RU2795672C1 - Оптическая матрица для термолюминесцентного материала и способ ее получения - Google Patents

Оптическая матрица для термолюминесцентного материала и способ ее получения Download PDF

Info

Publication number
RU2795672C1
RU2795672C1 RU2023100543A RU2023100543A RU2795672C1 RU 2795672 C1 RU2795672 C1 RU 2795672C1 RU 2023100543 A RU2023100543 A RU 2023100543A RU 2023100543 A RU2023100543 A RU 2023100543A RU 2795672 C1 RU2795672 C1 RU 2795672C1
Authority
RU
Russia
Prior art keywords
lithium
temperature
hours
stage
optical matrix
Prior art date
Application number
RU2023100543A
Other languages
English (en)
Inventor
Дмитрий Александрович Акулов
Дина Георгиевна Келлерман
Михаил Олегович Калинкин
Ринат Мансурович Абашеев
Александр Иванович Сюрдо
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Application granted granted Critical
Publication of RU2795672C1 publication Critical patent/RU2795672C1/ru

Links

Images

Abstract

Группа изобретений относится к области дозиметрии. Технический результат – расширение номенклатуры материалов, используемых в качестве оптических матриц в дозиметрии. Технический результат достигается применением литий-магниевого фторфосфата состава Li9Mg3(PO4)4F3 в качестве оптической матрицы для термолюминесцентных материалов. 2 н.п. ф-лы, 1 ил.

Description

Изобретение относится к области дозиметрии, в частности, к оптическим матрицам, используемым для получения термолюминесцентных материалов.
Известна оптическая матрица для получения термолюминесцентных материалов состава LiF в виде твердых частиц или гранул, которая может быть допирована рядом металлов (патент CN 1285919, МПК G01T 1/11, 2006 год).
Однако известная матрица в отсутствии допантов характеризуется низким значением термолюминесценции, что отрицательно сказывается на общем уровне люминесценции полученного на ее основе материала (см. Фиг.1).
Известна оптическая матрица для получения термолюминесцентных материалов на основе порошка фосфата состава LiMgPO4, которая может быть допирована рядом металлов (патент CN 109694710, МПК G01K 11/78, 2021 год).
Однако известная матрица в отсутствии допантов также характеризуется низким значением термолюминесценции, что отрицательно сказывается на общем уровне люминесценции полученного на ее основе материала (см. Фиг.1).
Таким образом, перед авторами стояла задача разработать состав оптической матрицы для термолюминесцентных материалов, которая бы характеризовалась достаточно высоким уровнем термолюминесценции сама по себе, что позволит расширить номенклатуру материалов, используемых в качестве оптических матриц в дозиметрии.
Поставленная задача решена применением литий-магниевого фторфосфата состава Li9Mg3(PO4)4F3 в качестве оптической матрицы для термолюминесцентных материалов.
Поставленная задача также решена в способе получения оптической матрицы для термолюминесцентных материалов состава Li9Mg3(PO4)4F3, включающем отжиг в три стадии исходной смеси порошков карбоната лития, карбоната магния основного водного и дигидроортофосфата аммония, взятых в стехиометрическом соотношении, с перетиранием смеси перед каждой стадией и прессованием перед третьей стадии: I стадия – при температуре 300-310°С в течение 10-12 часов; II стадия – при температуре 500-510°С в течение 10-12 часов; III стадия при температуре 900-910°С в течение 10-12 часов; добавление порошка фосфата лития и порошка фторида лития, взятых в стехиометрическом соотношении относительно исходных компонентов, прессование полученной смеси и микроволновую обработку при температуре 600-650°С в течение 3-4 часов с мощностью 1000 Вт при атмосферном давлении.
В настоящее время из патентной и научно-технической литературы не известно применение литий-магниевого фторфосфата состава Li9Mg3(PO4)4F3 в качестве оптической матрицы для термолюминесцентных материалов.
На сегодняшний день известно использование литий-магниевого фторфосфата состава Li9Mg3(PO4)4F3, полученного твердофазным синтезом, в качестве материала для литий-ионных батарей (www.rsc.org/materialsA Hamdi Ben Yahia, Masahiro Shicano, Tomonari Takeuchi, Hironori Kobayashi, Mitsuru Itoh “ Crystal structures of new Fluorophosphates Li9Mg3(PO4)4F3) and Li2Mg(PO4)F and ionic conductivities of selected compositions”). Однако наличие ионной проводимости ни в какой степени не предполагает наличия у материала термолюминесцентных свойств. Эффект термолюминесцентного излучения был неожиданно обнаружен авторами при проведении исследования свойств литий-магниевого фторфосфата, что и позволило предложить его использование в качестве оптической матрицы для термолюминесцентных материалов. Исследования, проведенные авторами, показали, что уровень термолюминесценции литий-магниевого фторфосфата состава Li9Mg3(PO4)4F3 оказался значительно выше уровня термолюминесценции известных широко используемых в настоящее время оптических матриц состава LiF и состава LiMgPO4(см. Фиг. 1). Высокий уровень термолюминесценции литий-магниевого фторфосфата обеспечивается высокой концентрацией ловушек, захватывающих электроны и дырки, образовавшиеся в процессе ионизирующего облучения. В качестве таких ловушек выступают объемные кислородные и катионные дефекты в Li9Mg3(PO4)4F3. Высокая концентрация дефектов, участвующих в процессе термолюминесценции, обеспечивается одновременным присутствием в структуре Li9Mg3(PO4)4F3 фосфатных и фторидных анионных групп. Кроме того, фторфосфат Li9Mg3(PO4)4F3 является хорошо кристаллизованным продуктом с минимальной концентрацией поверхностных дефектов, что также обеспечивает уменьшение потери полезного дозиметрического сигнала.
На Фиг. 1 изображены кривые термолюминесценции образцов состава LiF, LiMgPO4 и предлагаемого Li9Mg3(PO4)4F3, облученных рентгеновским излучением (Eclipse, U=30kB, I=30 мкА) дозой 3 Гр, диапазон измерения для образцов составлял 102, регистрация: дозиметр ДТУ- 2.
Из приведенных данных видно, что интенсивность термолюминесценции предлагаемого Li9Mg3(PO4)4F3 примерно в 9.5 раз выше чем в LiF и примерно в 6 раз выше чем в LiMgPO4. Кроме того основной пик термолюминесценции литий-магниевого фторфосфата смещен в более высокотемпературную область по сравнению с таковым для фторида лития и литий-магниевого фосфата, что позволяет снизить потерю дозиметрического сигнала при хранении.
Предлагаемый литий-магниевого фторфосфат состава Li9Mg3(PO4)4F3 был получен следующим образом. Исходные порошкообразные компоненты: карбонат лития Li2CO3, карбонат магния основной водный 3MgCO3·Mg(OH)2·3H2O, дигидроортофосфат аммония NH4H2PO4, фосфат лития Li3PO4, фторид лития LiF берут в стехиометрическом соотношении. Далее осуществляют отжиг в три стадии исходной смеси порошков карбоната лития, карбоната магния основного водного и дигидроортофосфата аммония, с перетиранием смеси перед каждой стадией и прессованием перед третьей стадии: I стадия – при температуре 300-310°С в течение 10-12 часов; II стадия – при температуре 500-510°С в течение 10-12 часов; III стадия при температуре 900-910°С в течение 10-12 часов; после чего добавляют порошок фосфата лития и порошок фторида лития, взятых в стехиометрическом соотношении относительно исходных компонентов, прессуют полученную смесь и проводят микроволновую обработку при температуре 600-650°С в течение 3-4 часов с мощностью 1000 Вт при атмосферном давлении. Необходимость проведения микроволновой обработки в интервале температур 600-650°С объясняется следующими причинами. При температуре ниже 600°С получают неоднофазный продукт, примесями являются фосфат лития Li3PO4, фторид лития: LiF, фосфат магния Mg3(PO4)2. При повышении температуры выше 650°С увеличивается концентрация поверхностных дефектов, которые уменьшают световыход при термолюминесценции. Аттестация образцов осуществлялась методом РФА. Образцы имеют однофазный состав, наличия примесей обнаружено не было. Дозиметрические характеристики материала были исследованы методом термически стимулированной люминесценции.
Получение литий-магниевого фторфосфата состава Li9Mg3(PO4)4F3 иллюстрируется следующими примерами.
Пример 1. Берут исходные компоненты в виде порошков с квалификацией ОСЧ: 0.1937 г карбоната лития (Li2CO3; 99.99%), 0.4788 г карбоната магния основного водного (3MgCO3·Mg(OH)2·3H2O; 99.99%), 0.6043 г дигидроортофосфата аммония (NH4H2PO4; 99.99%), 0.2024 г фосфата лития (Li3PO4; 99.99%), 0.1360 г фторида лития (LiF; 99.99%), что соответствует стехиометрии. Рассчитанные навески карбоната лития, карбоната магния основного водного и дигидроортофосфата аммония тщательно перетирают в течение 15 мин в агатовой ступке, затем отжигают в платиновом тигле при температуре 300°С в течение 12 часов. Полученный продукт снова тщательно перетирают в течение 15 мин в агатовой ступке, затем отжигают в платиновом тигле при температуре 500°С в течение 12 часов. Полученный продукт снова тщательно перетирают в течение 15 мин в агатовой ступке, затем прессуют в диски диаметром 10 мм при давлении 60 кг/мм2 и отжигают в платиновом тигле при температуре 900°С в течение 12 часов, после чего тщательно перетирают в течение 15 мин в агатовой ступке. К продукту добавляют рассчитанные навески фосфата лития и фторида лития и затем снова тщательно перетирают в агатовой ступке в течение 15 минут, после чего прессуют в диски диаметром 10 мм при давлении 60 кг/мм2, помещают в микроволновую муфельную печь Лаборант-Урал-Гефест (Россия) и подвергают микроволновой обработке при температуре 650 °С в течение 3 часов с мощностью 1000 Вт при атмосферном давлении. По данным РФА полученный материал состава Li9Mg3(PO4)4F3 однофазен, примеси не обнаружены. На Фиг. 1 изображена зависимость интенсивности термолюминесценции материала от температуры нагрева при предварительном облучении дозой 3 Гр.
Пример 2. Берут исходные компоненты в виде порошков с квалификацией ОСЧ: 0.1937 г карбоната лития (Li2CO3; 99.99%), 0.4788 г карбоната магния основного водного (3MgCO3·Mg(OH)2·3H2O; 99.99%), 0.6043 г дигидроортофосфата аммония (NH4H2PO4; 99.99%), 0.2024 г фосфата лития (Li3PO4; 99.99%), 0.1360 г фторида лития (LiF; 99.99%), что соответствует стехиометрии. Рассчитанные навески карбоната лития, карбоната магния основного водного и дигидроортофосфата аммония тщательно перетирают в течение 15 мин в агатовой ступке, затем отжигают в платиновом тигле при температуре 310°С в течение 10 часов. Полученный продукт снова тщательно перетирают в течение 15 мин в агатовой ступке, затем отжигают в платиновом тигле при температуре 510°С в течение 10 часов. Полученный продукт снова тщательно перетирают в течение 15 мин в агатовой ступке, затем прессуют в диски диаметром 10 мм при давлении 60 кг/мм2 и отжигают в платиновом тигле при температуре 910°С в течение 10 часов, после чего тщательно перетирают в течение 15 мин в агатовой ступке. К продукту добавляют рассчитанные навески фосфата лития и фторида лития и затем снова тщательно перетирают в агатовой ступке в течение 15 минут, после чего прессуют в диски диаметром 10 мм при давлении 60 кг/мм2, помещают в микроволновую муфельную печь Лаборант-Урал-Гефест (Россия) и подвергают микроволновой обработке при температуре 600 °С в течение 4 часов с мощностью 1000 Вт при атмосферном давлении. По данным РФА полученный материал состава Li9Mg3(PO4)4F3 однофазен, примеси не обнаружены.
Таким образом, авторами предлагается применение по новому назначению известного материала состава Li9Mg3(PO4)4F3, а именно использование его в качестве оптической матрицы термолюминесцентных материалов в дозиметрии, характеризующейся высоким уровнем термолюминесценции, что позволит расширить номенклатуру материалов, используемых в качестве оптических матриц в дозиметрии.

Claims (2)

1. Применение литий-магниевого фторфосфата состава Li9Mg3(PO4)4F3 в качестве оптической матрицы для термолюминесцентных материалов.
2. Способ получения оптической матрицы для термолюминесцентных материалов состава Li9Mg3(PO4)4F3, включающий отжиг в три стадии исходной смеси порошков карбоната лития, карбоната магния основного водного и дигидроортофосфата аммония, взятых в стехиометрическом соотношении, с перетиранием смеси перед каждой стадией и прессованием перед третьей стадией: I стадия – при температуре 300-310°С в течение 10-12 ч; II стадия – при температуре 500-510°С в течение 10-12 ч; III стадия при температуре 900-910°С в течение 10-12 ч; добавление порошка фосфата лития и порошка фторида лития, взятых в стехиометрическом соотношении относительно исходных компонентов, прессование полученной смеси и микроволновую обработку при температуре 600-650°С в течение 3-4 ч с мощностью 1000 Вт при атмосферном давлении.
RU2023100543A 2023-01-13 Оптическая матрица для термолюминесцентного материала и способ ее получения RU2795672C1 (ru)

Publications (1)

Publication Number Publication Date
RU2795672C1 true RU2795672C1 (ru) 2023-05-05

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2821465C1 (ru) * 2024-01-31 2024-06-24 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Оптическая матрица для термолюминесцентного материла

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2651255C2 (ru) * 2015-11-30 2018-04-18 Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (ФГБУН БИП СО РАН) Термолюминесцентное вещество
CN109694710A (zh) * 2019-01-08 2019-04-30 中山大学 一种掺杂铥、铽、硼酸的磷酸锂镁热释光材料及其制备方法
RU2760455C1 (ru) * 2021-05-13 2021-11-25 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Дозиметрический материал

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2651255C2 (ru) * 2015-11-30 2018-04-18 Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (ФГБУН БИП СО РАН) Термолюминесцентное вещество
CN109694710A (zh) * 2019-01-08 2019-04-30 中山大学 一种掺杂铥、铽、硼酸的磷酸锂镁热释光材料及其制备方法
RU2760455C1 (ru) * 2021-05-13 2021-11-25 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Дозиметрический материал

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2821465C1 (ru) * 2024-01-31 2024-06-24 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Оптическая матрица для термолюминесцентного материла

Similar Documents

Publication Publication Date Title
Delbecq et al. Trapping and annihilation of electrons and positive holes in KCl-TlCl
Tiwari et al. Thermoluminescence studies on Cu-doped Li2B4O7 single crystals
Bahl et al. Synthesis and thermoluminescence characteristics of gamma and proton irradiated nanocrystalline MgB4O7: Dy, Na
Yusoff et al. Review of development of a silica-based thermoluminescence dosimeter
Ginther et al. The thermoluminescence of CaF2: Mn
Mhareb et al. Influences of dysprosium and phosphorous oxides co-doping on thermoluminescence features and kinetic parameters of lithium magnesium borate glass
Depci et al. The thermoluminescent properties of lithium triborate (LiB3O5) activated by aluminium
RU2795672C1 (ru) Оптическая матрица для термолюминесцентного материала и способ ее получения
Sahare et al. A new high sensitivity Na 2 LiPO 4: Eu OSL phosphor
Alajerami et al. Dosimetric characteristics of a LKB: Cu, Mg solid thermoluminescence detector
Oza et al. Luminescence study of Dy or Ce activated LiCaBO3 phosphor for γ‐ray and C5+ ion beam irradiation
US5622659A (en) Method of preparing doped lithium fluoride thermoluminescent radiation detector
De Vasconcelos et al. Thermoluminescent dosimetric properties of CaF2: Tm produced by combustion synthesis
RU2724763C1 (ru) Дозиметрический материал
Guo et al. Dosimetric and spectroscopic study of LiMgPO 4 doped with Tm 3+ and Er 3+
RU2821465C1 (ru) Оптическая матрица для термолюминесцентного материла
Subanakov et al. Synthesis and characterization of dysprosium-doped magnesium tetraborate
Nakamura et al. Effects of halogen ions on the X-ray characteristics of Gd2O2S: Pr ceramic scintillators
CN100465245C (zh) 一种掺有铜银磷的Li2B4O7热释光磷光体及其制备方法
Mandowska et al. TL emission spectra from differently doped LiF: Mg detectors
Zhang et al. Spectral comparison of MgSO4 doped with Dy, Mn, P, and Cu
Nakajima Effects of atmosphere and grain size on thermoluminescence sensitivity of annealed LiF crystals
Suganya et al. Thermoluminescence studies on YAlO3: Cu single crystal
RU2760455C1 (ru) Дозиметрический материал
Gonzalez et al. Optical properties of CaO crystals containing hydrogen