смоделирована в автоклаве обработкой перегретой водопаровой смесью при температуре 200°С. Далее была смоделирована взрывоинъекцианная перкарбонатная подготовка к выщелачиванию золота и предвыщелачиванию молибдена. После слива раствора и остывания рудной массы было произведено перколяционное выщелачивание молибдена 0,1% раствором гидрокарбоната натрия. Извлечение молибдена составило 85%. Далее хлоридно-гипохлоритными растворами произведено выщелачивание золота с извлечением более 80%. Повышение извлечения золота составило более 20%, молибдена 35% по сравнению с контрольной схемой одностадийного выщелачивания хлоридно-гипохлоритными растворами без предварительного окисления и предвыщелачивания молибдена.
Способ повышает эффективность процесса посредством решения задачи увеличения сквозного извлечения полезных компонентов при разработке месторождений комплексных руд.
Источники информации
1. Патент США №3260548, кл. 299-18. Способ добычи полезных ископаемых с применением выщелачивания, 1966.
2. Патент США №3586379, кл. 299-8. Способ подземной разработки месторождений полезных ископаемых, 1971.
3. А.с. СССР №607020. Способ добычи полезных ископаемых с применением выщелачивания.
4. Патент РФ №2774166. Способ подземной разработки комплексных медно-золоторудных месторождений с активационным выщелачиванием.

Claims (1)

  1. Способ подземного активационного выщелачивания комплексных руд, включающий взрывоинъекционную подготовку руд и последовательное выщелачивание из них ценных компонентов растворами соответствующих реагентов, отличающийся тем, что взрывоинъекционную подготовку руд производят с опережающей пропиткой парами воды, формирующими развитую систему микротрещин с заполнением их поровыми растворами в зонах предразрушения руды, а затем взрывоинъектируют в руду окисляюще-выщелачивающий карбонатный раствор с комплексом сформированных в нем в процессе взаимодействия со взрывными газами перкарбонатными и пероксонитрильными соединениями, после чего орошают руду слабым карбонатным раствором, при этом полученный продуктивный раствор выпускают в нижней части блока и направляют на переработку с извлечением из него ценных компонентов, образующих карбонатные и нитратные комплексы, а затем производят орошение руды растворами с комплексообразователем для извлечения из руды оставшихся сопутствующих ценных компонентов до достижения установленного уровня их извлечения.
RU2023103070A 2023-02-09 Способ подземного активационного выщелачивания комплексных руд RU2804346C1 (ru)

Publications (1)

Publication Number Publication Date
RU2804346C1 true RU2804346C1 (ru) 2023-09-28

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291920A (en) * 1980-04-30 1981-09-29 Kennecott Corporation In situ exploitation of deep set porphyry ores
RU2580356C1 (ru) * 2014-12-08 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Забайкальский государственный университет" (ФГБОУ ВПО "ЗабГУ") Способ кучного выщелачивания золота из упорных руд
RU2593668C1 (ru) * 2015-05-18 2016-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Забайкальский государственный университет" (ФГБОУ ВПО "ЗабГУ") Способ разработки рудного массива и подготовки его к выщелачиванию
RU2740281C1 (ru) * 2020-06-26 2021-01-12 Федеральное государственное бюджетное учреждение науки Хабаровский Дальневосточный исследовательский центр Дальневосточного отделения Российской академии наук Способ подземного выщелачивания руд с взрывоинъекционной подготовкой
RU2747275C1 (ru) * 2020-11-10 2021-05-04 Дмитрий Николаевич Радченко Способ подземного выщелачивания металлов из сульфидсодержащего минерального сырья

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291920A (en) * 1980-04-30 1981-09-29 Kennecott Corporation In situ exploitation of deep set porphyry ores
RU2580356C1 (ru) * 2014-12-08 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Забайкальский государственный университет" (ФГБОУ ВПО "ЗабГУ") Способ кучного выщелачивания золота из упорных руд
RU2593668C1 (ru) * 2015-05-18 2016-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Забайкальский государственный университет" (ФГБОУ ВПО "ЗабГУ") Способ разработки рудного массива и подготовки его к выщелачиванию
RU2740281C1 (ru) * 2020-06-26 2021-01-12 Федеральное государственное бюджетное учреждение науки Хабаровский Дальневосточный исследовательский центр Дальневосточного отделения Российской академии наук Способ подземного выщелачивания руд с взрывоинъекционной подготовкой
RU2747275C1 (ru) * 2020-11-10 2021-05-04 Дмитрий Николаевич Радченко Способ подземного выщелачивания металлов из сульфидсодержащего минерального сырья

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
НЕСТЕРОВ Ю.В. О карбонатном подземном выщелачивании урана. Горный информационно-аналитический бюллетень (НТЖ), 2000, всего 3 с. *

Similar Documents

Publication Publication Date Title
RU2804346C1 (ru) Способ подземного активационного выщелачивания комплексных руд
US4243638A (en) Iron EDTA chelate catalyzed oxidation of uranium
US20140205520A1 (en) Leaching of minerals and sequestration of co2
RU2423607C2 (ru) Способ скважинного выщелачивания металлов из руд, россыпей и техногенных минеральных образований
RU2361077C1 (ru) Способ комбинированной разработки руд
RU2700865C1 (ru) Способ разработки месторождений полезных ископаемых
RU2774166C1 (ru) Способ подземной разработки комплексных медно-золоторудных месторождений с активационным выщелачиванием
RU2557024C2 (ru) Способ кучного выщелачивания золота из руд
Sekisov et al. Prospects for underground leaching in gold mines
US3915499A (en) Acid pre-treatment method for in situ ore leaching
US20090032403A1 (en) Uranium recovery using electrolysis
RU2476610C2 (ru) Способ извлечения металлов из металлсодержащего минерального сырья
RU2497962C1 (ru) Способ извлечения дисперсного золота из упорных руд
Jalil et al. Recovery of gold in solution from electronic waste by di (2-ethylhexyl) phosphoric acid
US4206024A (en) Electrochemical leaching methods
RU2740281C1 (ru) Способ подземного выщелачивания руд с взрывоинъекционной подготовкой
RU2550764C1 (ru) Способ извлечения металлов из руд
Rasskazov et al. In-situ leaching of molybdenum and uranium by percarbonate and chloride-hypochlorite solutions
CN104254498B (zh) 酸矿排放的处理
RU2413018C1 (ru) Способ извлечения благородных металлов из руд
RU2312909C1 (ru) Способ извлечения металлов
RU2114196C1 (ru) Способ гидрометаллургического извлечения редких металлов из технологически упорного сырья
Yahya et al. Simulation of leaching process of gold by cyanidation
RU2074958C1 (ru) Экологически чистый способ подземного выщелачивания благородных металлов, преимущественно золота и серебра, из руд на месте их залегания
Rasskazova et al. Copper Leaching Using Mixed Explosive-and-Reagent Pretreatment of Ore Body