RU2795765C1 - Способ исследования борьбы с биопленками E. coli препаратом, содержащим наночастицы серебра - Google Patents

Способ исследования борьбы с биопленками E. coli препаратом, содержащим наночастицы серебра Download PDF

Info

Publication number
RU2795765C1
RU2795765C1 RU2022111277A RU2022111277A RU2795765C1 RU 2795765 C1 RU2795765 C1 RU 2795765C1 RU 2022111277 A RU2022111277 A RU 2022111277A RU 2022111277 A RU2022111277 A RU 2022111277A RU 2795765 C1 RU2795765 C1 RU 2795765C1
Authority
RU
Russia
Prior art keywords
coli
biofilms
biofilm
studying
silver nanoparticles
Prior art date
Application number
RU2022111277A
Other languages
English (en)
Inventor
Екатерина Владимировна Нефедова
Николай Николаевич Шкиль
Original Assignee
Федеральное государственное бюджетное учреждение науки Сибирский федеральный научный центр агробиотехнологий Российской академии наук (СФНЦА РАН)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Сибирский федеральный научный центр агробиотехнологий Российской академии наук (СФНЦА РАН) filed Critical Федеральное государственное бюджетное учреждение науки Сибирский федеральный научный центр агробиотехнологий Российской академии наук (СФНЦА РАН)
Application granted granted Critical
Publication of RU2795765C1 publication Critical patent/RU2795765C1/ru

Links

Abstract

Изобретение относится к области медицины и ветеринарии и может быть использовано для исследования разрушения биопленок. Способ исследования борьбы с биопленками Е. coli препаратом, содержащим наночастицы серебра, заключается в том, что к 0,2 мл раствора препарата арговит с содержанием действующего вещества 13 мг/мл вносят 0,2 мл мясопептонного бульона и 0,2 мл 1,5×106 КОЕ/мл референтного штамма Е. coli АТСС 25922 или изолята Е. coli, выделенного от крупного рогатого скота с клиническим проявлением инфекционного заболевания, с последующим инкубированием в течение 24 ч при Т=37,5±0,5°С. Результат исследования борьбы с биопленками определяют по изменению интенсивности биопленкообразования, путем измерения оптической плотности на спектрофотометре при длине волны 492 нм. Изобретение позволяет оценить способность препаратов серебра препятствовать образованию биопленок Е. coli. 1 табл., 2 пр.

Description

Изобретение относится к областям медицины и ветеринарии и может быть использовано для разрушения биопленок.
В медицине и ветеринарии используется большое разнообразие токсичных для бактерий антибиотиков и антисептиков, принадлежащих к различным классам органических соединений (бета-лактамы, макролиды, тетрациклины, флуороквинолоны, сульфонамиды, аминогликозиды, имидазолы, соединения пептидной природы, четвертичные соли аммония и др.). Большинство известных в настоящее время антибиотиков и антисептиков эффективны в отношении планктонных (свободно живущих) форм бактерий. Формируя биопленку (многоклеточное сообщество бактерий, окруженное матриксом и прикрепленное к внешним или внутренним поверхностям организма-хозяина или неживых предметов), бактерии приобретают резистентность к антибиотикам и антисептикам (Hoiby N., Bjarnsholt Т., Givskov М, Molin S., Ciofu О. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. - 2010. - vol. 35. - P 322-332. doi: 10.1016/j.ijantimicag.2009.12.011; Dufour D., Leung V., Levesque CM. Bacterial biofilm: structure, function, and antimicrobial resistance. Endodontic Topics. -2012. - vol. 22. - P. 2-16. doi: 10.1111m / j 1601-1546.2012.00277), а также оказываются недоступными для уничтожения клетками иммунной системы (Leid J.G. Bacterial biofilms resist key host defenses. Microbe. - 2009. - vol. 4(2). - P. 66-70). Поэтому лечение и профилактика вызываемых биопленками заболеваний представляет большие трудности (Romling U., Balsalobre С.Biofilm infections, their resilience to therapy and innovative treatment strategies (Review). J Intern Med. - 2012. - vol. 272. - P. 541- 561. doi: 10.1111/joim. 12004; Gupta P., Sarkar S., Das В., Bhattacharjee S., Tribedi P. Biofilm, pathogenesis and prevention - a journey to break the wall: a review. Arch Microbiol. - 2015. - vol. 198(1). - P. 1-15. doi 10.1007/s00203-015-l 148-6).
Известно, что биопленки вызывают порядка 80% бактериальных инфекций человека и животных (Pletzer D., Coleman S.R., Hancock R.E. Anti-biofilm peptides as a new weapon in antimicrobial warfare. Curr Opin in Microbiol. - 2016. - vol. 33. - P. 35-40. doi: 10.1016/j.mib.2016.05.01) разнообразные воспалительные и связанные с ними аутоиммунные и онкологические заболевания, поражения сердечно-сосудистой системы. Благодаря этому биопленки служат одной из основных причин заболеваемости и смертности во всем мире. Высокая устойчивость биопленок к внешним воздействиям создает также проблемы для дезинфекции медицинских изделий, поддержания личной и профессиональной гигиены, лечения сельскохозяйственных и домашних животных. Соответственно, разработка методов разрушения бактериальных биопленок представляет одну из наиболее актуальных задач современной биотехнологии, медицины, ветеринарии и смежных областей здравоохранения.
Внедрение нанотехнологий в различные области науки обусловлено их уникальными свойствами в отношении биологических объектов. Наночастицы, в частности наночастицы металлов и их соединений, в настоящее время нашли широкое применение в различных сферах деятельности, в том числе в биологии и медицине в качестве альтернативных антибактериальных препаратов (Патент РФ №2542280. Способ получения пленок с наноструктурным серебром / О.А. Баранова, П.М. Пахомов. -Опубл. 20.02.2015. Бюлл. 5.; Самсонова М.В. Наномедицина: современные подходы к диагностике и лечению заболеваний, вопросы безопасности // Пульмонология. 2008. №5. С.5-13; Dogra V., Kaur G., Kaur A., Kumar R., Kumar S. In vitro assessment of antimicrobial and genotoxic effect of metallosurfactant based nickel hydroxide nanoparticles against Escherichia coli and its genomic DNA. Colloids Surf В Biointerfaces. - 2018. - vol. -170. - P.99-108. doi: 10.1016/j.colsurfb. 2018.05.069). В частности, наночастицы серебра характеризуются высокой антибактериальной активностью в отношении широкого ряда бактерий, в том числе возбудителей заболеваний человека и животных (Григорьев М.Г., Бабич Л.Н. Использование наночастиц серебра против социально значимых заболеваний // Молодой ученый. 2015. №9. С. 396-401; Khatami Мю, Zafarnia N., Heydarpoor Bami Мю, Sharifi I., Singh H. Antifungal and antibacterial activity of densely dispersed silver nanospheres with homogeneity size which synthesized using chicory: An in vitro study. J Mycol Med. 2018. pii: SI 156-5233(18)30054-4. doi: 10.1016/j.mycmed. 2018.07.007).
Известен способ фотодинамической терапии для инактивации бактерий и биопленок, в котором используют катионный пурпуринимид в качестве фотосенсибилизатора для фотодинамической инактивации бактериальных биопленок (патент РФ №2565450, опубл. 20.10.2015). К недостаткам этого способа фотодинамической терапии следует отнести низкий уровень фотостабильности используемой композиции, что приводит к коротким срокам хранения и к существенным ограничениям при проведении терапии. Другим ограничением при использовании вышеуказанной композиции является низкий уровень эффективности терапии очагов бактериального поражения, обусловленный низким уровнем биодоступности молекул. Кроме того, предлагаемые для аппликационного применения растворы химических агентов имеют значительную химическую активность, что приводит к их ускоренному выводу или инактивации.
Известен способ предотвращения образования биопленок на подложке, на которую нанесены частицы с локальным плазмонным резонансом (медь, серебро, золото, полупроводники, оксиды металлов) с плотностью 1-100 частиц/мкм (патент РФ №2650376, опубл. 11.04.2018). Предполагается, что при освещении поверхности поглощение и нагрев наночастиц предотвратят прикрепление микроорганизма к поверхности, ингибирование формирования биопленки и (или) разрушение уже сформированной биопленки. Недостатки данного способа заключаются в удалении наночастиц вследствие метаболизма, окисления и физико-химических процессов, сопровождающих нагревание в биосистемах (кипение, кавитация, флотация и т.п.).
Известны также химические и микробиологические способы инактивации биопленок химическими агентами путем непосредственной аппликации их растворов - смеси ферментов (заявка РФ №2009106069, опубл. 27.08.2010), бактериофага (патент РФ №2565824, опубл. 20.10.2015; патент РФ №2646102, опубл. 01.03.2018), а также штаммами бактерий (патент РФ №2576008, опубл. 27.02.2016), комплексом антимикробных пептидов насекомых (патент РФ №2664708, опубл. 21.08.2018; патент РФ №2699712, опубл. 09.09.2019), одного или нескольких ненасыщенных алифатических длинноцепочечных спиртов или альдегидов определенной формулы (RU 2012126070), сипрозу (заявка РФ №2014145270, опубл. 10.107111.2016), ионы серебра в составе композиций (патент РФ №2553363, опубл. 10.06.2015). Недостатком данных способов является их относительно кратковременный эффект (вследствие метаболизма), необходимость повторения, но избегания передозировки. Использование бактериофагов в борьбе с биопленками с каждым годом набирает популярность. Но на сегодняшний день не получены достоверные результаты, которые показывают эффективность их применения. Бактериофаг высоко специфичен, т.е. действует только против одного вида бактерии и не эффективен по отношению к другим. Экспериментально доказано, что использование низких концентраций фаговых частиц или применение фагов в отношении бактерий, которые проявляют резистентность к фагам, стимулирует образование биопленок. Выделение и (или) получение генетически модифицированных фагов, действие которых будет направлено на разрушение биопленок - очень сложная, дорогая и трудная задача. Действие ферментов в основном направлено на разрушение матрикса (например, ДНКаза). При этом бактерии остаются жизнеспособными и вполне могут формировать биоматрикс заново и формировать новый очаг инфекции.
Наиболее близким аналогом является способ разрушения биопленок лазерным излучением с использованием композиции, содержащей серебро (публикация международной заявки WO 2014/089552, опубл. 12.06.2014). Разрушение биопленки на поверхности раны предполагается под действием локальной ударной волны, генерированной наносекундным лазерным излучением (длина волны 1064 нм) в слое серебросодержащей композиции на поверхности биопленки и вдавливающей бактерицидную композицию вглубь раны под действием последовательных лазерных импульсов. Основным недостатком метода является прямое лазерное воздействие на ткани, а также сложность оптимальной фокусировки, позволяющей под действием ударной волны обеспечить разрушение биопленки и транспорт композиции вглубь, но одновременно избежать разрушения компонент и целых клеток здоровой такни, а также микрососудов.
Задачей заявленного изобретения является разработка способа исследования борьбы с биопленками Е. coli препаратом, содержащим наночастицы серебра.
Поставленная задача достигается тем, что способ исследования борьбы с биопленками Е. coli препаратом, содержащим наночастицы серебра, заключающийся в том, что к 0,2 мл раствора препарата арговит с содержанием действующего вещества 13 мг/мл, вносят 0,2 мл мясопептонного бульона и 0,2 мл 1,5⋅106 КОЕ/мл референтного штамма Е. coli АТСС 25922 или изолята Е. coli выделенного от крупного рогатого скота с клиническим проявлением инфекционного заболевания, с последующим инкубированием в течение 24 ч при Т=37,5±0,5°С, результат исследования борьбы с биопленками, определяют по изменению интенсивности биопленкообразования, путем измерения оптической плотности на спектрофотометре при длине волны 492 нм.
Способ исследования борьбы с биопленками Е. coli препаратом, содержащим наночастицы серебра определяли согласно методике (O'Toole G.A. et al. 2000). Использование данного способа исследования позволяет оценить способность препаратов серебра препятствовать образованию биопленок у Е. coli.
Изобретение иллюстрируется следующими примерами.
Препарат Арговит представляет собой комплекс высокодисперсных частиц кластерного серебра, поливинилпирролидона и водного раствора, полученного электронно-лучевой обработкой водного раствора. Препарат обладает широким спектром антимикробного действия в отношении грамположительных и грамотрицательных, аэробных и анаэробных, спорообразующих и аспорогенных бактерий в виде монокультур и микробных ассоциаций (ООО НПЦ «Вектор-Вита», vectot-vita@ngs.ru).
Пример 1
Способ исследования борьбы с биопленками Е. coli препаратом, содержащим наночастицы серебра заключался следующим образом: в стерильный 96 луночный планшет вносят 0,2 мл раствора препарата арговит с содержанием действующего вещества 13 мг/мл, 0,2 мл мясопептонного бульона и 0,2 мл 1,5⋅106 КОЕ/мл референтного штамма Е. coli АТСС 25922 или изолята Е. coli выделенного от крупного рогатого скота с клиническим проявлением инфекционного заболевания, с последующим инкубированием в течении 24 ч при Т=37,5±0,5°С.
После инкубации, планктонные микроорганизмы из каждой лунки удаляют, лунки промывают дистиллированной водой. Затем в лунки вносят по 0,125 мл 0,1% раствора генциан фиолетового, окрашивают в течение 15 мин при комнатной температуре. Далее раствор удаляют, лунки промывают дистиллированной водой. Планшет высушивают на воздухе и в каждую лунку вносят 0,2 мл 95% этилового спирта, инкубируют в течение 15 минут при комнатной температуре, затем полученную спиртовую вытяжку в объеме 0,125 мл переносят в чистый 96 луночный планшет и замеряют оптическую плотность на спектрофотометре при длине волны 492 нм.
Пример 2
Способ исследования борьбы с биопленками Е. coli препаратом, содержащим наночастицы серебра, продемонстрирован в сравнении с действием антибактериального препарата лактобай на референтном штамме Е. coli АТСС 25922 и Е. coli выделенном от крупного рогатого скота с клиническим проявлением инфекционного заболевания.
Применение лактобая вызывает рост биопленкообразования более чем в 2,5 раза с 1,01±0,01 до 2,54±0,01 усл. ед.
Изучение влияние наночастиц серебра препаратом арговит на штамм Е. coli АТСС 25922 позволило установить снижение процесса биопленкообразования с 1,01±0,02 до 0,93±0,01 усл. ед., что подтверждает исследования изолятом Е. coli выделенным при лечении мастита коров. Антибактериальный препарат латобай как и при исследовании с изолятом Е. coli вызывал рост процесса биопленкообразования с 1,01±0,02 до 1,52±0,03. Влияние препаратов различных фармакологических групп на процесс биопленкообразования Е. coli, усл. ед представлены в таблице 1
Figure 00000001
Проведенные исследования показали, что применение препарата арговит содержащего наночастицы серебра значительно снижал уровень биопленкообразования как у референтного штамма, так и у изолята Е. coli.

Claims (1)

  1. Способ исследования борьбы с биопленками Е. coli препаратом, содержащим наночастицы серебра, заключающийся в том, что к 0,2 мл раствора препарата арговит с содержанием действующего вещества 13 мг/мл вносят 0,2 мл мясопептонного бульона и 0,2 мл 1,5⋅106 КОЕ/мл референтного штамма Е. coli АТСС 25922 или изолята Е. coli, выделенного от крупного рогатого скота с клиническим проявлением инфекционного заболевания, с последующим инкубированием в течение 24 ч при Т=37,5±0,5°С, результат исследования борьбы с биопленками определяют по изменению интенсивности биопленкообразования, путем измерения оптической плотности на спектрофотометре при длине волны 492 нм.
RU2022111277A 2022-04-25 Способ исследования борьбы с биопленками E. coli препаратом, содержащим наночастицы серебра RU2795765C1 (ru)

Publications (1)

Publication Number Publication Date
RU2795765C1 true RU2795765C1 (ru) 2023-05-11

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2750340A1 (en) * 2009-01-23 2010-07-29 Kane Biotech Inc. Biofilm-removing antimicrobial compositions and uses thereof
EP1991365A4 (en) * 2006-02-08 2011-06-22 Acrymed Inc METHODS AND COMPOSITIONS FOR SURFACES TREATED WITH METAL NANOPARTICLES
RU2567332C2 (ru) * 2013-11-12 2015-11-10 Государственное научное учреждение Институт экспериментальной ветеринарии Сибири и Дальнего Востока Российской академии сельскохозяйственных наук (ГНУ ИЭВСиДВ Россельхозакадемии) СПОСОБ ПОВЫШЕНИЯ АНТИБИОТИКОЧУВСТВИТЕЛЬНОСТИ УСЛОВНО-ПАТОГЕННОЙ МИКРОФЛОРЫ ПРЕПАРАТОМ СЕРЕБРА АРГОВИТ in vitro
RU2672869C1 (ru) * 2017-12-01 2018-11-20 Федеральное бюджетное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ГНЦ ВБ "Вектор" Роспотребнадзора) Антибактериальное средство на основе бактериофага
RU2757329C1 (ru) * 2021-01-28 2021-10-13 Федеральное государственное бюджетное учреждение науки Сибирский федеральный научный центр агробиотехнологий Российской академии наук (СФНЦА РАН) Способ терапии катарального мастита коров комплексным препаратом, содержащим наночастицы серебра арговит и димексид

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1991365A4 (en) * 2006-02-08 2011-06-22 Acrymed Inc METHODS AND COMPOSITIONS FOR SURFACES TREATED WITH METAL NANOPARTICLES
CA2750340A1 (en) * 2009-01-23 2010-07-29 Kane Biotech Inc. Biofilm-removing antimicrobial compositions and uses thereof
RU2567332C2 (ru) * 2013-11-12 2015-11-10 Государственное научное учреждение Институт экспериментальной ветеринарии Сибири и Дальнего Востока Российской академии сельскохозяйственных наук (ГНУ ИЭВСиДВ Россельхозакадемии) СПОСОБ ПОВЫШЕНИЯ АНТИБИОТИКОЧУВСТВИТЕЛЬНОСТИ УСЛОВНО-ПАТОГЕННОЙ МИКРОФЛОРЫ ПРЕПАРАТОМ СЕРЕБРА АРГОВИТ in vitro
RU2672869C1 (ru) * 2017-12-01 2018-11-20 Федеральное бюджетное учреждение науки "Государственный научный центр вирусологии и биотехнологии "Вектор" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ГНЦ ВБ "Вектор" Роспотребнадзора) Антибактериальное средство на основе бактериофага
RU2757329C1 (ru) * 2021-01-28 2021-10-13 Федеральное государственное бюджетное учреждение науки Сибирский федеральный научный центр агробиотехнологий Российской академии наук (СФНЦА РАН) Способ терапии катарального мастита коров комплексным препаратом, содержащим наночастицы серебра арговит и димексид

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Серебросодержащие препараты: анализ преимуществ и недостатков. Сырье и упаковка для парфюмерии, косметики и бытовой химии, N8 (135), 17.10.2012 [он-лайн], [найдено 10.01.2023] - найдено в Интернет: https://cosmetic-industry.com/serebrosoderzhashhie-preparaty-analiz-preimushhestv-i-nedostatkov.html. *

Similar Documents

Publication Publication Date Title
Akram et al. A combination of silver nanoparticles and visible blue light enhances the antibacterial efficacy of ineffective antibiotics against methicillin-resistant Staphylococcus aureus (MRSA)
Dong et al. Synergistic photoactivated antimicrobial effects of carbon dots combined with dye photosensitizers
Leanse et al. Antimicrobial blue light: A ‘Magic Bullet’for the 21st century and beyond?
Soukos et al. Photodestruction of human dental plaque bacteria: enhancement of the photodynamic effect by photomechanical waves in an oral biofilm model
Keyhani et al. Biogenic selenium nanoparticles target chronic toxoplasmosis with minimal cytotoxicity in a mouse model
Ptaszyńska et al. Porphyrins inactivate Nosema spp. microsporidia
Misba et al. Enhanced photodynamic therapy using light fractionation against Streptococcus mutans biofilm: type I and type II mechanism
Orlandi et al. Photodynamic therapy by diaryl-porphyrins to control the growth of Candida albicans
Senthilkumar et al. Nanobubbles: a promising efficient tool for therapeutic delivery of antibacterial agents for the Staphylococcus aureus infections
RU2795765C1 (ru) Способ исследования борьбы с биопленками E. coli препаратом, содержащим наночастицы серебра
Swain et al. Evaluation of selected metal nanoparticles on hatching and survival of larvae and fry of I ndian major carp, rohu (L abeo rohita)
CN105228698A (zh) 利用自组装的金纳米壳层包覆细菌并借助激光产生光热分解与冷光来杀死与追踪细菌的方法
Pourhajibagher et al. Evaluation of antimicrobial effects of photo-sonodynamic antimicrobial chemotherapy based on nano-micelle curcumin on virulence gene expression patterns in Acinetobacter baumannii
Lesar et al. Innovative approach in Legionella water treatment with photodynamic cationic amphiphilic porphyrin
RU2825162C1 (ru) Способ борьбы с биопленками Staphylococcus aureus
Nazir Biosynthesis of silver nanoparticle melanostictus) and assessm
Ismail et al. Inhibitory activity of silver nanoparticles and sodium hypochlorite against biofilm produced by Salmonellae isolated from poultry farms
RU2822551C2 (ru) Способ снижения биопленкообразования Streptococcus pyogenes препаратом, содержащим наночастицы серебра
Girmaye et al. Review on Bacterial Biofilms and its impact
Maleki et al. Assessment of ultrasound irradiation on inactivation of gram negative and positive bacteria isolated from hospital in aqueous solution
Rani et al. Green synthesis of silver nanoparticles from endophytic fungus Aspergillus niger
Mercado et al. Fungicidal effects of homoeopathic medicines versus allopathic ketoconazole in Candida albicans
Bello et al. Detection and Control of Bacterial Biofilms
RU2823032C1 (ru) Способ исследования снижения биопленкообразования Staphylococcus aureus лечебной композицией, содержащей наночастицы серебра и цефтиофур
Holsing et al. Electrically modified lyophilic silver hydrosol inhibits bacterial growth in a dose-dependent manner in vitro and in vivo