RU2795150C1 - Биомедицинский высокоэнтропийный сплав - Google Patents

Биомедицинский высокоэнтропийный сплав Download PDF

Info

Publication number
RU2795150C1
RU2795150C1 RU2022128754A RU2022128754A RU2795150C1 RU 2795150 C1 RU2795150 C1 RU 2795150C1 RU 2022128754 A RU2022128754 A RU 2022128754A RU 2022128754 A RU2022128754 A RU 2022128754A RU 2795150 C1 RU2795150 C1 RU 2795150C1
Authority
RU
Russia
Prior art keywords
alloy
strength
ductility
mpa
entropy alloy
Prior art date
Application number
RU2022128754A
Other languages
English (en)
Inventor
Максим Сергеевич Озеров
Никита Юрьевич Юрченко
Дмитрий Георгиевич Шайсултанов
Никита Дмитриевич Степанов
Сергей Валерьевич Жеребцов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ")
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ")
Application granted granted Critical
Publication of RU2795150C1 publication Critical patent/RU2795150C1/ru

Links

Images

Abstract

Изобретение относится к металлургии, а именно к биомедицинскому высокоэнтропийному сплаву, и может быть использовано для медицинских имплантов благодаря превосходным сочетаниям прочности и пластичности, а также хорошей воспроизводимостью данных характеристик. Биомедицинский высокоэнтропийный сплав для медицинских имплантов получен путем вакуумно-дугового переплава и содержит химические элементы высокой чистоты в следующем процентном соотношении, ат.%: титан 30, цирконий 38, ниобий 20, тантал 8, олово 4. Сплав характеризуется пределом прочности 1020 МПа, пределом текучести – 990 МПа и пластичностью на растяжение 20% при комнатной температуре. 1 з.п. ф-лы, 2 ил., 1 табл.

Description

Изобретение относится к области металлургии, а именно к высокоэнтропийным сплавам на основе титана, и может быть использовано для медицинских имплантов, к которым предъявляются требования наличия высоких механических свойств с превосходным сочетанием прочности и пластичности, а также хорошей воспроизводимостью данных характеристик.
Материалы, используемые в качестве биомедицинских имплантатов в качестве замены костным тканям, должны иметь низкий модуль упругости, чтобы избежать экранирования напряжения [1]; высокий предел текучести; высокую усталостную прочность, а также высокую пластичность, позволяющую выдерживать нагрузки от физической активности. Наряду с очевидными строгими требованиями к биосовместимости, также важны высокая износостойкость и коррозионная стойкость на уровне поверхности (в зависимости от контакта с тканью или жидкостью организма) и низкий коэффициент трения [2, 3]. Одним из наиболее часто используемых сплавов, использующихся в биомедицине, является Ti6Al4V [4]. Для улучшения его механических и трибологических свойств, защиты от напряжений и присутствия цитотоксических элементов, присущих Ti6A4IV, ведутся разработки новых биомедицинских высокоэнтропийных сплавов, ВЭСы обычно определяют как многокомпонентные сплавы, состоящие из нескольких (обычно, не менее 5) основных элементов, взятых в приблизительно равных пропорциях (5-35 ат. %) [5], в которых можно значительно повысить механические и трибологические свойства, сохраняя при этом превосходную биосовместимость. ВЭСы, состоящие из безвредных для организма человека элементов (Ti, Nb, Zr, Mo и др.), обладают чрезвычайно высокой биосовместимостью, что предполагает возможность их использования в медицине. В то же время, возникает целый ряд вопросов, обуславливающих использование таких сплавов для биомедицинских применений. Прежде всего, это проблема обеспечения комплекса механических и функциональных свойств (высокие прочность и пластичность, низкий модуль упругости, хорошая коррозионная стойкость и износостойкость). Таким образом, будущее высокоэнтропийных сплавов в качестве применения в биомедицине является многообещающим, но в то же время необходимы новые исследования и более глубокий системный анализ взаимосвязей структура-свойства для данных сплавов.
В статье [Yang, W. Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy / W. Yang [et al.] // Intermetallics. – 2020. – Vol. 124. – P. 106845.] описывается ВЭС системы TiTaHfNbZr. Данный сплав показал пассивирующее поведение с низкой плотностью пассивного тока, низкой скоростью коррозии и высокой стойкости к электрохимической коррозии. Экспериментально был испытан вариант высокоэнтропийного сплава TiTaHfNbZr Ti1,5ZrTa0,5Hf0,5Nb0,5 он показал значительно более высокую стойкость к питтинговой коррозии и более высокую общую коррозионную стойкость по сравнению с указанными конкурентами. Его модуль упругости и твердость составляли 98,57 и 3,02 ГПа соответственно. Износостойкость оказалась лучше, чем у материалов стали 316 L, CoCrMo и Ti6Al4. Обладая превосходной износостойкостью, аналогичной смачиваемостью, более низким модулем Юнга и значительно лучшей коррозионной стойкостью, конфигурация этой высокоэнтропийной системы сплавов (Ti1,5ZrTa0,5Hf0,5Nb0,5) продемонстрировала многообещающий потенциал в области биомедицины и требует дальнейшего изучения биосовместимости и цитотоксичности. Недостатком данного сплава является недостаточно высокие показатели прочности на растяжение, равной 800 МПа.
В статье [Lilensten, L. Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity / L. Lilensten [et al.] // Mater. Res. Lett. – 2017. Vol. 5. – P. 110–116] описано, что повышение прочностных характеристик среднеэнтропийных сплавов Nb–Ti–Zr реализовывалось путем модификации состава за счет добавления безвредных для организма элементов, способствующих реализации дополнительных механизмов упрочнения - TRIP/TWIP эффектов, в результате был получен сплав Ti35Zr27.5Hf27.5Nb5Ta5 ат.%. Поведение при растяжении данного сплава продемонстрировало заметный эффект пластичности, вызванный трансформацией, что приводит к высокому нормализованному коэффициенту деформационного упрочнения 0,103 без потери пластичности по сравнению с эталонным составом Ti20Zr20Hf20Nb20Ta20. Недостатком данного сплава является недостаточно высокие показатели прочности, значение предела текучести составило около 600 МПа.
Известен высокоэнтропийный сплав на основе системы Ti38Zr25Hf25Ta7Sn5, представленный в статье [Eleti, R.R., Klimova, M., Tikhonovsky, M. et al. Exceptionally high strain-hardening and ductility due to transformation induced plasticity effect in Ti-rich high-entropy alloys. Sci Rep 10, 13293 (2020)]. Обогащенный титаном объемно-центрированный кубический (ОЦК, β) высокоэнтропийный сплав имеет состав Ti38Zr25Hf25Ta7Sn5 (в ат. %). Механизмы деформации этого сплава изучались с помощью деформации растяжением. Сплав показал высокое деформационное упрочнение и удовлетворительную пластичность. Недостатком данного сплава является невысокое значение прочности - предел прочности составил около 400 МПа.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Задачей изобретения является расширение арсенала высокоэнтропийных биомедицинских сплавов с высокими показателями прочности и пластичности.
Технический результат изобретения заключается в получении сплава Ti30Zr38Nb20Ta8Sn4, состоящего из безвредных для организма человека элементов, с высокими показателями предела прочности 1020 МПа, предела текучести – 990 МПа, пластичностью на растяжение 20 % при комнатной температуре.
Задача изобретения решается предложенным сплавом, полученным путем вакуумно-дугового переплава и содержащим химические элементы в следующем процентном отношении, ат. %: титан 30, цирконий 38, ниобий 20, тантал 8, олово 4.
Отличительной особенностью предложенного сплава является то, что титан, цирконий, ниобий, тантал и олово используют в виде высокочистых элементов для процесса вакуумно-дугового переплава при рабочей температуре 3500°C в течение 60 минут. Добавление циркония, ниобия, тантала и олова в указанных количествах позволяет добиться повышения прочностных свойств сплава за счет реализации механизма твердорастворного упрочнения, добавление 30 ат. % титана повышает литейные свойства, вязкость сплава и пластичность сплава, а также гарантирует высокую коррозионную стойкость и биосовместимость.
Использование циркония в качестве легирующего элемента сплава Ti30Zr38Nb20Ta8Sn4, имеющего однофазную зеренную структуру на основе объемно-центрированной кубической решетки, обусловлено тем, что цирконий обладает большим радиусом атома r = 159 пм, по сравнению с компонентами исходного сплава Ti30Zr38Nb20Ta8Sn4. Разница между атомными радиусами элементов приводит к сильным внутренним искажениям, т.е. к твердорастворному упрочнению. Неожиданно установлено, что введение циркония в количестве 38 ат.% положительно влияет на повышение прочностных характеристик заявленного сплава Ti30Zr38Nb20Ta8Sn4, при сохранении высокой пластичности при комнатной температуре не менее 20 % и биосовместимости. При этом снижается удельный вес сплава и, соответственно, его стоимость.
Добавление олова в количестве 4 ат. % повышает коррозионную стойкость, твердость и прочность сплава, олово также обладает чрезвычайно низким модулем упругости, равным 40 ГПа. Добавление ниобия в количестве 20 ат. % значительно повышает прочностные свойства сплава Ti30Zr38Nb20Ta8Sn4. Легирование заявленного сплава 8 ат. % тантала позволяет повысить прочностные свойства без каких-либо потерь пластичности.
Новизна и изобретательский уровень предложенного изобретения заключается в синергетическом эффекте сразу от нескольких факторов: химический состав сплава, высокая чистота и биосовместимость заявленных элементов, повышенное содержание циркония по сравнению с известными техническими решениями, а также способ получения – вакуумно-дуговой переплав. Чистота элементов, используемых при получении заявленного сплава Ti30Zr38Nb20Ta8Sn4, приведена в таблице 1.
Таблица 1 – Чистота элементов, используемых при получении заявленного сплава Ti30Zr38Nb20Ta8Sn4.
Figure 00000001
Изобретение иллюстрируется следующими материалами:
Фиг. 1 – Изображение микроструктуры сплава Ti30Zr38Nb20Ta8Sn4.
Фиг. 2 – Кривая напряжение-деформация, полученная при испытании на одноосное растяжение при комнатной температуре образца сплава Ti30Zr38Nb20Ta8Sn в литом состоянии.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
В качестве исходного материала использовали чистые элементы титана, циркония, ниобия, тантала и олова в следующем процентном отношении, ат. %: титан 30, цирконий 38, ниобий 20, тантал 8, олово 4. Далее проводили процесс вакуумно-дугового переплава с использованием установки Buehler Arc Melter 200 при рабочей температуре 3500 °C в течение 60 минут для получения слитков сплава Ti30Zr38Nb20Ta8Sn4. С помощью процесса вакуумно-дугового переплава были получены слитки сплава со стопроцентной плотностью и беспористой структурой, что, несомненно, оказывает положительное влияние на механические свойства сплава.
Возможность осуществления изобретения поясняется примерами технологического процесса получения заявленного сплава, характеризующегося высокими значениями прочности и пластичности.
Пример 1.
Для получения образцов заявленного сплава используют высокочистые безвредные для организма человека элементы в следующем процентном отношении, ат. %: титан 30, цирконий 38, ниобий 20, тантал 8, олово 4 (Ti30Zr38Nb20Ta8Sn4). Далее проводят процесс вакуумно-дугового переплава на установке Buehler Arc Melter 200 при рабочей температуре 3500°C в течение 60 минут.
Пример 2.
Исследования микроструктуры сплава проводили на растровом электронном микроскопе Quanta 600 FEG. Проведенные структурные исследования показали, что сплав по изобретению Ti30Zr38Nb20Ta8Sn4 обладает однофазной зеренной структурой на основе ОЦК решетки (Фиг. 1). Механические испытания на растяжение полученных сплавов проводили на универсальной электромеханической испытательной машине Instron 5882 при комнатной температуре, полученные результаты представлены кривой напряжение-деформация, полученной при испытании на одноосное растяжение при комнатной температуре образца сплава Ti30Zr38Nb20Ta8Sn в литом состоянии (фиг.2).
Значение предела прочности заявленного сплава составляет 1020 МПа, предела текучести - 990 МПа, пластичность на растяжение 20 % при комнатной температуре, следовательно поставленная задача решена.

Claims (2)

1. Биомедицинский высокоэнтропийный сплав для медицинских имплантов, полученный путем вакуумно-дугового переплава и содержащий химические элементы высокой чистоты в следующем процентном соотношении, ат.%: титан 30, цирконий 38, ниобий 20, тантал 8, олово 4.
2. Сплав по п.1, отличающийся тем, что показатели предела прочности составляют 1020 МПа, предела текучести – 990 МПа и пластичности на растяжение 20% при комнатной температуре.
RU2022128754A 2022-11-07 Биомедицинский высокоэнтропийный сплав RU2795150C1 (ru)

Publications (1)

Publication Number Publication Date
RU2795150C1 true RU2795150C1 (ru) 2023-04-28

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2819172C1 (ru) * 2023-08-31 2024-05-14 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения порошка из биомедицинского высокоэнтропийного сплава для аддитивного производства

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105671404A (zh) * 2014-11-19 2016-06-15 北京科技大学 一种氮氧共合金化的TiZrHfNb基高熵合金及其制备方法
CN105734312A (zh) * 2016-03-10 2016-07-06 北京科技大学 一种生物医用TiZrNbTa系高熵合金及其制备方法
CN105671392B (zh) * 2014-11-19 2017-11-03 北京科技大学 一种氮强化的TiZrHfNb基高熵合金及其制备方法
CN111118379A (zh) * 2020-01-15 2020-05-08 福建工程学院 一种Co粘结的TiZrNbMoTa难熔高熵合金及其制备方法
CN112317752A (zh) * 2020-11-11 2021-02-05 北京科技大学 一种可用于3D打印的TiZrNbTa高熵合金及其制备方法和应用
EP3839084A1 (en) * 2019-12-20 2021-06-23 David Jarvis Metal alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105671404A (zh) * 2014-11-19 2016-06-15 北京科技大学 一种氮氧共合金化的TiZrHfNb基高熵合金及其制备方法
CN105671392B (zh) * 2014-11-19 2017-11-03 北京科技大学 一种氮强化的TiZrHfNb基高熵合金及其制备方法
CN105734312A (zh) * 2016-03-10 2016-07-06 北京科技大学 一种生物医用TiZrNbTa系高熵合金及其制备方法
EP3839084A1 (en) * 2019-12-20 2021-06-23 David Jarvis Metal alloy
CN111118379A (zh) * 2020-01-15 2020-05-08 福建工程学院 一种Co粘结的TiZrNbMoTa难熔高熵合金及其制备方法
CN112317752A (zh) * 2020-11-11 2021-02-05 北京科技大学 一种可用于3D打印的TiZrNbTa高熵合金及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2819172C1 (ru) * 2023-08-31 2024-05-14 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения порошка из биомедицинского высокоэнтропийного сплава для аддитивного производства

Similar Documents

Publication Publication Date Title
Wang et al. Selective laser melting of Ti–35Nb composite from elemental powder mixture: Microstructure, mechanical behavior and corrosion behavior
Chui et al. Mechanical properties and corrosion behavior of β-type Ti-Zr-Nb-Mo alloys for biomedical application
Rabadia et al. High-strength β stabilized Ti-Nb-Fe-Cr alloys with large plasticity
Ozan et al. New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications
Kunčická et al. Advances in metals and alloys for joint replacement
Ehtemam-Haghighi et al. Phase transition, microstructural evolution and mechanical properties of Ti-Nb-Fe alloys induced by Fe addition
Weng et al. Effects of selected metallic and interstitial elements on the microstructure and mechanical properties of beta titanium alloys for orthopedic applications
Santos et al. Microstructures, mechanical properties and cytotoxicity of low cost beta Ti–Mn alloys for biomedical applications
IE64539B1 (en) High strength low modulus titanium alloy
Wang et al. Microstructure and mechanical properties of Ti–Zr–Cr biomedical alloys
Ribeiro et al. Mechanical, physical, and chemical characterization of Ti–35Nb–5Zr and Ti–35Nb–10Zr casting alloys
Dal Bó et al. The effect of Zr and Sn additions on the microstructure of Ti-Nb-Fe gum metals with high elastic admissible strain
Hsu et al. Effects of heat treatments on the structure and mechanical properties of Zr–30Ti alloys
Boehlert et al. Fatigue and wear evaluation of Ti-Al-Nb alloys for biomedical applications
RU2795150C1 (ru) Биомедицинский высокоэнтропийный сплав
US20090088845A1 (en) Titanium tantalum oxygen alloys for implantable medical devices
KR20060101715A (ko) 생체 적합성이 우수한 저탄성계수 티타늄기 합금소재 및 그제조방법
Niinomi et al. Research and development of low-cost titanium alloys for biomedical applications
Santos et al. Development of New Ti‐Mn‐Mo Alloys for Use in Biomedical Applications
Supriadi et al. Effect of Mn in new β titanium alloy Ti-6Nb-6Mo on corrosion behavior and mechanical properties
Henriques et al. Microstructural evolution of Ti-13Nb-13Zr alloy during sintering
Dobri et al. The effect of tantalum content on microstructure and vickers hardness of TiNbZrTaAg alloy
Femenía et al. Effect of Ta, Nb Content and Sintering Temperature on the Microstructure, Mechanical Properties and Sinterability of Ti-Nb-Ta Alloys
RU2795128C1 (ru) Низкомодульный металломатричный композит на основе среднеэнтропийного сплава
Mandal et al. Effect of ageing treatment on microstructure and mechanical properties of α+ β type titanium alloy used for biomaterials