RU2795416C1 - Низкопрофильная градирня - Google Patents

Низкопрофильная градирня Download PDF

Info

Publication number
RU2795416C1
RU2795416C1 RU2022115407A RU2022115407A RU2795416C1 RU 2795416 C1 RU2795416 C1 RU 2795416C1 RU 2022115407 A RU2022115407 A RU 2022115407A RU 2022115407 A RU2022115407 A RU 2022115407A RU 2795416 C1 RU2795416 C1 RU 2795416C1
Authority
RU
Russia
Prior art keywords
heat exchanger
compressor
chiller
brine
air line
Prior art date
Application number
RU2022115407A
Other languages
English (en)
Inventor
Александр Ильич Попов
Сергей Евгеньевич Щеклеин
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Application granted granted Critical
Publication of RU2795416C1 publication Critical patent/RU2795416C1/ru

Links

Images

Abstract

Изобретение относится к охлаждению оборотной воды в теплообменном оборудовании промышленных объектов. Низкопрофильная градирня характеризуеся тем, что к водосборному бассейну охлажденной воды, соединенному насосами с теплообменным оборудованием объекта, дополнительно через хладообменный насосный блок подсоединен соляной пруд с рассолом воды, содержащий в рассоле теплообменник компрессора и жидкостный теплообменник чиллера, в бассейн и в соляной пруд введены датчики температуры, подключенные к входам контроллера, управляющие выходы которого соединены с компрессором и чиллером, причем входы компрессора через фильтр подключены к входной воздушной магистрали и воздушному теплообменнику чиллера, его выход - к теплообменнику компрессора в рассоле пруда, выход этого теплообменника соединен с выходной воздушной магистралью, а через дополнительный вентиль к воздушному фильтру подключен заземленный теплообменник, соединенный со своей воздушной магистралью. Технический результат - менее затратное строительство, возможность поддерживать более низкие температуры и незначительные испарения водяных паров в атмосферу. 2 н. и 1 з.п. ф-лы, 1 ил.

Description

Настоящее изобретение относится к оборудованию для охлаждения оборотной воды, выходящей из теплообменного оборудования промышленных предприятий. Для этих целей используются, в том числе, градирни разных типов, использующие сложные башенные конструкции, выбрасывающие в атмосферу большие объемы паров воды. Кроме того, в теплой воде градирен размножаются разные биоорганизмы, на борьбу с которыми применяют сложные химические растворы.
Известна, например, «Вентиляторная градирня» [1] по патенту РФ № 2055292, МПК F28C 1/00 авторов Витенко В.А., Ипатова В.Н. и др.
Градирня содержит вертикальный корпус с воздуховодным проемом, вентилятор под водосборником, водоуловитель, ороситель и водораспределитель с соплами для выпуска воды.
Недостатками данного устройства являются недостаточно высокая эффективность теплообмена, значительные затраты электроэнергии на работу вентиляторов и большие затраты на сооружение корпуса в виде башенной конструкции.
Известна также «Градирня» [2] по патенту РФ № 2511824, МПК F28C 1/16 авторов Лапшина В.Б и Палей А.А.
Градирня содержит расположенную над водосборным бассейном открытую полую башню с боковыми проемами у основания, заземленную сетку, установленную в плоскости поперечного сечения башни и установленную на изоляторах с зазором относительно заземленной сетки коронирующих электродов, соединенных с высоковольтным источником питания, разбрызгиватель охлаждаемой воды и водоулавливающее устройство.
Данное изобретение направлено только на частичное сокращение выбросов паров воды из градирни в окружающее пространство. Другими недостатками также являются дополнительные затраты на насосное оборудование для подачи воды под давлением и высокая стоимость башенной конструкции.
Известна «Вентиляторная башенная конструкция с пароуловителем» [3] по патенту РФ № 2520697, МПК F28C 1/02, F28F 25/04 авторов Авруцкого Г.Д., Лазарева М.В. и др.
Градирня содержит водосборный бассейн охлажденной воды, вертикальный корпус, оросительное, водораспределительное и каплеуловительное устройства. Над корпусом установлен пароуловитель в виде купола с конденсатосборным желобом.
Изобретение предназначено только для частичной конденсации влаги из паровоздушной смеси на выходе из градирни с возвратом ее в водосборный бассейн. Другими недостатками данного устройства также являются значительные энергетические затраты на работу насосного и вентиляторного оборудования, на сооружение башенного корпуса и на дополнительные затраты, связанные с сохранением конструкции при ее обмерзании в зимних условиях.
Известна «Всепогодная башенная градирня» [4] по патенту РФ № 2752683 МПК F28C 1/00 авторов Попова А.И. и Щеклеина С.Е.
Градирня содержит водосборный бассейн охлажденной воды, корпус, оросительное, водораспределительное и каплеуловительное устройства, а над корпусом установлен купол с пароуловителем, выполненный из каплесборной сетки, между которыми установлен пакет перфорированных трубок, соединенных воздуховодом с выходами трубки Ранка, а вход последней подключен к компрессору, управляемому контроллером по показаниям датчиков осушенного и влажного воздуха.
Недостатками данной градирни также являются значительные затраты на сооружение башни и на работу распределительного оборудования. Кроме того, из-за недостаточно высокой эффективности тепломассообмена не достигается понижение температуры охлажденной воды, предотвращающей развитие в ней дрейссейны и других биообъектов.
Задачей предлагаемого изобретения является удешевление затрат на создание низкопрофильной (безбашенной) градирни и создание повышенного тепломассообмена в градирне, обеспечивающего снижение температуры охлажденной воды до значений, предотвращающих развитие биообъектов.
Технический результат заключается в следующем:
- использован эффект соляного пруда с рассолом воды, выполняющего роль аккумулятора холода, который может закачиваться компрессором как из атмосферы, так и путем принудительного охлаждения рассола от оборудования чиллера, подключенного к электрической сети;
- водосборный бассейн охлажденной воды, соединенный с теплообменным оборудованием объекта, подключается к соляному пруду (холодильнику) через хладообменный насосный блок;
- в качестве соли для создания рассола в соляном пруду применен хлорид кальция CaCl2, не замерзающий при заданной концентрации до минус 55 градусов Цельсия, либо хлористый натрий - до минус 21 градусов Цельсия;
- в бассейне и в соляном пруду установлены датчики температуры, подключенные к входам контроллера, управляющие выходы которого соединены с компрессором и с чиллером.
Технический результат достигается за счет того, что к водосборному бассейну охлажденной воды градирни, соединенному насосами с теплообменным оборудованием объекта, дополнительно через хладообменный насосный блок подсоединен соляной пруд с рассолом воды, содержащий в рассоле теплообменник компрессора и жидкостный теплообменник чиллера, в бассейн и в соляной пруд введены датчики температуры, подключенные к входам контроллера, управляющие выходы которого соединены с компрессором и чиллером, причем входы компрессора через фильтр подключены к входной воздушной магистрали и воздушному теплообменнику чиллера, его выход- к теплообменнику компрессора в рассоле пруда, а выход этого теплообменника соединен с выходной воздушной магистралью.
Технический результат достигается также за счет того, что в качестве соли для создания рассола в соляном пруду градирни, применен хлористый кальций CaCl2, либо хлористый натрий NaCl, либо их смесь.
Технический результат достигается также за счет того, что к водосборному бассейну охлажденной воды градирни, соединенному насосами с теплообменным оборудованием объекта, дополнительно через хладообменный насосный блок подсоединен соляной пруд с рассолом воды, содержащий в рассоле теплообменник компрессора и жидкостный теплообменник чиллера, в бассейн и в соляной пруд введены датчики температуры, подключенные к входам контроллера, управляющие выходы которого соединены с компрессором и чиллером, причем входы компрессора через фильтр подключены к входной воздушной магистрали и воздушному теплообменнику чиллера, его выход - к теплообменнику компрессора в рассоле пруда, выход этого теплообменника соединен с выходной воздушной магистралью, а через дополнительный вентиль к воздушному фильтру подключен заземленный теплообменник, соединенный со своей воздушной магистралью.
На чертеже изображена структурная схема «Низкопрофильной градирни».
Градирня содержит теплообменное оборудование 1 АЭС (ТЭЦ) или другого промышленного объекта, соединенное через свой насос 2 с водосборным бассейном 3 охлажденной воды, а рядом с бассейном установлен соляной пруд 4 с рассолом воды, соединенный с бассейном через хладообменный насосный блок 5, состоящий из двухсекционного, например, кожухотрубного теплообменника, одна из секций которого через насос соединена с соляным прудом, а другая так же через свой насос соединена с бассейном. В соляном пруду размещен теплообменник 6 компрессора 7 и жидкостный теплообменник 8 чиллера 9, воздушный теплообменник 10 которого соединен со входом компрессора, а другой вход компрессора и вход воздушного теплообменника чиллера через воздушный фильтр 11 и регулирующий вентиль 12 подключены к входной воздушной магистрали 13, причем к фильтру через дополнительный вентиль 14 подключен заземленный теплообменник 15, имеющий свою входную воздушную магистраль 16. В бассейн охлажденной воды, в соляной пруд и на выходную воздушную магистраль 17 подключены датчики температур соответственно 18, 19, 20, соединенные со входами контроллера 21, выходы которого подключены к компрессору, чиллеру, насосу теплообменного оборудования объекта и к насосам 22, 23 двухсекционного теплообменника 24 в хладообменном насосном блоке.
«Низкопрофильная градирня» АЭС (ТЭЦ) и для других промышленных объектов, требующих охлаждения, работает следующим образом.
Для нормального функционирования любого объекта, требующего охлаждения, необходимо поддерживать температуру в соляном пруду 4 с рассолом воды (холодильнике) значительно ниже, чем температура в водосборном бассейне 2 охлажденной воды, подаваемой затем через насос 2 на теплообменное оборудование 1 объекта.
При низкой температуре воздуха (около нуля градусов и при отрицательной температуре) включается компрессор 7 и через открытый вентиль 12 атмосферный воздух по магистрали 13 через фильтр 11 нагнетается в теплообменник 6 компрессора, охлаждающий температуру рассола соляного пруда 4, и удаляется через выходную магистраль 17 в атмосферу.
При не высоких положительных значениях атмосферного воздуха охлаждение рассола производится от заземленного на достаточную глубину теплообменника 15, при этом атмосферный воздух, попадая через входную воздушную магистраль 16, охлаждается в теплообменнике 15 и через открытый вентиль 14, фильтр 11 компрессором 7 подается в теплообменник 6 и далее также через выходную магистраль 17 возвращается в атмосферу.
При высоких положительных значениях атмосферного воздуха, характерных для южных регионов страны, а также для стран Азии и Африки, охлаждение рассола в соляном пруду 4 может производиться посредством холодильного оборудования, например, чиллера 9, подключенного к электрической сети.
В этом случае используется как воздушный теплообменник 10, так и жидкостный теплообменник 8 чиллера. Охлажденный атмосферный воздух в воздушном теплообменнике 10 чиллера через компрессор 7 нагнетается в теплообменник 6, охлаждая рассол и через выходную воздушную магистраль 17 возвращается в атмосферу. Более эффективное охлаждение от чиллера 9 производится через жидкостный теплообменник 8, находящегося непосредственно в рассоле соляного пруда 4.
Управление градирней осуществляется оператором визуально по показаниям датчиков и приборов или автоматически от запрограммированного контроллера 21.
Управляющий контроллер 21 по показаниям датчиков 19, 20, находящихся в соляном пруду 4 и в выходной магистрали 17 определяет температуру раствора и выдает соответствующие команды на время включения только компрессора 7 или на включение компрессора и чиллера 9 в одновременную работу. В результате обмена с теплой водой, поступающей с теплообменного оборудования 1 объекта, в водосборном бассейне 3 температура воды также увеличивается. На основании показаний датчиком 18 значений этих температур контроллер 21 включает насосы 22, 23 хладообменного насосного блока 5 и вода водосборного бассейна 3, перекачиваемая через двухсекционный теплообменник 24 хладообменного блока будет охлаждаться до установленных температур. Вместо кожухотрубного теплообменника 24 могут применяться любые другие, в которых теплообмен между двумя потоками осуществляется через поверхности труб или пластин с разными потоками.
Чиллеры, как холодильные машины, используемые в центральных системах кондиционирования, имеют холодопроизводительность до тысяч кВт и выпускаются как с воздушным, так и с водяным охлаждением конденсатора. Чиллеры могут быть со встроенной насосной станцией (гидроциркулирующим модулем), так и без этого модуля, поэтому к таким чиллерам подбирается соответствующая насосная станция.
Соляной пруд 4 с раствором соли является аккумулятором тепловой энергии с отрицательными значениями и его хладопроизводительность зависит как от объема рассола, так и от его концентрации.
Водный раствор хлорида кальция, не замерзающий до температуры минус 55 градусов Цельсия, должен иметь [5] концентрацию соли в рассоле 29%, а его плотность составит 1285 кг/м3. При подборе необходимых параметров рассола могут применяться смешанные составы необходимых солей.
Известные градирни, содержащие теплую воду, являются постоянным источником питательной среды для биологического обрастания теплообменного оборудования 1 объектов мидиями, устрицами, дрейссеной и т.п. Это объясняется невозможностью охлаждения воды до не благоприятных для размножения биоорганизмов температур.
Кроме того, известные градирни, брызгальные бассейны и т.п. допускают большие объемы выноса водяных паров в атмосферу. Известно, что в среднем при снижении температуры воды на шесть градусов Цельсия происходит испарение ее объема до 1%. Необходимость избавляться от водяных паров поясняется фактом, что каждая тонна пара, выброшенная в атмосферу, эквивалентна по парниковому эффекту 360 кг углекислого газа [6].
Учитывая преимущества предлагаемого изобретения: менее затратное строительство, возможность поддерживать более низкие температуры и незначительные испарения водяных паров в атмосферу, следует ожидать значительного положительного эффекта от его внедрения в разные отрасли промышленности.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Витенко В.А. Ипатов В.Н. и др. Вентиляторная градирня. Патент РФ № 2055292, МПК F28C 1/00.
2. Лапшин В.Б, Палей А.А. Градирня. Патент РФ № 2511824, МПК F28C 1/16
3. Авруцкий Г.Д., Лазарев М.В. и др. Вентиляторная башенная градирня.
Патент РФ № 2520697, МПК F28C 1/02; F28F 25/04.
4. Попов А.И., Щеклеин С.Е. Всепогодная башенная градирня. Патент РФ №2752683, МПК F28 1/00.
5. Теплофизические свойства и температуры замерзания растворов NaCl и CaCl2. [электронный ресурс] Thermalinfo.ru
6. Информационное агенство PRoАтом [электронный ресурс] www.proatom.ru.

Claims (3)

1. Низкопрофильная градирня, характеризующаяся тем, что к водосборному бассейну охлажденной воды, соединенному насосами с теплообменным оборудованием объекта, дополнительно через хладообменный насосный блок подсоединен соляной пруд с рассолом, содержащий теплообменник компрессора и жидкостный теплообменник чиллера, в бассейн и в соляной пруд введены датчики температуры, подключенные к входам контроллера, управляющие выходы которого соединены с компрессором и чиллером, причем входы компрессора через фильтр подключены к входной воздушной магистрали и воздушному теплообменнику чиллера, его выход - к теплообменнику компрессора в соляном пруду, а выход этого теплообменника соединен с выходной воздушной магистралью.
2. Низкопрофильная градирня по п.1, характеризующаяся тем, что в качестве соли для создания рассола в соляном пруду применен хлористый кальций СаСl2, либо хлористый натрий NaCl, либо их смесь.
3. Низкопрофильная градирня, характеризующаяся тем, что к водосборному бассейну охлажденной воды, соединенному насосами с теплообменным оборудованием объекта, дополнительно через хладообменный насосный блок подсоединен соляной пруд с рассолом, содержащий теплообменник компрессора и жидкостный теплообменник чиллера, в бассейн и в соляной пруд введены датчики температуры, подключенные к входам контроллера, управляющие выходы которого соединены с компрессором и чиллером, причем входы компрессора через фильтр подключены к входной воздушной магистрали и воздушному теплообменнику чиллера, его выход - к теплообменнику компрессора в соляном пруду, выход этого теплообменника соединен с выходной воздушной магистралью, а через дополнительный вентиль к воздушному фильтру подключен заземленный теплообменник, соединенный со своей воздушной магистралью.
RU2022115407A 2022-06-08 Низкопрофильная градирня RU2795416C1 (ru)

Publications (1)

Publication Number Publication Date
RU2795416C1 true RU2795416C1 (ru) 2023-05-03

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103697718B (zh) * 2013-10-12 2015-09-30 西安工程大学 电厂空冷用闭式蒸发冷却冷水机组喷雾降温系统
CN109990412B (zh) * 2019-03-01 2020-12-08 西安工程大学 机械制冷结合自然冷却方式的数据中心空调系统
RU2752683C1 (ru) * 2020-03-17 2021-07-29 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Всепогодная башенная градирня

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103697718B (zh) * 2013-10-12 2015-09-30 西安工程大学 电厂空冷用闭式蒸发冷却冷水机组喷雾降温系统
CN109990412B (zh) * 2019-03-01 2020-12-08 西安工程大学 机械制冷结合自然冷却方式的数据中心空调系统
RU2752683C1 (ru) * 2020-03-17 2021-07-29 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Всепогодная башенная градирня

Similar Documents

Publication Publication Date Title
RU2458303C2 (ru) Система охлаждения
EP0773412A2 (en) A method and a device for refrigeration of fluid and desiccative refrigeration of gas
CN203741071U (zh) 蒸发浓缩设备
Dawoud et al. On the possible techniques to cool the condenser of seawater greenhouses
CN103550941B (zh) 一种低温蒸发浓缩装置及高浓度废水浓缩方法
KR101462153B1 (ko) 플라즈마 방전 및 공기열원을 이용한 냉각탑 백연방지장치
RU2795416C1 (ru) Низкопрофильная градирня
RU2486422C2 (ru) Система оборотного водоснабжения с применением градирен
CN102095290A (zh) 冰晶蒸发器及用其制作的冰晶水制冷装置
Abbady et al. Performance enhancement of a humidification–dehumidification seawater desalination system
RU2425313C2 (ru) Вентиляторная градирня
US20230389485A1 (en) Method and system for dehumidifying an enclosure
RU2504417C1 (ru) Атомно-энергетический комплекс
CN206858200U (zh) 一种利用烟气余热处理高浓废水的新型蒸发浓缩系统
CN203754456U (zh) 一种氮气循环的低温蒸发浓缩装置
GB2230849A (en) Air-cooled heat exchanger
CN203525336U (zh) 一种低温蒸发浓缩装置
RU2713315C1 (ru) Аккумулятор для охлаждения молока на фермах с использованием природного холода
US20080302121A1 (en) Air conditioning system
CN103241786A (zh) 蒸发系统
CN209371575U (zh) 一种带有新型气体换热器的冷凝器
RU2552028C2 (ru) Способ работы башенной и вентиляторной градирни испарительного типа и устройство для его осуществления
RU2552212C2 (ru) Способ работы башенной и вентиляторной градирни испарительного типа и устройство для его осуществления
RU2743154C1 (ru) Градирня низкого давления для дистилляции воды
CN203269605U (zh) 蒸发系统