RU2785188C1 - Способ получения синтетических углеводородов при энергетической утилизации твердых органических соединений - Google Patents

Способ получения синтетических углеводородов при энергетической утилизации твердых органических соединений Download PDF

Info

Publication number
RU2785188C1
RU2785188C1 RU2022105879A RU2022105879A RU2785188C1 RU 2785188 C1 RU2785188 C1 RU 2785188C1 RU 2022105879 A RU2022105879 A RU 2022105879A RU 2022105879 A RU2022105879 A RU 2022105879A RU 2785188 C1 RU2785188 C1 RU 2785188C1
Authority
RU
Russia
Prior art keywords
synthesis gas
synthesis
coal
gas
gasification
Prior art date
Application number
RU2022105879A
Other languages
English (en)
Inventor
Александр Владимирович Данилов
Александр Сельский
Илья Борисович Еременко
Original Assignee
Александр Владимирович Данилов
Александр Сельский
Filing date
Publication date
Application filed by Александр Владимирович Данилов, Александр Сельский filed Critical Александр Владимирович Данилов
Application granted granted Critical
Publication of RU2785188C1 publication Critical patent/RU2785188C1/ru

Links

Images

Abstract

Изобретение относится к способу получения синтетических углеводородов, при котором полученный при газификации угля синтез-газ, содержащий Н2 и СО, обессеривают и затем подают в реактор синтеза Фишера-Тропша, где посредством каталитических реакций образуются углеводороды, при этом обеспечивают молярное соотношение между Н2 и СО 1,9-2,0:1, а полученные углеводороды отводят потребителю. Способ характеризуется тем, что перед газификацией осуществляют подготовку угля и накопление его в промежуточном герметичном бункере-накопителе, а газификацию угля проводят при подаче парокислородной смеси, которую предварительно нагревают выходящим при газификации синтез-газом, после чего синтез-газ очищают от угольной пыли, смолы и направляют в эжектор для обеспечения синтез-газу дополнительной движущей силы перед двухступенчатой очисткой от сернистых соединений, затем осуществляют непрерывную мокрую очистку известковым раствором и сухую адсорбционную очистку синтез-газа от сернистых соединений и окиси углерода при непрерывной регенерации адсорбента нагретой частью синтез-газа и направляют в буферный накопительный газгольдер, из которого часть синтез-газа используют для выработки электроэнергии на мини ТЭЦ, необходимой для получения чистого водорода, участвующего в реакции синтеза Фишера-Тропша, а основную часть направляют через компрессор высокого давления и теплообменный аппарат в блок смешения с полученным путем электролиза воды чистым газообразным водородом, а после нагрева смеси в пусковом теплообменнике подают ее в реактор синтеза. Технический результат заключается в повышении выхода готового продукта при одновременном снижении энергетических затрат за счет непрерывного процесса получения синтез-газа с последующей переработкой его в синтетический углеводородный продукт. 4 з.п. ф-лы, 1 ил.

Description

Настоящее изобретение относится к производству синтетических жидких углеводородных фракций из твердых органических соединений и их смесей при их энергетической утилизации.
Для производства синтетических жидких углеводородных фракций необходимо твердое сырье, в котором содержится органический материал. В производственном процессе твердое сырье подготавливают к переработке, газифицируют, превращают в синтез-газ, который затем охлаждают и подвергают очистке от вредных примесей. Полученный синтез-газ далее превращают в синтетические жидкие углеводородные фракции на реакторе синтеза. Полученные синтетические жидкие углеводороды затем можно перерабатывать на нефтеперерабатывающих заводах в качестве заменителя нефтяного сырья.
В предложенном способе переработки в качестве сырья можно использовать органические соединения такие как уголь, угольные шламы, древесину, отходы сельскохозяйственного производства, резинотехнические и полиэтиленовые изделия, а также их смеси.
Известно, что первоначальное взаимодействие углерода, содержащегося в твердых органических соединениях, с водяным паром происходит по формуле:
С + Н2О = СО + Н2
Неочищенный синтез-газ, состоящий из Н2, СО, СО2, Н2S, полученный из угля газификации, как правило имеет молярное соотношение водорода к монооксиду углерода не более значения 0,7 по сравнению с идеальным молярным соотношением, равным 2. Это молярное соотношение настраивается в сторону повышения до 1,5 с помощью пропускаемого водяного пара совместно с кислородом через раскаленный окисляемый уголь.
Превращение синтез-газа в высшие углеводороды на железных и кобальтовых катализаторах было открыто в лаборатории исследования топлив Института угля в Германии Франсом Фишером и Гансом Тропшем в 1926 году и носит их имена. Реакцию они проводили в проточном реакторе при температуре 180-360°С и давлении до 4,5 МПа. Продуктами являются широкая фракция углеводородов в основном линейного строения от С1 до С100.
Известен способ производства жидкого углеводородного продукта из твердой биомассы (RU2495908, МПК С10G 2/00, опубл.20.10.2013), который включает газификацию твердой биомассы в газогенераторе для получения исходного синтез-газа; подготовку исходного синтез-газас очисткой исходного синтез-газа для получения очищенного синтез-газа, подготовка включает снижение температуры исходного синтез-газа в холодильнике с попутным получением насыщенного пара; введение очищенного газа в реакцию синтеза Фишера-Тропша в реакторе синтеза для получения жидкого углеводородного продукта; обработку продукта для разделения жидкого углеводородного продукта, полученного в процессе синтеза Фишера-Тропша, включает также перегревание насыщенного пара, полученного посредством холодильника, в пароперегревателе для получения перегретого пара путем введения насыщенного пара в пароперегреватель перед использованием указанного насыщенного пара.
Известен способ осуществления реакции синтеза Фишера-Тропша (RU 2503706, МПК С10G 2/00, опубл.10.01.2014), в котором: неочищенный газ, содержащий CO и H2, полученный при газификации угля, обессеривают и затем в качестве исходного газа подают в устройство для проведения реакции синтеза Фишера-Тропша, в котором посредством каталитических реакций из оксида углерода и водорода образуются углеводороды, при этом углеводороды отводят в виде жидких продуктов, газовый поток, содержащий CO и CO2, выходящий из устройства для синтеза Фишера-Тропша, сжимают и подают на участок конверсии, на котором CO превращают водяным паром в H2 и CO2, и выходящий с участка конверсии после очистки газ, из которого удалены CO2 и/или другие компоненты, кроме H2, отводится обратно в качестве газа с высоким содержанием H2 вместе с обессеренным исходным газом в устройство для проведения реакции синтеза Фишера-Тропша, при этом частичный поток обессеренного исходного газа отводят и подают перед компрессором в контур с циркулирующим газовым потоком, а в газовом потоке, подаваемом в устройство для синтеза Фишера-Тропша, задают молярное соотношение между H2 и CO, составляющее не менее 1,5:1.00.
Недостатком известных способов является периодичность процесса переработки твердых органических соединений, что отрицательно сказывается на эффективности процесса и отражается на энергетических затратах.
В данных изобретениях отсутствует начальный технологический цикл, включающий подготовку и накопление твердого органического сырья к последующей газификации. Не указано, каким образом обеспечить эффективность поддержания горения, чтобы температура в зоне горения твердых органических соединений в газификаторе не снижалась ниже 900°, начиная с которой прекращается получение синтез-газа. В процессе движения синтез-газа от газификатора до скруббера он должен преодолеть сопротивление технологических аппаратов, что значительно влияет на производительность его получения. Не описан процесс удаления смолистых соединений в процессе очистки синтез газа, а также не решен вопрос регенерации фильтрующих элементов от сернистых соединений. Не описано, как увеличить долю водорода в газовом потоке перед реактором синтеза, если концентрации водорода не хватает, то есть, где его взять в необходимом количестве при циркуляции газового потока с выхода из реактора синтеза обратно на вход в реактор. При пуске технологического процесса необходимая первоначальная температура в реакторе синтеза для начала протекания реакции должна быть не менее 200°С, в данных изобретениях не указано, за счет какого источника тепла будет разогреваться реактор синтеза первоначально.
Технический результат настоящего изобретения заключается в повышении выхода готового продукта при одновременном снижении энергетических затрат за счет непрерывного процесса получения синтез-газа с последующей переработкой его в синтетический углеводородный продукт.
Указанный технический результат достигается способом получения синтетических углеводородов, при котором полученный при газификации угля синтез-газ, содержащий Н2 и СО, обессеривают и затем подают в реактор синтеза Фишера-Тропша, где посредством каталитических реакций образуются углеводороды, при этом обеспечивают молярное соотношение между Н2 и СО 1,9 -2.0:1, а полученные углеводороды отводят потребителю. В отличие от прототипа перед газификацией осуществляют подготовку угля и накопление его в герметичном бункере-накопителе, а газификацию угля проводят при подаче парокислородной смеси, которую предварительно нагревают выходящим при газификации синтез-газом, после чего синтез-газ очищают от угольной пыли, смолы и направляют в эжектор для обеспечения синтез-газу дополнительной движущей силы перед первичной непрерывной очисткой от сернистых соединений, затем осуществляют непрерывную мокрую очистку известковым раствором и сухую адсорбционную очистку синтез-газа от сернистых соединений и окиси углерода при непрерывной регенерации адсорбента нагретой частью синтез-газа и направляют в буферный накопительный газгольдер, из которого часть синтез-газа используют для выработки электроэнергии на мини ТЭЦ, необходимой для получения чистого водорода, участвующего в реакции синтеза Фишера-Тропша, а основную часть направляют через компрессор высокого давления и теплообменный аппарат в блок смешения с полученным путем электролиза воды чистым газообразным водородом, а после нагрева смеси в пусковом теплообменном аппарате подают ее в реактор синтеза Фишера- Тропша.
Согласно изобретению, в процессе подготовки угля для газификации осуществляют его очистку от металлических включений, дробление до необходимой фракции, удаление влаги.
Согласно изобретению, процесс очистки синтез-газа в адсорбере обеспечивают последовательно в трех режимах: очистки, регенерации адсорбента и ожидания включения в работу восстановленного адсорбента.
Согласно изобретению часть синтез-газа, используемого для регенерации адсорбента, нагревают дымовыми газами от печи утилизации остаточных газов.
Согласно изобретению, полученный в реакторе синтеза готовый продукт разделяют как минимум на синтетический парафин и синтетическую смесь бензино-дизельной фракции с водой.
Сущность изобретения поясняется чертежом, на котором представлена технологическая схема примера получения синтетических углеводородов из бурого угля.
В соответствии с технологической схемой получение синтетических углеводородов включает в себя: очистку сырья от металлических включений 1, дробление сырья 2, удаление из него воды 3, складирование сухого угля в герметичном бункере-накопителе 4, подачу сырья в загрузочный бункер 5 газификатора 6, выделение из твердых органических соединений углерода и преобразование его в газообразный реагент (синтез-газ) в газификаторе 6, нагрев синтез-газом, выходящим из газификатора 6, парокислородной смеси в перегревателе 7 с последующей подачей ее на газификатор, очистку синтез-газа в циклоне 8 от угольной пыли, удаление ее пневматическим камерным насосом 9, охлаждение синтез-газа в котле-утилизаторе 10, удаление из него пыле-смолистых остатков (шлама) в пенном пылеуловителе 11. В эжекторе 12 синтез-газу придают дополнительную движущую силу для преодоления сопротивления аппаратов при движении его от газификатора 6. В скруббере 13 осуществляют первоначальную очистку синтез-газа от сернистых соединений, в сепараторе 14 удаляют остаточный известковый раствор из синтез-газа, посредством компрессора низкого давления 15 обеспечивают преодоление сопротивления движению синтез-газа через адсорберы 16, в нагревателе17 газ регенерации нагревают для восстановления цеолита, расположенного в адсорберах. Из буферного накопительного газгольдера синтез-газа 18 часть его отбирают для получения электроэнергии в мини-ТЭЦ 19, основную часть подают на компрессор высокого давления 20, создающий необходимое давление для протекания реакции синтеза Фишера-Тропша в реакторе синтеза 21, в котором происходит превращение синтез-газа в синтетические углеводороды. В рекуперативном теплообменном аппарате 22 синтез-газ нагревают охлаждающими продуктами синтеза после реактора 21, в газовом смесителе 23смешивают синтез-газ счистым газообразным водородом, в пусковом теплообменном аппарате 24 синтез-газ разогревают при пуске технологического процесса. В сепараторе 25 отделяют нагретое жидкое синтетическое масло от синтетических газообразных углеводородов и паров воды, в аппарате воздушного охлаждения 26 охлаждают синтетическое масло, в аппарате воздушного охлаждения 27 охлаждают синтетические углеводородные фракции и пары воды, в сепараторе 28 разделяют жидкие синтетические углеводороды и воду от непрореагировавших газов синтеза, которые утилизируются в технологической печи 29.
Представленная технологическая схема реализуется следующим образом.
Бурый уголь в качестве сырья направляется на магнитный метало-отделитель 1 с целью очистки его от возможных включений металлических примесей как черного, так и цветного металлов.
Затем бурый уголь подается на дробилку 2, где происходит его дробление до необходимой фракции, и далее равномерно подается в паровую трубчатую сушилку 3, в которой происходит уменьшение содержания как внешней влаги на поверхности бурого угля, так и внутренней влаги, находящейся в трещинах и порах угольной фракции. Из паровой трубчатой сушилки сухой бурый уголь направляется в герметичный бункер-накопитель4, что позволяет осуществлять процесс далее независимо от вынужденной остановки выше перечисленного технологического оборудования.
Сухой бурый уголь из герметичного бункера-накопителя 4 дозированно подается в загрузочный бункер 5 газификатора 6, из которого уголь также дозированно направляется в реакционную камеру данного газификатора. В реакционной камере газификатора 6 происходит высокотемпературный процесс взаимодействия углерода сырья с кислородом, проводимый с целью получения и удаления из реакционной камеры газификатора 6 горючих газов, таких как синтез-газ, диоксид углерода, метан совместно с другими инертными газами, образующимися при сгорании угля в парокислородной среде. Газификацию осуществляют при помощи парокислородной смеси, подаваемой в трубное пространство парокислородного перегревателя 7, с целью нагрева её до заданной температуры, обеспечивающей увеличение эффективности реакции в зоне горения бурого угля. Из выхода трубного пространства парокислородного перегревателя 7 перегретая парокислородная смесь подается далее в нижнюю часть газификатора 6, на колосниковую решетку, встроенную в реакционную камеру. В зоне горения реакционной камеры газификатора 6 выделяется достаточное количество тепла, необходимое для эндотермических реакций газификации и термического разложения угля.
Уголь при газификации в стационарном слое во время своего движения в нижнюю часть реакционной камеры проходит следующие условные зоны:
- сушку;
- термическое разложение;
- газификацию;
- горение.
Образовавшаяся из сгоревшего угля зола в твердом состоянии удаляется из нижней части газификатора 6 и затем может использоваться при производстве строительных материалов.
Синтез-газ с увлеченной угольной пылью выходит из газификатора 6 с высокой температурой через верхний боковой отбор реакционный камеры и направляется в межтрубное пространство парокислородного перегревателя 7, где отдает часть тепла и затем направляется в гравитационный циклон 8 для отделения от синтез-газа угольной пыли, которая из нижней части циклона 8 удаляется насосом 9. После циклона 8 синтез-газ направляется в трубное пространство котла-утилизатора 10 для дальнейшего охлаждения, а в межтрубное пространство котла-утилизатора 10 подается вода с целью нагрева её до перехода в парообразное состояние. На выходе из трубного пространства котла-утилизатора 10 синтез-газ выходит с повышенной температурой для исключения коррозионных процессов в трубном пространстве котла-утилизатора 10. После котла-утилизатора 10 синтез-газ направляется на вход пенного пылеуловителя 11, во внутренней конструкции которого имеется переливная тарелка, проходя через которую синтез-газ очищается от остатков угольной пыли и смолистых соединений в процессе её дальнейшего охлаждения за счет воды, подаваемой на переливную тарелку. Шлам, состоящий из смеси воды, угольной пыли и смолы, удаляется из нижней части пенного пылеуловителя 11 на очистные сооружения.
Максимально очищенный от угольной пыли и смолы синтез-газ с пенного пылеуловителя 11 поступает на вход эжектора 12, установленного непосредственно на скруббере 13. Эжектор 12 предназначен для уменьшения сопротивления движению синтез-газа от выхода из газификатора 6 до входа в скруббер 13. На выходе из эжектора 12 сырой синтез-газ сразу попадает в промывную зону скруббера 13, где происходит удаление из него и поглощение известковой водой сернистых соединений, образовавшиеся в процессе газификации угля. Технология очистки от сернистых соединений в скруббере 13 основана на связывании оксидов серы водной суспензией извести с образованием сульфита кальция и последующем его окислении до гипса по отдельному технологическому процессу. Полученный сульфит кальция выводится из нижней части скруббера 13, а предварительно очищенный от сернистых соединений синтез- газ из верхней части скруббера 13 направляется в сепаратор 14 для удаления из него известкового водного раствора. Затем компрессором низкого давления 15 синтез-газ под определенным давлением и температурой подается на адсорбционный блок концевой сероочистки синтез-газа 16.
Адсорбционный блок концевой сероочистки 16 состоит из трех реакторов, в каждом из которых находится катализатор, состоящий из синтетических цеолитов. Нагреватель синтез-газа 17 предназначен для последующей последовательной регенерации катализатора адсорбционного блока 16. В процессе очистки от сернистых соединений происходит одновременно и удаление диоксида углерода и других попутных газов. Регенерация катализатора происходит нагретым синтез-газом в нагревателе 17, причем некоторое время сброс газа идет на печь утилизации остаточных газов 29, а затем газ регенерации направляется в боковую часть скруббера 13.
Очищенный и охлажденный синтез-газ на выходе из адсорбционного блока 16 направляется в накопительный газгольдер 18 для последующей переработки. Накопление синтез-газа в газгольдере позволяет проводить его получение и дальнейшее превращение в синтетические продукты с минимальной зависимостью друг от друга. Часть синтез-газа из газгольдера направляется на мини-ТЭЦ 19 для выработки электроэнергии и производства чистого газообразного водорода путем электролиза воды. Остальной синтез-газ из газгольдера 18 направляется на вход компрессора высокого давления 20, в котором сжимается до необходимого давления и температуры, обеспечивающих протекание синтеза Фишера-Тропша в реакторе синтеза 21,и подается в межтрубное пространство теплообменного аппарата 22 для предварительного охлаждения горячих продуктов реакции, поступающих из нижней части трубного пространства реактора синтеза 21.
Из теплообменного аппарата 22 синтез-газ подается в газовый смеситель 23 для смешения с водородом и далее с достигнутым необходимым молярным соотношением Н2/СО направляется в трубное пространство пускового теплообменного аппарата 24, в котором за счет кратковременной подачи водяного пара в межтрубное пространство он нагревается до заданной температуры, что необходимо для начала процесса протекания реакции в реакторе синтеза 21.После пускового теплообменного аппарата 24 нагретый до заданной температуры синтез-газ направляется в трубное пространство реактора синтеза 21. В случае применения катализаторов на основе кобальта, подача водорода в реактор необходима также для первоначальной его активации.
Реактор синтеза 21 представляет собой стальной вертикальный теплообменник, в трубном пространстве которого находится катализатор. Процесс синтеза на катализаторе происходит при заданном давлении и температуре с выделением избыточного тепла. Для отбора тепла из реактора синтеза 21 в его межтрубное пространство подается вода, которая в процессе охлаждения реактора до заданной температуры превращается в водяной пар.
Полученные продукты реакции из реактора синтеза направляются в трубное пространство теплообменного аппарата 22 и частично охлаждаясь отдают часть своего тепла синтез-газу, направляющемуся в реактор синтеза 21. Частично охлажденная газожидкостная смесь полученных синтетических продуктов после теплообменного аппарата 22 направляется в сепаратор 25, где из его нижней части выводится синтетический парафин, который затем направляется в аппарат воздушного охлаждения 26 и далее в резервуарный парк. Газообразная смесь углеводородной фракции, паров воды и инертных газов из верхней части сепаратора 25 направляются в аппарат воздушного охлаждения 27 для окончательного снижения температуры смеси, а оттуда в сепаратор 28, где происходит отделение несконденсированных газов от синтетической бензино-дизельной фракции и воды.
Сконденсированная синтетическая бензино-дизельная фракция и вода с нижней части сепаратора 28направляется в промежуточный сырьевой парк для отделения воды и последующей её реализации или переработки. Не сконденсированные остаточные газы из верхней части сепаратора 28 направляются в печь утилизации остаточных газов 29.
Изобретение может быть использовано в угольной промышленности с учетом постепенного истощения открытых месторождений нефти и возрастанием требований к охране окружающей среды. Переработка угля в местах его добычи позволит получать сразу жидкое топливо, что значительно сократит нагрузку на подвижный состав и железные дороги.
Продукты переработки синтетических углеводородов, получаемых из углей, позволят пересмотреть основы использования тепловой энергии, которая образуется в процессе их производства, что приведет к увеличению общего энергетического КПД угольной промышленности.
Таким образом, предложенное изобретение позволяет повысить выход готовых продуктов при одновременном снижении энергетических затрат за счет непрерывного процесса получения синтез-газа и последующей его переработки в синтетические углеводороды.

Claims (5)

1. Способ получения синтетических углеводородов, при котором полученный при газификации угля синтез-газ, содержащий Н2 и СО, обессеривают и затем подают в реактор синтеза Фишера-Тропша, где посредством каталитических реакций образуются углеводороды, при этом обеспечивают молярное соотношение между Н2 и СО 1,9-2,0:1, а полученные углеводороды отводят потребителю, отличающийся тем, что перед газификацией осуществляют подготовку угля и накопление его в промежуточном герметичном бункере-накопителе, а газификацию угля проводят при подаче парокислородной смеси, которую предварительно нагревают выходящим при газификации синтез-газом, после чего синтез-газ очищают от угольной пыли, смолы и направляют в эжектор для обеспечения синтез-газу дополнительной движущей силы перед двухступенчатой очисткой от сернистых соединений, затем осуществляют непрерывную мокрую очистку известковым раствором и сухую адсорбционную очистку синтез-газа от сернистых соединений и окиси углерода при непрерывной регенерации адсорбента нагретой частью синтез-газа и направляют в буферный накопительный газгольдер, из которого часть синтез-газа используют для выработки электроэнергии на мини ТЭЦ, необходимой для получения чистого водорода, участвующего в реакции синтеза Фишера-Тропша, а основную часть направляют через компрессор высокого давления и теплообменный аппарат в блок смешения с полученным путем электролиза воды чистым газообразным водородом, а после нагрева смеси в пусковом теплообменнике подают ее в реактор синтеза.
2. Способ по п. 1, отличающийся тем, что в процессе подготовки угля для газификации осуществляют его очистку от металлических включений, дробление до необходимой фракции, удаление влаги.
3. Способ по п. 1, отличающийся тем, что процесс очистки синтез-газа в адсорбере обеспечивают последовательно в трех режимах: очистки, регенерации адсорбента и ожидания включения в работу восстановленного адсорбента.
4. Способ по п. 1, отличающийся тем, что часть синтез-газа, используемого для регенерации адсорбента, нагревают дымовыми газами от печи утилизации остаточных газов.
5. Способ по п. 1, отличающийся тем, что полученный в реакторе синтеза готовый продукт разделяют как минимум на синтетический парафин и синтетическую смесь бензино-дизельной фракции с водой.
RU2022105879A 2022-03-05 Способ получения синтетических углеводородов при энергетической утилизации твердых органических соединений RU2785188C1 (ru)

Publications (1)

Publication Number Publication Date
RU2785188C1 true RU2785188C1 (ru) 2022-12-05

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503706C2 (ru) * 2008-05-28 2014-01-10 Тиссенкрупп Уде Гмбх Способ осуществления синтеза фишера-тропша
CN104017609A (zh) * 2014-05-21 2014-09-03 梁鹏 一种煤热解气体干法净化、裂解及馏分回收装置及工艺
CN110055106A (zh) * 2019-04-03 2019-07-26 浙江天禄环境科技有限公司 一种低阶煤分质利用多联产制备甲醇和油的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503706C2 (ru) * 2008-05-28 2014-01-10 Тиссенкрупп Уде Гмбх Способ осуществления синтеза фишера-тропша
CN104017609A (zh) * 2014-05-21 2014-09-03 梁鹏 一种煤热解气体干法净化、裂解及馏分回收装置及工艺
CN110055106A (zh) * 2019-04-03 2019-07-26 浙江天禄环境科技有限公司 一种低阶煤分质利用多联产制备甲醇和油的方法

Similar Documents

Publication Publication Date Title
Fuchs et al. Dual fluidized bed gasification of biomass with selective carbon dioxide removal and limestone as bed material: A review
US10087121B2 (en) Production of hydrocarbon liquids
Heidenreich et al. New concepts in biomass gasification
US20190322954A1 (en) Processes For Producing High Biogenic Concentration Fischer-Tropsch Liquids Derived From Municipal Solid Wastes (MSW) Feedstocks
Pfeifer et al. In-situ CO2-absorption in a dual fluidized bed biomass steam gasifier to produce a hydrogen rich syngas
RU2544666C2 (ru) Регулирование состава синтез-газа в установке парового риформинга метана
CN101959996B (zh) 用于气化作用的颗粒状组合物及其制备和连续转化
DK2190950T3 (en) Method and apparatus for production of liquid biofuel from solid biomass
US20080098654A1 (en) Synthetic fuel production methods and apparatuses
US20080103220A1 (en) Synthetic fuel production using coal and nuclear energy
JP2010024448A (ja) 代替天然ガスの製造設備及び方法
MXPA05000222A (es) Metodo para la produccion de mezclas gaseosas que contienen hidrogeno.
US20110210292A1 (en) Gasification System And Process For Maximizing Production Of Syngas and Syngas-Derived Products
EP2501788A1 (en) Sorption enhanced methanation of biomass
MX2009000698A (es) Control de la composicion de gas de sintesis de un reformador de metano con vapor.
CN102597173A (zh) 具有原位co2捕集的合成燃料和化学品生产
WO2012051922A1 (en) Medium & low temperature pyrolysis system for coal and process for producing upgraded coal, pyrolysis gas with high calorific value, and tar or liquefied synthetic oil by using the same
WO2014209605A1 (en) Acid gas management in liquid fuel production process
Speight Gasification processes for syngas and hydrogen production
JP4644831B2 (ja) バイオマスからの液体燃料製造装置
Liu et al. Synthetic natural gas production by sorption enhanced steam hydrogasification based processes for improving CH4 yield and mitigating CO2 emissions
JP4711980B2 (ja) バイオマスからの液体燃料製造装置
RU2333238C2 (ru) Способ переработки органических отходов (варианты)
RU2785188C1 (ru) Способ получения синтетических углеводородов при энергетической утилизации твердых органических соединений
RU2476583C1 (ru) Способ переработки углеродосодержащего сырья и катализатор для его осуществления