RU2793673C1 - Composite material - Google Patents

Composite material Download PDF

Info

Publication number
RU2793673C1
RU2793673C1 RU2022134452A RU2022134452A RU2793673C1 RU 2793673 C1 RU2793673 C1 RU 2793673C1 RU 2022134452 A RU2022134452 A RU 2022134452A RU 2022134452 A RU2022134452 A RU 2022134452A RU 2793673 C1 RU2793673 C1 RU 2793673C1
Authority
RU
Russia
Prior art keywords
composite material
reinforcing fibers
aluminum
reinforcing fibres
spheres
Prior art date
Application number
RU2022134452A
Other languages
Russian (ru)
Inventor
Виктор Александрович Гулевский
Николай Юрьевич Мирошкин
Сергей Николаевич Цурихин
Николай Алексеевич Кидалов
Данил Александрович Филатов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет"(ВолгГТУ)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет"(ВолгГТУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет"(ВолгГТУ)
Application granted granted Critical
Publication of RU2793673C1 publication Critical patent/RU2793673C1/en

Links

Abstract

FIELD: metallurgy.
SUBSTANCE: composite material based on aluminium alloy with reinforcing fibres includes an aluminium alloy matrix and a hardener. The hardener is made in the form of reinforcing fibres. The matrix is made of aluminium alloy AK7. The reinforcing fibres are made of copper wire with a cross section of 0.5 mm and a length limited by the size of the composite material. The reinforcing fibres are laid along the composite material at equal distances from each other. Hollow aluminium spheres with a diameter of 4 mm are strung close to each other on the reinforcing fibres. The distance between the reinforcing fibres corresponds to 1-2 diameters of hollow aluminium spheres.
EFFECT: obtaining a lightweight composite material with improved strength characteristics.
1 cl, 1 tbl

Description

Изобретение относиться к металлургии, а именно к получению литейного композиционного материала на основе алюминия и его сплавов, упрочненного армирующими металлическими волокнами, и может быть использовано в машиностроении, при создании конструкций и оборудования в качестве конструкционных материалов с повышенными технологическими и эксплуатационными свойствами.The invention relates to metallurgy, namely to the production of a casting composite material based on aluminum and its alloys, reinforced with reinforcing metal fibers, and can be used in mechanical engineering, when creating structures and equipment as structural materials with improved technological and operational properties.

Известен композиционный материал, включающий матрицу из алюминия, магния или их сплавов и упрочнителя, выполненного в виде армирующих нановолокон оксида алюминия, покрытые пленкой аморфного углерода (патент RU 2374355, МПК С22С 49/14, опубл.27.11.2009).Known composite material comprising a matrix of aluminum, magnesium or their alloys and a hardener made in the form of reinforcing aluminum oxide nanofibers coated with a film of amorphous carbon (patent RU 2374355, IPC C22C 49/14, publ.27.11.2009).

Недостатком известного композиционного материала является сложность в его получении, поскольку для повышения механических свойств композиционного материала, нановолокна необходимо дополнительно покрывать пленкой аморфного углерода, что влечет за собой повышение стоимости конечного изделия.The disadvantage of the known composite material is the difficulty in obtaining it, since in order to improve the mechanical properties of the composite material, the nanofibers must be additionally covered with a film of amorphous carbon, which entails an increase in the cost of the final product.

Известен композиционный материал на основе алюминия или алюминиевого сплава, содержащий матрицу из алюминиевого сплава и упрочнитель, выполненный в виде конгломерата дискретных волокон оксида алюминия (патент RU 2755353, МПК С22С 49/06, опубл. 15.09.2021).A composite material based on aluminum or an aluminum alloy is known, containing an aluminum alloy matrix and a hardener made in the form of a conglomerate of discrete aluminum oxide fibers (patent RU 2755353, IPC C22C 49/06, publ. 15.09.2021).

Недостатком известного композиционного материала является используемый упрочнитель, выполненный в виде конгломерата дискретных волокон оксида алюминия, транспортируемых порошков меди в матрицу из алюминия или алюминиевого сплава, создающей композицию упрочнения различной формы и размеров. Это влияет на технологические и эксплуатационные свойства изделия.The disadvantage of the known composite material is the used hardener, made in the form of a conglomerate of discrete fibers of aluminum oxide, transported copper powders in a matrix of aluminum or aluminum alloy, creating a composition of hardening of various shapes and sizes. This affects the technological and operational properties of the product.

Наиболее близким по технической сущности является композиционный материал на основе алюминиевого сплава с армирующими волокнами, включающий матрицу из алюминиевого сплава Al-Mg-Si и упрочнитель в виде армирующих волокон длиной 2-5 мм в количестве до 25 об.%, выполненных из алюминиевого сплава того же состава, что и матрица, или из титанового сплава и полученных методом высокоскоростного затвердевания расплава (патент RU 2538245, МПК С22С49/06, опубл. 10.01.2015).The closest in technical essence is a composite material based on an aluminum alloy with reinforcing fibers, including a matrix of aluminum alloy Al-Mg-Si and a reinforcing agent in the form of reinforcing fibers 2-5 mm long in an amount of up to 25% vol. the same composition as the matrix, or from a titanium alloy and obtained by the method of high-speed solidification of the melt (patent RU 2538245, IPC S22S49 / 06, publ. 10.01.2015).

Недостатком композиционного материала является неравномерное расположение армирующих волокон малой длины, что способствует неравномерному проявлению прочностных свойств композиционным материалом. Это не обеспечивает идентичности свойств всех деталей, изготовленных из разных частей данного материала.The disadvantage of the composite material is the uneven arrangement of reinforcing fibers of small length, which contributes to the uneven manifestation of the strength properties of the composite material. This does not ensure the identity of the properties of all parts made from different parts of this material.

Задачей данного изобретения является разработка облегченного композиционного материла, обладающего высокими прочностными свойствами во всем объеме.The objective of this invention is to develop a lightweight composite material with high strength properties throughout the volume.

Техническим результатом является облегченный композиционный материал, обладающий повышенными прочностными характеристиками.The technical result is a lightweight composite material with increased strength characteristics.

Технический результат достигается тем, что в композиционном материале на основе алюминиевого сплава с армирующими волокнами, включающем матрицу из алюминиевого сплава и упрочнитель, выполненный в виде армирующих волокон, матрица выполнена из алюминиевого сплава АК7, а армирующие волокна выполнены из медной проволоки сечением 0,5 мм и длинной ограниченной размером композиционного материала, уложенных вдоль материала на равных расстояниях друг от друга, при этом на волокна нанизаны вплотную друг к другу полые алюминиевые сферы диаметром 4 мм, а расстояние между армирующими волокнами соответствует 1-2 диаметрам полых алюминиевых сфер.The technical result is achieved by the fact that in a composite material based on an aluminum alloy with reinforcing fibers, including an aluminum alloy matrix and a reinforcing agent made in the form of reinforcing fibers, the matrix is made of AK7 aluminum alloy, and the reinforcing fibers are made of copper wire with a cross section of 0.5 mm and a long one limited by the size of the composite material, laid along the material at equal distances from each other, while hollow aluminum spheres with a diameter of 4 mm are strung on the fibers close to each other, and the distance between the reinforcing fibers corresponds to 1-2 diameters of the hollow aluminum spheres.

Армирующие волокна предназначены для упрочнения материала и образуют дополнительный металлический каркас в теле отливки, который позволяет значительно повысить ее прочностные показатели и облегчить композиционный материал (КМ). Насаженные на медные волокна алюминиевые полые сферы обеспечивают снижение массы изделия, за счет образования полостей в теле отливки, при этом выполнение волокон из меди предотвращает расплавление при контакте с расплавом алюминия АК7 в процессе заливки формы металлом при производстве КМ, а сфер из алюминия придать КМ большую легкость. Кроме этого, хорошая смачиваемость и адгезия алюминиевой поверхности позволяет сплаву АК7 максимально заполнять пустоты между гранулами и волокнами, что в свою очередь уменьшает (или полностью исключает) дополнительную (неконтролируемую) пористость в композиционном материале и уменьшает возможность «выкрашивания» полых алюминиевых сфер в процессе эксплуатации изделия.Reinforcing fibers are designed to strengthen the material and form an additional metal frame in the body of the casting, which can significantly increase its strength characteristics and lighten the composite material (CM). Aluminum hollow spheres mounted on copper fibers reduce the weight of the product due to the formation of cavities in the body of the casting, while the execution of copper fibers prevents melting upon contact with the AK7 aluminum melt in the process of casting the mold with metal in the production of CM, and aluminum spheres give the CM more ease. In addition, good wettability and adhesion of the aluminum surface allows the AK7 alloy to fill the voids between granules and fibers to the maximum, which in turn reduces (or completely eliminates) additional (uncontrolled) porosity in the composite material and reduces the possibility of “chipping” of hollow aluminum spheres during operation. products.

Для получения композиционного материала использовали полые алюминиевые сферы одинакового диаметра 4 мм, вплотную нанизанные на медное армирующее волокно (например, проволоку) сечением 0,5 мм.To obtain a composite material, hollow aluminum spheres of the same diameter of 4 mm were used, closely strung on a copper reinforcing fiber (for example, wire) with a cross section of 0.5 mm.

Армирующие волокна с нанизанными полыми алюминиевыми сферами заданной длины, соответствующей длине композиционного материала, размещаются, и фиксируются на установленных в нижней полуформе песчано-глинистой литейной формы формирующих пластинах на заданном расстоянии. Расположение волокон с насаженными металлическими полыми сферами осуществляют вдоль композиционного материала. Затем на нижнюю полуформу монтируется верхняя полуформа. В литейную форму в сборе производится заливка расплавом алюминия марки АК7 при температуре сплава 780 °С с последующей выбивкой полученной отливки из формы, после застывания металла и получения из полученного композиционного материала требуемого изделия.Reinforcing fibers with threaded hollow aluminum spheres of a given length, corresponding to the length of the composite material, are placed and fixed on the forming plates installed in the lower half of the sand-clay casting mold at a given distance. The location of the fibers with metal hollow spheres is carried out along the composite material. Then the upper half is mounted on the lower half-mould. The mold assembly is filled with a melt of aluminum grade AK7 at an alloy temperature of 780 ° C, followed by knocking out the resulting casting from the mold, after the metal has solidified and the desired product has been obtained from the resulting composite material.

Полученный композиционный материал испытывали на прочность при, растяжении и изгибе, плотность композиционного материала определяли гидростатическим методом. Результаты испытаний приведены в таблице. Для сравнения в тех же условиях эксперимента испытывали отливку из алюминия АК7 (без использования упрочняющих волокон) и КМ с использованием упрочняющих волокон без полых алюминиевых сфер.The resulting composite material was tested for strength in tension and bending, the density of the composite material was determined by the hydrostatic method. The test results are shown in the table. For comparison, under the same experimental conditions, a casting of AK7 aluminum (without the use of reinforcing fibers) and KM with the use of reinforcing fibers without hollow aluminum spheres was tested.

ТаблицаTable

Композиционный материалcomposite material Расстояние между армирующими волокнами, ммDistance between reinforcing fibers, mm Плотность, кг/м3 Density, kg / m 3 Прочность КМ при растяжении, МПаKM tensile strength, MPa Прочность КМ при изгибе, МПаKM strength in bending, MPa По предлагаемому изобретению: с использованием упрочняющих волокон с нанизанными полыми алюминиевыми сферамиAccording to the invention: using reinforcing fibers strung with hollow aluminum spheres 44 15601560 224224 247247 88 16401640 212212 234234 С использованием упрочняющих волокон без полых алюминиевых сферWith reinforcing fibers without hollow aluminum spheres -- 29462946 256256 324324 Без использования упрочняющих волоконWithout the use of reinforcing fibers -- 26522652 147147 205205

По результатам испытаний было установлено, что композиционный материал, полученный с применением упрочняющих волокон с нанизанными вплотную полыми металлическими сферами, показал самую низкую плотность при среднем повышении прочностных характеристик.According to the test results, it was found that the composite material obtained using reinforcing fibers with closely strung hollow metal spheres showed the lowest density with an average increase in strength characteristics.

Использование упрочняющих волокон обеспечивает самые высокие прочностные характеристики, но при этом происходит значительное утяжеление композиционного материала. The use of reinforcing fibers provides the highest strength characteristics, but at the same time there is a significant weighting of the composite material.

Таким образом, композиционный материал на основе алюминиевого сплава с армирующими волокнами, включающий матрицу из алюминиевого сплава АК7 и упрочнитель, выполненный в виде армирующих волокон, из медной проволоки сечением 0,5 мм и длинной ограниченной размером композиционного материала, уложенных вдоль материала на равных расстояниях друг от друга, в котором на волокна нанизаны вплотную друг к другу полые алюминиевые сферы диаметром 4 мм, а расстояние между армирующими волокнами соответствует 1-2 диаметрам полых алюминиевых сфер, является облегченным композиционным материалом, обладающим повышенными прочностными характеристиками.Thus, a composite material based on an aluminum alloy with reinforcing fibers, including a matrix of aluminum alloy AK7 and a hardener made in the form of reinforcing fibers, made of copper wire with a cross section of 0.5 mm and a length limited by the size of the composite material, laid along the material at equal distances from each other. from each other, in which hollow aluminum spheres with a diameter of 4 mm are strung close to each other on the fibers, and the distance between the reinforcing fibers corresponds to 1-2 diameters of hollow aluminum spheres, is a lightweight composite material with increased strength characteristics.

Claims (1)

Композиционный материал на основе алюминиевого сплава с армирующими волокнами, включающий матрицу из алюминиевого сплава и упрочнитель, выполненный в виде армирующих волокон, отличающийся тем, что матрица выполнена из алюминиевого сплава АК7, а армирующие волокна выполнены из медной проволоки сечением 0,5 мм и длиной, ограниченной размером композиционного материала, уложенных вдоль материала на равных расстояниях друг от друга, при этом на волокна нанизаны вплотную друг к другу полые алюминиевые сферы диаметром 4 мм, а расстояние между армирующими волокнами соответствует 1-2 диаметрам полых алюминиевых сфер.Composite material based on aluminum alloy with reinforcing fibers, including a matrix of aluminum alloy and a hardener made in the form of reinforcing fibers, characterized in that the matrix is made of aluminum alloy AK7, and the reinforcing fibers are made of copper wire with a cross section of 0.5 mm and a length limited by the size of the composite material, laid along the material at equal distances from each other, while hollow aluminum spheres with a diameter of 4 mm are strung on the fibers close to each other, and the distance between the reinforcing fibers corresponds to 1-2 diameters of hollow aluminum spheres.
RU2022134452A 2022-12-27 Composite material RU2793673C1 (en)

Publications (1)

Publication Number Publication Date
RU2793673C1 true RU2793673C1 (en) 2023-04-04

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713111A (en) * 1986-08-08 1987-12-15 Amax Inc. Production of aluminum-SiC composite using sodium tetrasborate as an addition agent
FR2667615A1 (en) * 1990-10-09 1992-04-10 Mitsubishi Electric Corp Aluminium@ carbon@ fibre composite material - for electronic component mounting, has high strength and low density
RU2374355C1 (en) * 2008-11-01 2009-11-27 Валентин Александрович Жабрев Composite material
CN103290343A (en) * 2013-06-27 2013-09-11 孟红琳 Preparation method of filler particle enhanced aluminium alloy composite material
RU2755353C1 (en) * 2020-10-20 2021-09-15 Юлия Анатольевна Курганова Composite material based on aluminium or aluminium alloy and method for production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713111A (en) * 1986-08-08 1987-12-15 Amax Inc. Production of aluminum-SiC composite using sodium tetrasborate as an addition agent
FR2667615A1 (en) * 1990-10-09 1992-04-10 Mitsubishi Electric Corp Aluminium@ carbon@ fibre composite material - for electronic component mounting, has high strength and low density
RU2374355C1 (en) * 2008-11-01 2009-11-27 Валентин Александрович Жабрев Composite material
CN103290343A (en) * 2013-06-27 2013-09-11 孟红琳 Preparation method of filler particle enhanced aluminium alloy composite material
RU2755353C1 (en) * 2020-10-20 2021-09-15 Юлия Анатольевна Курганова Composite material based on aluminium or aluminium alloy and method for production thereof

Similar Documents

Publication Publication Date Title
Alten et al. Production and mechanical characterization of Ni-coated carbon fibers reinforced Al-6063 alloy matrix composites
AU707820B2 (en) Fiber reinforced aluminum matrix composite
Sánchez et al. Fabrication of aluminium composites reinforced with carbon fibres by a centrifugal infiltration process
CN102286709B (en) Preparation method of continuous fiber reinforcement metal-based composite material section
Vanarotti et al. Study of mechanical properties & residual stresses on post wear samples of A356-SiC metal matrix composites
RU2793673C1 (en) Composite material
RU2793674C1 (en) Composite material
RU2793675C1 (en) Composite material
US20160319410A1 (en) Device for producing a composite component formed from carbon fibers coated with pyrolytic carbon
RU2797414C1 (en) Composite material
JP2010508153A (en) Method for producing molded product made of metal ceramic composite
RU2793676C1 (en) Composite material
EP0370546B1 (en) Process for producing composite materials with a metal matrix, with a controlled content of reinforcer agent
RU2807246C1 (en) Composite material
CN112974773B (en) Method for preparing high-strength plastic beryllium-aluminum composite material by pressure infiltration
US7175689B2 (en) Process for producing a lightweight molded part and molded part made of metal foam
JPS61295346A (en) Fiber-reinforced metal and its production
US5207263A (en) VLS silicon carbide whisker reinforced metal matrix composites
KR20190056643A (en) Sand casting method with high speed cooling and sand mold
Suraya et al. Studies on tensile properties of titanium carbide (TiC) particulates composites
EP0223081A2 (en) Method for production of fiber-reinforced metal composite material
US5249620A (en) Process for producing composite materials with a metal matrix with a controlled content of reinforcer agent
CN115305375B (en) Method for preparing and forming high-strength beryllium/aluminum composite material through semi-solid plastic deformation
Nie et al. Vacuum hot pressed AZ31/UCF/AZ31 composite sheets: Microstructure and mechanical properties
Sivaprakash et al. Investigation of microstructure and mechanical properties of squeeze cast LM6 alloy with varying contents of Al2O3and Si3N4-a review