RU2789277C1 - Устройство имитации динамической сцены - Google Patents
Устройство имитации динамической сцены Download PDFInfo
- Publication number
- RU2789277C1 RU2789277C1 RU2022103932A RU2022103932A RU2789277C1 RU 2789277 C1 RU2789277 C1 RU 2789277C1 RU 2022103932 A RU2022103932 A RU 2022103932A RU 2022103932 A RU2022103932 A RU 2022103932A RU 2789277 C1 RU2789277 C1 RU 2789277C1
- Authority
- RU
- Russia
- Prior art keywords
- mirror
- control unit
- micromirror
- image transfer
- concave
- Prior art date
Links
Images
Abstract
Изобретение относится к оптическому приборостроению и может быть использовано в составе измерительной аппаратуры для тестирования и оценки характеристик оптико-электронных систем (ОЭС), предназначенных для работы в видимом и инфракрасном диапазонах спектра. Устройство имитации динамической сцены состоит из расположенных по ходу лучей осветительной системы, содержащей источник излучения с блоком управления интенсивностью излучения, зеркальный тоннель и систему переноса изображения, содержащую вогнутое зеркало, микрозеркальной матрицы с блоком управления положением микрозеркал и выходного объектива. В осветительной системе зеркальный тоннель выполнен в виде усеченной четырехгранной пирамиды с прямоугольным основанием. Вогнутое зеркало системы переноса изображения выполнено сферическим и дополнительно введено второе вогнутое сферическое зеркало. Выходной объектив выполнен коллимирующим. Устройство обеспечивает возможность тестировать широкоугольные ОЭС за счет увеличения линейного поля зрения при обеспечении оптимального согласовании с тестируемой системой. 2 ил., 1 табл.
Description
Изобретение относится к оптическому приборостроению и может быть использована в составе измерительной аппаратуры для тестирования и оценки характеристик оптико-электронных систем (ОЭС), предназначенных для работы в видимом и инфракрасном (ИК) диапазонах спектра.
Известен цифровой коллиматор (патент RU 2 664 542 С2, МПК G02B 27/30, H04N 5/74, G02B 26/08, публ. 20.08.2018 г.), состоящий из оптически связанных осветителя, тест-объекта, объектива, светоделителя и передающего объектива. Осветитель содержит источник излучения, конденсор, матовое стекло и установлен перпендикулярно оптической оси коллиматора. В качестве тест-объекта используется модуль цифрового микрозеркального устройства DLP LightCrafter 4500. Светоделитель расположен между тест-объектом и объективом под углом к оптической оси коллиматора и выполнен в виде полупрозрачной пластины.
Недостатками описанного технического решения являются потери потока излучения, обусловленные низким коэффициентом пропускания матового стекла и прохождением через светоделитель, а также небольшое линейное поле зрения (13,8×8,64 мм).
Также известно проекционное устройство (патент US 6 552 846 В1, МПК F21V 9/06, публ. 22.04 2003 г.), состоящее из расположенных по ходу лучей осветительной системы, содержащей источник излучения, конденсор в виде эллипсоидного зеркала, зеркальный тоннель в форме параллелепипеда, на внутренние поверхности которого нанесено многослойное покрытие с высоким коэффициентом отражения, и двухзеркальную систему переноса изображения, отражающей сетки, установленной в плоскости освещения и выходного объектива, содержащего два зеркала.
К недостаткам данного устройства можно отнести конструктивное исполнение выходного объектива, обеспечивающее линейное поле зрения не более 2 мм, что ограничивает возможности его использования.
Наиболее близкой к заявляемому устройству по технической сущности и количеству совпадающих признаков, выбранной в качестве прототипа, является система генерации динамической сцены для тестирования тепловизионных приборов (Автометрия, 2013, т. 49, №1, с. 80-85). Система состоит из расположенных по ходу лучей осветительной системы, содержащей источник излучения с блоком управления, зеркальный лабиринт в виде прямоугольного параллелепипеда, систему переноса изображения, включающую линзу, плоское зеркало и вогнутое параболическое зеркало, оптического модулятора в виде массива микрозеркал с блоком управления положением каждого микрозеркала и выходного проекционного объектива. Система предназначена для генерирования инфракрасных изображений в спектральном диапазоне от 3 до 5 мкм и обеспечивает разрешение 1024×768 пикселей, с шагом 10,8 мкм.
К недостаткам данной системы можно отнести небольшое линейное поле зрения, составляющее 11,059×8,294 мм, что ограничивает возможности использования и не позволяет тестировать, например, широкоугольные ОЭС. Кроме этого, испытуемый тепловизионный прибор в прототипе устанавливается перед выходным проекционным объективом в сходящемся пучке лучей, что при тестировании широкоугольных ОЭС приведет к виньетированию наклонных пучков лучей.
Задачей, на которую направлено изобретение, является обеспечение возможности использования устройства имитации динамической сцены для тестирования широкоугольных ОЭС за счет увеличения линейного поля зрения при оптимальном согласовании с тестируемой системой.
Поставленная задача решается за счет того, что в устройстве имитации динамической сцены, состоящем из расположенных по ходу лучей осветительной системы, содержащей источник излучения с блоком управления интенсивностью излучения, зеркальный тоннель и систему переноса изображения, содержащую вогнутое зеркало, микрозеркальной матрицы с блоком управления положением микрозеркал и выходного объектива, согласно изобретению, в осветительной системе зеркальный тоннель выполнен в виде усеченной четырехгранной пирамиды с прямоугольным основанием, вогнутое зеркало системы переноса изображения выполнено сферическим и дополнительно введено второе вогнутое сферическое зеркало, а выходной объектив выполнен коллимирующим.
На фигуре 1 представлена оптическая схема устройства имитации динамической сцены.
На фигуре 2 представлена схема работы микрозеркала матрицы: (а) - базовое (плоское) положение, (б) - первое фиксированное положение +12°, (в) - второе фиксированное положение -12°.
Устройство имитации динамической сцены состоит из расположенных по ходу лучей осветительной системы 1, содержащей источник излучения 2 с блоком управления 3, зеркальный тоннель 4 выполненный виде усеченной четырехгранной пирамиды с прямоугольным основанием, и систему переноса изображения, содержащую два вогнутых сферических зеркала 5 и 6, микрозеркальной матрицы 7 с блоком управления 9 положением микрозеркал и выходного коллимирующего объектива 8. Дополнительно показано внешнее управляющее устройство 10, подключенное к блоку управления 9 положением микрозеркал.
В качестве источника излучения 2 используется излучатель соответствующего спектрального диапазона. Блок 3 служит для управления интенсивностью излучения за счет регулирования силы тока. Зеркальный тоннель 4 усеченной стороной пирамиды, имеющей прямоугольную форму и являющейся входным отверстием для потока излучения, обращен к источнику излучения 2, а прямоугольное основание пирамиды, являющееся выходным отверстием, обращено к вогнутому сферическому зеркалу 5.
Выходной коллимирующий объектив 8 изображен условно, выбор его конструктивного исполнения определяется заданным спектральным диапазоном работы устройства. Микрозеркальная матрица 7 типа DLP 9500 представляет собой двумерный массив управляемых в цифровой форме алюминиевых микрозеркал с высоким коэффициентом отражения. Под действием электрического поля подложка с зеркалом принимает одно из двух фиксированных положений +12° (Фиг. 2б) и -12° (Фиг. 2в) относительно базового положения (Фиг. 2а). Если подложка с зеркалом находится в положении «+12°», то падающее на нее излучение, отражаясь, распространяется вдоль оптической оси устройства и попадает в объектив 8. В положении «-12°» излучение отражается в сторону и не попадает в объектив. Входное окно стандартной микрозеркальной матрицы выполнено из материала, пропускающего излучение в видимом и ближнем ИК (до 2 мкм) диапазонах. Для использования устройства в спектральном диапазоне 3…5 мкм необходима замена материала его входного окна, например, на селенид цинка.
В таблице приведены технические характеристики заявляемого устройства.
Из приведенных в таблице характеристик следует, что в заявляемом устройстве обеспечивается большее, чем в прототипе линейное поле зрения 20,736×11,664 мм, что позволяет использовать его для тестирования широкоугольных ОЭС. Увеличение линейного поля зрения достигается за счет выбранного конструктивного исполнения зеркального тоннеля (его формы, длины, соотношения размеров входного и выходного отверстий), а также за счет ввода второго сферического зеркала в систему переноса изображения.
Размеры входного отверстия, определяющиеся параметрами источника излучения, должны быть согласованы с размерами микрозеркальной матрицы. Обычно отношение короткой и длинной сторон входного отверстия соответствует отношению короткой и длинной сторон микрозеркальной матрицы. В соответствии с приведенными в таблице значениями размеров источника 7,8 мм и микрозеркальной матрицы 20,736×11,664 мм размеры входного отверстия составляют 12,4×7,8 мм. Выбором длины зеркального тоннеля определяются размеры выходного отверстия, обеспечивающие заполнение поверхности микрозеркальной матрицы излучением от источника (в заявляемом устройстве 22,6×14,2 мм).
Устройство работает следующим образом. Источник излучения 2 с помощью блока управления 3, создает поток излучения, который направляется на входное отверстие зеркального тоннеля 4. Многократно отразившись от его внутренних поверхностей, а затем, последовательно, от вогнутых сферических зеркал 5 и 6, поток излучения переносится в плоскость микрозеркальной матрицы 7 и освещает ее. Изображение имитируемой сцены загружается оператором во внешнее управляющее устройство 10 и в цифровом виде передается в блок управления 9 положением микрозеркал. Блок управления 9 обрабатывает полученные данные и обеспечивает управление положением микрозеркал путем колебаний с различной частотой. На освещенной потоком излучения поверхности микрозеркальной матрицы 7, установленной в фокальной плоскости объектива 8, формируется изображение имитируемой сцены, которое коллимирующим объективом 8 проецируется в бесконечность.
Выполнение выходного объектива коллимирующим (проецирующим изображение в бесконечность) обеспечивает оптимальное согласование с тестируемой широкоугольной ОЭС за счет минимизации виньетирования наклонных пучков лучей.
Перед выходным объективом 8 в параллельном пучке лучей устанавливается тестируемая ОЭС (на фигуре 1 не показана), в плоскости фотоприемной матрицы которой формируется изображение имитируемой сцены.
Таким образом, выполнение устройства имитации динамической сцены в соответствии с предлагаемым техническим решением позволяет тестировать широкоугольные ОЭС за счет увеличения линейного поля зрения при обеспечении оптимального согласовании с тестируемой системой, что расширяет возможности его использования.
Claims (1)
- Устройство имитации динамической сцены, состоящее из расположенных по ходу лучей осветительной системы, содержащей источник излучения с блоком управления интенсивностью излучения, зеркальный тоннель и систему переноса изображения, содержащую вогнутое зеркало, микрозеркальной матрицы с блоком управления положением микрозеркал и выходного объектива, отличающееся тем, что в осветительной системе зеркальный тоннель выполнен в виде усеченной четырехгранной пирамиды с прямоугольным основанием, вогнутое зеркало системы переноса изображения выполнено сферическим и дополнительно введено второе вогнутое сферическое зеркало, а выходной объектив выполнен коллимирующим.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2789277C1 true RU2789277C1 (ru) | 2023-02-02 |
Family
ID=
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101504317A (zh) * | 2009-02-27 | 2009-08-12 | 中国人民解放军海军工程大学 | 一种简便检测红外成像系统性能参数的装置 |
CN110411716A (zh) * | 2019-08-05 | 2019-11-05 | 昆明北方红外技术股份有限公司 | 用于测量u型折转热像仪光学传递函数的方法 |
CN212030878U (zh) * | 2020-03-25 | 2020-11-27 | 北京华力智信科技有限公司 | 一种双波段场景模拟器光轴平行性标定装置 |
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101504317A (zh) * | 2009-02-27 | 2009-08-12 | 中国人民解放军海军工程大学 | 一种简便检测红外成像系统性能参数的装置 |
CN110411716A (zh) * | 2019-08-05 | 2019-11-05 | 昆明北方红外技术股份有限公司 | 用于测量u型折转热像仪光学传递函数的方法 |
CN212030878U (zh) * | 2020-03-25 | 2020-11-27 | 北京华力智信科技有限公司 | 一种双波段场景模拟器光轴平行性标定装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5912741A (en) | Imaging scatterometer | |
US6813440B1 (en) | Body scanner | |
JP5281923B2 (ja) | 投射型表示装置 | |
US5440423A (en) | Optical illumination instrument | |
US7130033B2 (en) | Portable device for measuring the light intensity from an object, and the use of such a device | |
US6698902B2 (en) | Image displaying apparatus for displaying an image according to light reflected by an optical spatial modulator element | |
US7159986B2 (en) | Wide field collimator | |
JPH09120040A (ja) | 空間光変調器のための集光光学系 | |
EP3009886A1 (en) | Illumination apparatus, pattern irradiation device, and 3d measurement system | |
US4443058A (en) | Test image projector for testing imaging devices | |
JP3870191B2 (ja) | 多色画像をプロジェクションスクリーンに投影するための装置 | |
RU2789277C1 (ru) | Устройство имитации динамической сцены | |
RU211190U1 (ru) | Устройство имитации динамической сцены | |
CN113272705B (zh) | 准直器透镜、光源装置和图像显示装置 | |
TWM609585U (zh) | Tof攝像裝置 | |
CN112867905A (zh) | 一种用于三维检测的光学引擎和三维检测设备 | |
US5506702A (en) | Holographic optical element providing an artificial star for an optical system | |
Gibin et al. | Generation of images in the infrared range on the basis of micromirror technologies | |
JP2010026261A (ja) | 照明光学装置及びそれを用いた投写型表示装置 | |
EP0316103B1 (en) | Reflective picture generator | |
CN113126460A (zh) | 一种激光扫描单元 | |
CN106352984A (zh) | 光谱偏振图像投影装置及其投影方法 | |
JP2010026262A (ja) | 照明光学装置及びそれを用いた投写型表示装置 | |
US6312143B1 (en) | Illumination device with light reshaping element for an optical valve | |
CN109814268A (zh) | 一种基于dmd的动态红外投影光电分光系统 |