RU2785803C1 - Способ формирования поликристаллического высоколегированного нанослоя inas на подложке сапфира для радиационно-стойких сенсоров магнитного поля - Google Patents
Способ формирования поликристаллического высоколегированного нанослоя inas на подложке сапфира для радиационно-стойких сенсоров магнитного поля Download PDFInfo
- Publication number
- RU2785803C1 RU2785803C1 RU2022106085A RU2022106085A RU2785803C1 RU 2785803 C1 RU2785803 C1 RU 2785803C1 RU 2022106085 A RU2022106085 A RU 2022106085A RU 2022106085 A RU2022106085 A RU 2022106085A RU 2785803 C1 RU2785803 C1 RU 2785803C1
- Authority
- RU
- Russia
- Prior art keywords
- layer
- inas
- sapphire substrate
- magnetic field
- thickness
- Prior art date
Links
- 229910052594 sapphire Inorganic materials 0.000 title claims abstract description 25
- 239000010980 sapphire Substances 0.000 title claims abstract description 25
- 239000000758 substrate Substances 0.000 title claims abstract description 24
- 230000005291 magnetic Effects 0.000 title claims abstract description 19
- 239000002052 molecular layer Substances 0.000 title claims abstract description 7
- 229910000673 Indium arsenide Inorganic materials 0.000 claims abstract description 41
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 10
- 238000000137 annealing Methods 0.000 claims abstract description 9
- 239000004065 semiconductor Substances 0.000 claims abstract description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 239000002019 doping agent Substances 0.000 claims description 2
- 238000010899 nucleation Methods 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 7
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- 238000005755 formation reaction Methods 0.000 abstract description 6
- 230000003746 surface roughness Effects 0.000 abstract description 6
- 238000005280 amorphization Methods 0.000 abstract description 5
- 210000001654 Germ Layers Anatomy 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 238000009377 nuclear transmutation Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 238000009736 wetting Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000010943 off-gassing Methods 0.000 abstract description 2
- 230000035882 stress Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 40
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 13
- 239000000463 material Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- MDPILPRLPQYEEN-UHFFFAOYSA-N Aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 2
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N Indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000004059 degradation Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000007374 clinical diagnostic method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000008204 materials by function Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000003287 optical Effects 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 231100000488 structural defect Toxicity 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001131 transforming Effects 0.000 description 1
Images
Abstract
Изобретение относится к полупроводниковым наногетероструктурам AIIIBV, используемым для изготовления радиационно стойких сенсоров магнитного поля. Технический результат предлагаемого изобретения направлен на получение поликристаллических высоколегированных нанослоев InAs высокого кристаллического качества на сапфировой подложке с низкой шероховатостью поверхности и низким удельным сопротивлением, пригодных для создания радиационно стойких сенсоров магнитного поля. Создание нижнего зародышевого слоя InAlAs толщиной 1÷5 нм, расположенного непосредственно на подложке сапфира, необходимо для смачивания поверхности сапфира и предотвращения аморфизации поверхности в процессе проведения эпитаксиального роста вышележащих слоев. Следующий за нижним зародышевым слоем отжиг слоя InAs в потоке мышьяка в течение 1÷5 мин позволяет сгладить поверхность нанослоя, уменьшив шероховатость поверхности гетероструктуры. Толщина нижнего зародышевого слоя определяется с одной стороны необходимостью восстановления поверхности подложки сапфира и предотвращением ее аморфизации после обязательного предварительного обезгаживания, а с другой стороны - предотвращением механической релаксации перед формированием верхнего зародышевого слоя. Формирование верхнего зародышевого слоя InAs толщиной 1÷3 нм с последующим отжигом в потоке мышьяка в течение 8÷12 минут приводит к релаксации механических напряжений в слое, в результате чего дислокации несоответствия оказываются в нижележащих слоях гетероструктуры и в меньшей степени проникают в высоколегированный слой InAs, что позволяет получать слои InAs с низким удельным сопротивлением более высокого кристаллического качества. Наличие переходного слоя толщиной 1÷3 нм необходимо, чтобы избежать проводимости по вспомогательным слоям под действием нейтронного облучения, в том числе при процессах трансмутационного легирования, что может приводить к изменению чувствительности и удельного сопротивления сенсора магнитного поля. 3 ил.
Description
Изобретение относится к полупроводниковым наногетероструктурам AIIIBV, используемым для изготовления радиационно стойких сенсоров магнитного поля.
Современным термоядерным реакторам присущи большие радиационные (нейтроны, гамма-кванты) и тепловые нагрузки внутри конструкции (120-150°С), которые приводят к деградации характеристик функциональных материалов, используемых в диагностических системах. Поэтому в качестве сенсоров магнитной диагностики преимущественно применяются металлические катушки индуктивности, имеющих относительно высокую устойчивость к радиационным и тепловым нагрузкам. Основной недостаток заключается в том, что выходной сигнал катушек является пропорциональным не магнитной индукции В, а скорости ее изменения ∂B/∂t [1]. Следовательно, катушки требуют интегрирования сигнала во времени. Это приводит к накоплению ошибок, обусловленных рядом радиационно-стимулированных эффектов [2]. Однако реакторы типа DEMO планируется использовать преимущественно в стационарном режиме, когда продолжительность квазистационарных импульсов поля будет достигать сотен часов [3]. Для работы в этих условиях более пригодны сенсоры на эффекте Холла, которые способны с высокой точностью непосредственно измерять В как в случае быстропеременных, так и в случае квазистационарных магнитных полей, поскольку чувствительность сенсора обратно пропорциональна концентрации объемной носителей тока в активной области сенсора и толщине активного токопроводящего слоя. Поэтому, обладая чрезвычайно высокой радиационной стойкостью, поликристаллические металлические нанослои не удовлетворяют необходимой чувствительности сенсоров для их успешного применения. С другой стороны, объемные полупроводниковые материалы и нанослои, выращенные на полупроводниковых подложках, быстро деградируют под действием нейтронных флюенсов выше 1018÷1019 см-2. Материалы на основе сильно легированного n+InAs, выращенного на подложках GaAs как с помощью толстого согласующего метаморфного буфера, так и с тонкими переходными слоями, продемонстрировали достаточно хорошие перспективы как по уровню радиационной стойкости, так и по температурной стабильности [4]. В различных системах контроля магнитного поля прецизионные датчики магнитного поля должны обладать хорошей линейностью в широком диапазоне магнитного поля (1÷8 Тл), малым дрейфом чувствительности и сопротивлением в широком диапазоне температур - от криогенных до высоких (4.2÷600 К). Радиационно стойкие полупроводниковые сенсоры магнитного поля должны сохранять свою работоспособность в условиях «высокого» флюенса нейтронов (до Ф>1021 н/см2), который будет накоплен за время работы термоядерного реактора (~20 лет) [5].
Диэлектрические подложки используются для создания электронной компонентной базы, в том числе, кремний на изоляторе и кремний на сапфире (КНИ, англ.: SOI), для целей увеличения контроля заряда в приповерхностном слое и недопущения растекания тока в буфер и подложку. Известно, что SOI технологии являются одними из наиболее радиационно стойких. Причина заключается в том, что диэлектрическая подложка является то-коблокирующей, и структура дефектов, наведенная проводимость, встроенные поля, возникающие при облучении, слабо влияют на электронные транспортные свойства в вышележащем тонком слое полупроводника. По InAs/GaAs гетероструктурам было показано, что трансмутационные превращения в подложке GaAs и толстом буфере InAlAs переменного состава дают дрейф параметров чувствительности при достаточно большом накопленном флюенсе нейтронов, предположительно из-за трансмутационного легирования. Идея перехода на технологию InAs/сапфир сходна с принципами SOI, однако, имеет дальнейшие преимущества. Поскольку рост InAs/сапфир может предположительно осуществляться как в аморфной, так и поликристаллической фазах, по аналогии с известными работами по ростам GaAs/сапфир, то управление дефектностью, проводимостью и концентрацией электронов в слое InAs является ключевой задачей для создания новых материалов для радиационно стойких сенсоров магнитного поля. Монокристаллические высококачественные структуры InAs/GaAs демонстрируют значительную деградацию подвижности и проводимости в области флюенсов до 1018 см-2. С другой стороны, поликристаллические нанослои имеют исходно гораздо большую плотность структурных дефектов и меньшие значения подвижности электронов, поэтому, дефектообразование в процессе нейтронного облучения должно менее сказываться на параметрах таких материалов.
Известен способ создания гетероструктуры GaAs/InGaAs с квантовой ямой на подложке сапфира [6], основанный на использовании затравочного буферного слоя из AlAs толщиной 5 нм и двухступенчатого роста GaAs при различных температурах. Сперва, при пониженной температуре формировался эпитаксиальный слой GaAs толщиной 100 нм, в котором происходила основная структурная релаксация, а затем слой GaAs активной области выращивался при повышенной температуре 700°С. Несмотря на то, что полученные гетероструктуры обладали отличным оптическим качеством согласно данным фотолюминесценции, для реализации требуется значительное усложнение процесса эпитаксиального роста, требующее создания сложной конструкции переходных слоев гетероструктуры, полученных в широком диапазоне температур от 300°С до 700°С.
Также известен способ [7], в котором исследован начальный этап эпитаксиального роста GaAs на сапфире и показано, что механизм формирования GaAs является островковым. В толстых слоях GaAs наблюдается значительное количество (до 50%) дефектов двойникования. Однако использование тонкого слоя AlAs в роли переходного буфера между подложкой и слоем GaAs позволяет существенно понизить концентрацию дефектов, за счет смачивания подложки сапфира, в отличие от слоев GaAs.
Наиболее близким к предлагаемому изобретению является способ формирования слоев InAs на сапфировой подложке (001), включающий в себя рост слоя арсенида индия толщиной (130÷210)±10 нм, полученного в диапазоне температур подложки 320÷380°С непосредственно на сапфире [8]. Способ основан на эффузии адатомов индия и молекулярного мышьяка из ячеек Кнудсена в процессе эпитаксиального роста методом молекулярно-лучевой эпитаксии.
К недостаткам способа относится низкое кристаллическое качество слоев InAs и высокая шероховатость поверхности, вследствие сильного рассогласования параметров решетки (Al2O3(001)/InAs=0,26) растущего слоя InAs и подложки сапфира, а также высокое удельное сопротивление образца, ввиду отсутствия примесного легирования.
Технический результат предлагаемого изобретения направлен на получение поликристаллических высоколегированных нанослоев InAs высокого кристаллического качества на сапфировой подложке с низкой шероховатостью поверхности и низким удельным сопротивлением, пригодных для создания радиационно стойких сенсоров магнитного поля.
Технический результат достигается тем, что создание легированной гетероструктуры InAs на сапфире для радиационно стойких сенсоров магнитного поля, включает в себя эпитаксиальный рост нижнего зародышевого слоя InAlAs толщиной 1÷5 нм с последующим отжигом в потоке мышьяка в течение 1÷5 мин, затем выращивается верхний зародышевый слой InAs, толщиной 1÷3 нм с последующим отжигом в потоке мышьяка в течение 8÷12 минут, после чего выращивается контактный слой InAs с добавлением легирующей примеси доноров кремния с концентрацией Nd(Si)=(1÷8)⋅1019 см-3, толщиной 50÷300 нм, при температуре роста 400÷480°С.
Технический результат реализован за счет использования комбинированного подхода, включающего в себя использование зародышевых слоев для предотвращения аморфизации поверхности и улучшения кристаллического качества гетероструктуры и применение примесного легирования с высокой концентрацией доноров для снижения удельного сопротивления нано-слоя InAs. Создание нижнего зародышевого слоя InAlAs толщиной 1÷5 нм, расположенного непосредственно на подложке сапфира, необходимо для смачивания поверхности сапфира и предотвращения аморфизации поверхности в процессе проведения эпитаксиального роста вышележащих слоев. Следующий за нижним зародышевым слоем отжиг слоя InAs в потоке мышьяка в течение 1÷5 мин позволяет сгладить поверхность нанослоя, уменьшив шероховатость поверхности гетероструктуры. Толщина нижнего зародышевого слоя определяется с одной стороны необходимостью восстановления поверхности подложки сапфира и предотвращением ее аморфизации после обязательного предварительного обезгаживания, а с другой стороны - предотвращением механической релаксации перед формированием верхнего зародышевого слоя. Формирование верхнего зародышевого слоя InAs толщиной 1÷3 нм с последующим отжигом в потоке мышьяка в течение 8÷12 минут приводит к релаксации механических напряжений в слое, в результате чего дислокации несоответствия оказываются в нижележащих слоях гетероструктуры и в меньшей степени проникают в высоколегированный слой InAs, что позволяет получать слои InAs с низким удельным сопротивлением более высокого кристаллического качества. Наличие переходного слоя толщиной 1÷3 нм необходимо, чтобы избежать проводимости по вспомогательным слоям под действием нейтронного облучения, в том числе при процессах трансмутационного легирования, что может приводить к изменению чувствительности и удельного сопротивления сенсора магнитного поля.
Сформированный далее при пониженной температуре роста 400÷480°С высоколегированный эпитаксиальный слой арсенида индия толщиной 50÷300 нм служит для формирования активной области с низким удельным сопротивлением при создании радиационно стойких сенсоров магнитного поля. Толщина нанослоя InAs при этом определяется требованиями к топологии, чувствительности и стабильности сенсоров магнитного поля, изготовленных на основе применения настоящего способа. Общая слоевая структура с основными параметрами изобретения приведена на фиг. 1.
Ниже приведен пример конкретной реализации способа: на монокристаллическую подложку сапфира α-Al2O3 с c-ориентацией поверхности и односторонней полировкой лицевой стороны диметром 2 дюйма наносился нижний зародышевый слой InAlAs толщиной 1,65 нм, после чего производился отжиг в потоке мышьяка при 650°С в течение 3 минут. Далее эпитак-сиально выращивался верхний зародышевый слой InAs с последующим прерыванием роста на 8 минут для сглаживания поверхности, понижения и стабилизации температуры подложки при 430°С, после чего формировался легированный слой n+-InAs толщиной 100 нм с объемной концентрацией доноров кремния Nd(Si)=3⋅1019 см-3.
Изображение, приведенное на фиг. 2, демонстрирует полученные при помощи метода рентгеновской дифрактометрии кривые качания пика отражения InAs (111) (ω-скан) для прототипа (нелегированный InAs) и настоящего изобретения (легированный InAs), полуширина которых характеризует кристаллическое качество полученных слоев InAs: чем выше полуширина, тем из большего числа зерен состоит поликристалл и тем сильнее различается ориентация этих зерен. Ширина кривой качания на половине высоты для прототипа нелегированного InAs составляет 2.02°, в то время как для высоколегированного InAs - 1.14°, следовательно, использование затравочного буферного слоя InAlAs позволяет существенно повысить структурное совершенство слоя InAs. На фиг. 3 приведены результаты сравнения удельной проводимости ρ и среднеквадратичной шероховатости (RMS) поверхности для прототипа и гетероструктуры настоящего изобретения, измеренные методами Ван-дер Пау и атомно-силовой микроскопии, соответственно. Видно, что использование настоящего способа позволяет уменьшить шероховатость поверхности более чем в 2 раза и увеличить удельную проводимость InAs-слоя в 14.9 раз.
Таким образом, предложенный способ позволяет получать поликристаллические слои InAs на сапфире с низкой шероховатостью, более высоким кристаллическим качеством и высокой проводимостью.
Список использованных источников.
1. I. Bolshakova, I. Vasilevskii, L. Viererbl, I. Ďuran, N. Kovalyova, K. Kovarik, Y. Kost, O. Makido, J. Sentkerestiova, A. Shtabalyuk and F. Shurygin. Prospects of Using In-Containing Semiconductor Materials in Magnetic Field Sensors for Thermonuclear Reactor Magnetic Diagnostics, IEEE Transactions on Magnetics, 2013, 49(1) p. 50-53.
2. И.А. Большакова, C.A. Куликов, Р.Ф. Коноплева, B.A. Чеканов, И.С. Васильевский, Ф.М. Шурыгин, Е.Ю. Макидо, I. Duran, А.П. Мороз, А.П. Штаба-люк. Использование реакторных нейтронов для исследования радиационной стойкости полупроводниковых материалов группы III-V и сенсоров, Физика твердого тела, 2014, 56(1), стр. 156-159.
3. I. Bolshakova, Y. Makido, F. Shurygin, R. Stetsko, I. Vasilevskii, N. Kargin, M. Strikhanov. Ways of improving radiation resistance of magnetic sensors for charged particle accelerators, Functional Materials, 2013, 20(3), p. 397-401.
4. I.S. Vasil'evskii, A.N. Vinichenko, D.I. Rubakin, LA. Bolshakova, N.I. Kargin. High accuracy magnetic field sensors with wide operation temperature range, IOP Conf. Ser.: Mater. Sci. Eng., 2016, 151, 012029.
5. I. Bolshakova, S. Belyaev, M. Bulavin, V. Brudnyi, V. Chekanov, V. Coccorese, I. Duran, S. Gerasimov, R. Holyaka, N. Kargin, R. Konopleva, Ya. Kost, T. Kuech, S. Kulikov, O. Makido, Ph. Moreau, A. Murari, A. Quercia, F. Shurygin, M. Strikhanov, S. Timoshyn, I. Vasil'evskii, A. Vinichenko. Experimental evaluation of stable long term operation of semiconductor magnetic sensors at ITER relevant environment, Nuclear fusion, 2015, 55(8), 083006.
6. R. Kumar, S.K. Saha, A. Kuchuk, Y. Maidaniuk, F.M. de Oliveira, Q. Yan, M. Benamara, Y.I. Mazur, S.-Q. Yu, G.J. Salamo. GaAs layer on c-plane sapphire for light emitting sources, Applied Surface Science, 2021, 542, 148554. https://doi.org/10.1016/j.apsusc.2020.148554.
7. S.K. Saha, R. Kumar, A. Kuchuk, M.Z. Alavijeh, Y. Maidaniuk, Y.I. Mazur, S.-Q. Yu, G.J. Salamo. Crystalline GaAs Thin Film Growth on a c-Plane Sapphire Substrate, Crystal Growth & Design, 2019, 19, p.5088-5096. https://doi.org/10.1021/acs.cgd.9b00448.
8. A. Agrawal, Y. Tchoe. Scaling study of molecular beam epitaxy grown InAs/Al2O3 films using atomic force microscopy, Thin Solid Films, 2020, 709, 138204. https://doi.org/10.1016/j.tsf.2020.138204.
Claims (1)
- Способ формирования поликристаллического высоколегированного нанослоя InAs на подложке сапфира для радиационно стойких сенсоров магнитного поля, включающий в себя проведение эпитаксиального роста нанослоя InAs на подложке сапфира, отличающийся тем, что на полупроводниковой сапфировой подложке первоначально проводят эпитаксиальный рост для получения нижнего зародышевого слоя InAlAs толщиной 1÷5 нм с последующим отжигом в потоке мышьяка в течение 1÷5 мин, затем выращивают верхний зародышевый слой InAs толщиной 1÷3 нм с последующим отжигом в потоке мышьяка в течение 8÷12 минут, после чего выращивают контактный слой InAs с добавлением легирующей примеси доноров кремния с концентрацией Nd(Si)=(1÷8)⋅1019 см-3, толщиной 50÷300 нм, при температуре роста 400÷480°С.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2785803C1 true RU2785803C1 (ru) | 2022-12-13 |
Family
ID=
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2007115898A (ru) * | 2004-09-27 | 2008-11-10 | Гэлиэм Энтерпрайзис Пти Лтд (Au) | Способ и устройство для выращивания пленки нитрида металла группы (iii) и пленка нитрида металла группы (iii) |
CN102644050A (zh) * | 2012-04-16 | 2012-08-22 | 西安理工大学 | 一种多孔AlN/GaN薄膜的制备方法 |
RU2014111334A (ru) * | 2014-03-26 | 2015-10-10 | Открытое акционерное общество "Ордена Трудового Красного Знамени Научно-исследовательский физико-химический институт им. Л.Я. Карпова" (ОАО "НИФХИ им. Л.Я. Карпова") | Способ выращивания пленок нитрида галлия |
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2007115898A (ru) * | 2004-09-27 | 2008-11-10 | Гэлиэм Энтерпрайзис Пти Лтд (Au) | Способ и устройство для выращивания пленки нитрида металла группы (iii) и пленка нитрида металла группы (iii) |
CN102644050A (zh) * | 2012-04-16 | 2012-08-22 | 西安理工大学 | 一种多孔AlN/GaN薄膜的制备方法 |
RU2014111334A (ru) * | 2014-03-26 | 2015-10-10 | Открытое акционерное общество "Ордена Трудового Красного Знамени Научно-исследовательский физико-химический институт им. Л.Я. Карпова" (ОАО "НИФХИ им. Л.Я. Карпова") | Способ выращивания пленок нитрида галлия |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Look | Molecular beam epitaxial GaAs grown at low temperatures | |
Tuppen et al. | A quantitative analysis of strain relaxation by misfit dislocation glide in Si1− x Ge x/Si heterostructures | |
Tabatabaie et al. | Negative differential resistance in AlAs/NiAl/AlAs heterostructures: Evidence for size quantization in metals | |
Yano et al. | Molecular‐beam epitaxial growth and interface characteristics of GaAsSb on GaAs substrates | |
JP2001048698A (ja) | 低抵抗p型単結晶酸化亜鉛およびその製造方法 | |
Bean | Silicon-based semiconductor heterostructures | |
Lee et al. | Effects of low-temperature Si buffer layer thickness on the growth of SiGe by molecular beam epitaxy | |
Schippan et al. | Growth control of MnAs on GaAs (001) by reflection high-energy electron diffraction | |
He et al. | MBE HgCdTe on alternative substrates for FPA applications | |
Klochkov et al. | Growth by molecular beam epitaxy and characterization of n-InAs films on sapphire substrates | |
RU2785803C1 (ru) | Способ формирования поликристаллического высоколегированного нанослоя inas на подложке сапфира для радиационно-стойких сенсоров магнитного поля | |
Tsukamoto et al. | Transport properties of InAs x Sb1− x (0≤ x≤ 0.55) on InP grown by molecular‐beam epitaxy | |
Venkatasubramanian et al. | High quality GaAs on Si using Si0. 04Ge0. 96/Ge buffer layers | |
Vaughan et al. | High-resistivity semi-insulating AlSb on GaAs substrates grown by molecular beam epitaxy | |
Chen et al. | Growth temperature optimization of GaAs-based In0. 83Ga0. 17As on InxAl1− xAs buffers | |
Shang et al. | Low temperature step-graded InAlAs/GaAs metamorphic buffer layers grown by molecular beam epitaxy | |
Gu et al. | InAlAs graded metamorphic buffer with digital alloy intermediate layers | |
CN114038732A (zh) | 一种采用界面失配阵列技术在GaAs衬底上生长GaSb的方法 | |
Soga et al. | Initial stage of epitaxial growth at the high temperature of GaAs and AlGaAs on Si by metalorganic chemical vapor deposition | |
Stalder et al. | Interfacial dislocations detected by scanning tunneling microscopy | |
CN106601839B (zh) | 一种啁啾数字递变结构的低缺陷异变缓冲层 | |
Dong et al. | Electrical properties of Si and Be doped InSb and InAlSb/InSb superlattice applied to improve the doping efficiency | |
Lyle | Research and Development of Electrical Contacts to β-Ga2O3 for Power Electronics and UV Photodetectors | |
He et al. | Influence of GaAs substrate misorientation on the characteristics in undulating compositional step-graded AlGaInAs buffers | |
Chen et al. | Electrical properties of Si 1− x− y Ge x C y and Ge 1− y C y alloys |