RU2787883C1 - Композиция на основе лития цитрата и мелатонина с антиглиобластомным действием - Google Patents

Композиция на основе лития цитрата и мелатонина с антиглиобластомным действием Download PDF

Info

Publication number
RU2787883C1
RU2787883C1 RU2022115323A RU2022115323A RU2787883C1 RU 2787883 C1 RU2787883 C1 RU 2787883C1 RU 2022115323 A RU2022115323 A RU 2022115323A RU 2022115323 A RU2022115323 A RU 2022115323A RU 2787883 C1 RU2787883 C1 RU 2787883C1
Authority
RU
Russia
Prior art keywords
melatonin
lithium
effect
cells
glioblastoma
Prior art date
Application number
RU2022115323A
Other languages
English (en)
Inventor
Евгений Леонидович Завьялов
Светлана Викторовна Мичурина
Любовь Никифоровна Рачковская
Татьяна Николаевна Позмогова
Андрей Юрьевич Летягин
Original Assignee
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ "ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ИНСТИТУТ ЦИТОЛОГИИ И ГЕНЕТИКИ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК" (ИЦиГ СО РАН)
Filing date
Publication date
Application filed by ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ "ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ИНСТИТУТ ЦИТОЛОГИИ И ГЕНЕТИКИ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК" (ИЦиГ СО РАН) filed Critical ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ "ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ИНСТИТУТ ЦИТОЛОГИИ И ГЕНЕТИКИ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК" (ИЦиГ СО РАН)
Application granted granted Critical
Publication of RU2787883C1 publication Critical patent/RU2787883C1/ru

Links

Abstract

Изобретение относится к области фармации, а именно к водной композиции с антиглиобластомным действием. Водная композиция с антиглиобластомным действием, содержащая четырехводный лимоннокислый литий и мелатонин, при этом содержание лития цитрата в композиции 0,03-0,125 мг/мл и мелатонина 0,003-0,015 мг/мл. Вышеуказанная композиция характеризуется синергетическим действием, заключающимся в понижении жизнестойкости клеток глиомы за счет лития и сохранении жизнеспособности клеток фибробластов при воздействии на них лития за счет мелатонина. 1 табл., 2 пр.

Description

Изобретение относится к области водорастворимых композиций, в частности для медицинского применения в качестве нейротропного средства при опухолевых процессах головного мозга.
Известно, что мультиформная глиобластома (МГБ) - одна из самых распространенных злокачественных опухолей головного мозга [1,2]. Стандартное лечение включает хирургическую операцию, облучение и химиотерапию. Прогноз болезни неблагоприятный, медиана выживаемости больных 6-12 месяцев [3]. Считается, что причина терапевтической резистентности МГБ связанна с наличием в составе клеточной популяции МГБ опухолевых стволовых клеток (ОСК), обладающих уникальными сигнальными и морфогенными свойствами. Клетки этого типа почти независимы от внешних сигналов, обладают мультипотентностью, самой высокой пролиферативной активностью среди всех клеток МГБ, способностью к самообновлению и восстановлению поврежденной ДНК. ОСК взаимодействуют как с общим пулом клеток МГБ, так и с клетками других типов, поглощаемых опухолью - микроглиоцитами, клетками эндотелия фибробластами, моноцитами и иммунными клетками, что делает эту цель практически не доступной для поражения с применением существующих методов и технологий.
Для воздействия на глиому наиболее близким к заявляемой композиции является препарат лития хлорид (LiCl), нацеленный на клетки глиомы, который диффузно проникает в нормальный мозг [4, 5]. Литий эффективно блокировал миграцию клеток глиомы. Наблюдаемые эффекты были дозозависимыми и обратимыми и работали с использованием каждой из протестированной клеточной линии глиомы. Лечение литием было связано с заметным изменением морфологии клеток, когда клетки втягивали длинные отростки на своем переднем крае. Изучение известных мишеней лития показало, что ингибирование инозитол-монофосфатазы не оказывало влияния на миграцию глиомы, в то время как ингибирование киназы гликогенсинтазы-3 (GSK-3) оказывало. Отмечается и эффективность лития хлорида в сочетании с темозо ломи дом: комбинация с 1,2 мМ Li потенцировала индуцированную ТМЗ гибель клеток в клетках глиомы TP53wt, что определяли анализы образования нейросфер и апоптоза. Темозоломид в сочетании с обработкой литием ингибировал активацию GSK-3, способствовал ядерной транслокации NFAT1 и повышал экспрессию Fas/FasL. Направленный нокдаун экспрессии NFAT1 блокировал индукцию гибели клеток TMZ и Li посредством ингибирования FasL.
Однако, недостатком использования лития хлорида является его достаточно высокая токсичность по отношению к здоровым клеткам. Так, полулетальная доза (ЛД50) лития хлорида составляет 255 мкг/кг [6]. Известно, что среднесмертельная доза лития цитрата (ЛД50) при внутрижелудочном введении крысам составляет 1517 мг/кг массы тела, а при внутрибрюшинном введении - 1025 мг. Для цыплят LD50 составила 2013 мг/кг [7].
Настоящим изобретением для воздействия на глиому предлагается водная композиция, содержащая четырехводный лимоннокислый литий (лития цитрат), который значительно превышает по безопасности лития хлорид, в сочетании с гормоном эпифиза - мелатонином. Совместное их действие оказывает в целом синергический эффект, заключающийся в понижении жизнестойкости клеток глиомы за счет лития и сохранении жизнеспособности клеток фибробластов при воздействии на них лития за счет мелатонина.
Оценка жизнестойкости опухолевых клеток проводилась по следующей методике. Клетки глиобластомы человека (U-87MG) и нормальных фибробластов эмбриона человека (ФЭЧ) размораживали и культивировали в течение 5-7 пассажей. Далее клетки были помещены в лунки 96-луночного планшета в количестве 7 тыс. клеток на лунку с добавлением 100 мкл среды DMEM/F12 с 10% сыворотки. В каждую лунку был добавлен либо чистый цитрат лития (5 mM), либо в сочетании с мелатонином (0,12 mM). Итоговые концентрации вещества на 100 мкл питательной среды составили: 3.91, 7.81, 15.62, 31.25, 62.5, 125, 250 мкг/мл. Контрольные клетки инкубировались в чистой питательной среде. Через 4 суток инкубации клеток с тестируемыми соединениями проводили МТТ тест для оценки числа живых клеток в каждой лунке. Для этого среду с препаратом заменяли на чистую питательную среду и добавляли 10 мкл раствора МТТ (в концентрации 5 мг/мл) в каждую лунку. Клетки инкубировали еще 4 часа, затем среду удаляли и вносили ДМСО по 100 мкл/лунку с последующим ресуспендированием раствора и его инкубацией в течение 5 мин при температуре 37°С в термостате. После инкубации измеряли оптическую плотность полученного раствора на BioRadiMarkMicroplatereader при длине волны 490 нм. В качестве нулевого контроля использовали лунки без клеток с раствором ДМСО без добавления МТТ-реагента. По полученным результатам рассчитывали долю живых клеток. Жизнеспособность клеток в каждой лунке считалась как процент от контрольных клеток. Лунки с контрольными клетками принимались за 100% [8].
Полученные результаты приведены в примерах и таблице.
Пример 1. Водный раствор композиции, содержащий мелатонин в концентрации 0.003 мг/мл и лития цитрат 0.031 мг/мл, приводит по вышеуказанной методике к понижению жизнестойкости опухолевых клеток U-87MG до 35% от исходной 100%-ной величины. При данных концентрациях мелатонина и лития уровень жизнестойкости ФБЧ составляет 100%.
Пример 2. Водный раствор композиции, содержащий-добавлен мелатонин в концентрации 0.01 мг/мл и лития цитрат 0.062 мг/мл, приводит по вышеописанной методике к понижению жизнестойкости U-87MG до 20% от исходной 100%-ной величины. Уровень жизнестойкости ФБЧ при этом составляет 80%.
Пример 3. Водный раствор композиции, содержащий мелатонин (МТ) в концентрации 0,015 мг/мл и лития цитрат 0,126 мг/мл, приводит по методике к понижению жизнестойкости U-87MG до 20% от исходной 100%-ной величины. Уровень жизнестойкости ФБЧ составляет 60%.
Figure 00000001
Из приведенных примеров в таблице видно, что найдено оптимальное соотношение концентраций в композиции из лития цитрата и мелатонина, способствующего эффективной гибели раковых клеток на 65-80% в эксперименте invitro при сохранении жизнеспособности фибробластов (60-100%).
1. Louis D.N. The next step in brain tumor classification: "Let us now praise famous men"or molecules? // ActaNeuropathol. - 2012. - Vol.124, No 6. - P. 761- 762.
2. A. Brodbelt, D. Greenberg, T. Winters, M.Williams, S. Vernon, V.P. Collins // Eur J Cancer. -2015. - Vol.51, No 4. - P. 533 - 542.
3. Брюховецкий И.С. Взаимодействие стволовых и опухолевых клеток на модели глиобластомы. Диссертация на соискание ученой степени доктора медицинских наук, Владивосток, 2017. Министерство образования и науки РФ. Дальневосточный федеральный университет.
4. NowickiMO, DmitrievaN, SteinAM, CutterJL, GodlewskiJ, SaekiY, NitaM, BerensME, SanderLM, NewtonHB, ChioccaEA, LawlerS. Lithiuminhibitsinvasionofgliomacells; possibleinvolvementofglycogensynthasekinase-3. Neuro Oncol. 2008 Oct;10(5):690-9. doi: 10.1215/15228517-2008-041
5. Han, S., Meng, L., Jiang, Y. et al. Lithium enhances the antitumour effect of temozolomide against TP53 wild-type glioblastoma cells via NFATl/FasLsignalling. Br J Cancer 116, 1302-1311 (2017). https://doi.org/l 0.1038/bic.2017.89
6. Менынанов, П.Н. Токсические эффекты хлорида лития в раннем неонатальном периоде развития крыс / П.Н. Меныпанов, А.В. Баннова, Н.Н. Дыгало // Бюллетень экспериментальной биологии и медицины. - 2015. -Том 160, №10. - С.460- 464.
7. Бурсуков, А.В. Изучение токсических свойств соли лития цитрата / А.В. Бурсуков // Успехи естествознания. - 2004. - №1. - С.90-91.
8. Руководство по проведению доклинических исследований лекарственных средств. Часть первая / А. Н. Миронов [и др.]; под ред.: А. Г. Муляра, О. Н. Чиченкова. - М.: Гриф и К, 2012. - 944 с.

Claims (1)

  1. Водная композиция с антиглиобластомным действием, содержащая четырехводный лимоннокислый литий и мелатонин, при этом содержание лития цитрата в композиции 0,03-0,125 мг/мл и мелатонина 0,003-0,015 мг/мл.
RU2022115323A 2022-06-06 Композиция на основе лития цитрата и мелатонина с антиглиобластомным действием RU2787883C1 (ru)

Publications (1)

Publication Number Publication Date
RU2787883C1 true RU2787883C1 (ru) 2023-01-13

Family

ID=

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOWICKI, M.O., et al. Lithium inhibits invasion of glioma cells; possible involvement of glycogen synthase kinase-3 // Neuro-Oncology. 2008 Oct; 10(5): 690-699. SNITOW, M.E., et al. Lithium and Therapeutic Targeting of GSK-3 // Cells. 2021 Jan 28;10(2):255. РОБИНСОН, М.В., и др. Механизмы действия соединений лития // Сибирский научный медицинский журнал, 2019, 39(5): 19-28. KOTLYAROVA, A.A., et al. Preclinical investigation of the pharmacokinetic of a novel prolonged release dosage form of lithium citrate // 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), 2017, pp. 538-541. FRANCO, D.G., et al. Mitochondria Transcription Factor A: A Putative Target for the Effect of Melatonin on U87MG Malignant Glioma Cell Line // Molecules 2018, 23, 1129. ZHENG et al. Melatonin Inhibits Glioblastoma Stem-like cells through Suppression of EZH2-NOTCH1 Signaling Axis // Int. J. Biol. Sci. 2017, Vol.13. PP.245-253. MORTEZAEE, K., et al. Modulation of apopt *

Similar Documents

Publication Publication Date Title
He et al. Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway
Wu et al. Sodium orthovanadate inhibits growth of human hepatocellular carcinoma cells in vitro and in an orthotopic model in vivo
Park et al. Dehydrocostuslactone inhibits LPS-induced inflammation by p38MAPK-dependent induction of hemeoxygenase-1 in vitro and improves survival of mice in CLP-induced sepsis in vivo
Fan et al. l-carnitine preserves cardiac function by activating p38 MAPK/Nrf2 signalling in hearts exposed to irradiation
Su et al. Ganoderma triterpenes retard renal cyst development by downregulating Ras/MAPK signaling and promoting cell differentiation
Yu et al. Resveratrol activates PI3K/AKT to reduce myocardial cell apoptosis and mitochondrial oxidative damage caused by myocardial ischemia/reperfusion injury
Maslov et al. The regulation of necroptosis and perspectives for the development of new drugs preventing ischemic/reperfusion of cardiac injury
Jangra et al. Disulfiram potentiates the anticancer effect of cisplatin in atypical teratoid/rhabdoid tumors (AT/RT)
CN105943530B (zh) 铁死亡抑制剂在制备治疗铁过载疾病的药物中的应用
Ke et al. Mollugin induced oxidative DNA damage via up-regulating ROS that caused cell cycle arrest in hepatoma cells
Chen et al. Beneficial effects of chlorogenic acid treatment on neuroinflammation after deep hypothermic circulatory arrest may be mediated through CYLD/NF-κB signaling
RU2787883C1 (ru) Композиция на основе лития цитрата и мелатонина с антиглиобластомным действием
Kessler-Icekson et al. A histone deacetylase inhibitory prodrug–Butyroyloxymethyl diethyl phosphate–Protects the heart and cardiomyocytes against ischemia injury
AU2015352041B2 (en) Titled extracts of Cynara scolymus and uses thereof
CN108685892A (zh) 绿原酸及其组合物在制备治疗鳞状细胞癌的药物中的用途
Qin et al. Luteolin alleviates ischemia/reperfusion injury-induced no-reflow by regulating Wnt/β-catenin signaling in rats
Morsi et al. Immunomodulatory, apoptotic and anti-proliferative potentials of sildenafil in Ehrlich ascites carcinoma murine model: In vivo and in silico insights
Cui et al. A preliminary investigation of the toxic effects of Benzylpenicilloic acid
Liou et al. Calebin-A induces cell cycle arrest in human colon cancer cells and xenografts in nude mice
KR100762931B1 (ko) 피라졸로[1,5-α]피리미딘계 화합물을 유효성분으로함유하는 항암 보조제
CN112263578B (zh) Tipranavir在制备杀伤肿瘤干细胞和肿瘤细胞的癌症治疗药物中的用途
US20130171263A1 (en) Snake Powder Extract For Treatment Of Cancer
Saakyan et al. Assessment of the chemosensitivity of uveal melanoma cells ex vivo
Endo et al. Antitumor activity of selenium compounds and its underlying mechanism in human oral squamous cell carcinoma cells: a preliminary study
Fadeev et al. Study of antitumor activity of Sodium phenylbutyrate, histon deacetylase inhibitor, on ehrlich carcinoma model