RU2785098C1 - Способ очистки газосборного коллектора куста скважины - Google Patents

Способ очистки газосборного коллектора куста скважины Download PDF

Info

Publication number
RU2785098C1
RU2785098C1 RU2021136145A RU2021136145A RU2785098C1 RU 2785098 C1 RU2785098 C1 RU 2785098C1 RU 2021136145 A RU2021136145 A RU 2021136145A RU 2021136145 A RU2021136145 A RU 2021136145A RU 2785098 C1 RU2785098 C1 RU 2785098C1
Authority
RU
Russia
Prior art keywords
gas
cleaning
inhibitor
gas collection
hydrate formation
Prior art date
Application number
RU2021136145A
Other languages
English (en)
Inventor
Александр Николаевич Юрьев
Теймур Тельманович Рагимов
Арслан Арсланович Юнусов
Артур Альмирович Галездинов
Ильшат Рамильевич Хайруллин
Original Assignee
Общество с ограниченной ответственностью "Газпром добыча Уренгой"
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Газпром добыча Уренгой" filed Critical Общество с ограниченной ответственностью "Газпром добыча Уренгой"
Application granted granted Critical
Publication of RU2785098C1 publication Critical patent/RU2785098C1/ru

Links

Images

Abstract

Изобретение относится к газодобывающей промышленности и может быть использовано при очистке газосборных коллекторов от гидратных отложений и льда. Технический результат - повышение эффективности очистки газосборного коллектора от льдообразований и гидратных отложений. В способе очистки газосборного коллектора куста скважины, включающем прогрев осушенным газом, который пускают со стороны установки комплексной подготовки газа после дожимной компрессорной станции, дополнительно, непосредственно во время подачи осушенного газа в шлейф, вводят ингибитор гидратообразования матанол, нагрев ингибитора гидратообразования осуществляют в теплообменнике до температуры плюс 60°С, при этом нагрев происходит за счет пара, получаемого от передвижной парогенераторной установки, а подачу ингибитора гидратообразования в газосборный коллектор куста скважины осуществляют при помощи передвижного устройства подачи ингибитора в места наиболее вероятного скопления ледяных образований через регулирующее устройство. 1 ил., 1 табл.

Description

Изобретение относится к газодобывающей промышленности и может быть использовано при очистке газосборных коллекторов (далее - ГСК) от гидратных отложений и льда.
В настоящее время основные газовые месторождения Западной Сибири - Вынгапуровское, Медвежье, Уренгойское, Ямбургское, Комсомольское и др. находятся на стадии падающей добычи. Для этой стадии характерно снижение дебитов скважин, а также возрастание удельного количества выносимой скважинами пластовой воды. Снижение производительности скважин приводит к уменьшению температуры газа в конце шлейфа (за счет большего времени теплообмена с окружающей средой) вплоть до отрицательных по Цельсию значений в зимнее время года. Это означает появление нового технологического осложнения в системах внутрипромыслового сбора газа - льдообразования и ледяных пробок, а также приводит к увеличению удельного расхода ингибитора гидратообразования.
Показатели гидравлической эффективности трубопроводов характеризуют отклонение фактической пропускной способности трубопровода от расчетных значений. При уменьшении уровня добычи происходит снижение расхода газа в трубопроводе, что приводит к нарушению условий выноса жидкости, ее накоплению в пониженных участках и возникновению дополнительных гидравлических сопротивлений. Кроме того, накопление жидкости в условиях низких температур окружающей среды, может приводить к возникновению ледяных отложений на внутренней поверхности трубопроводов, создающих дополнительное гидравлическое сопротивление. В результате происходит увеличение фактических потерь давления в трубопроводе по отношению к расчетным значениям, что выражается в снижении его гидравлической эффективности. Наиболее вероятное скопление ледяных образований наблюдается в пониженных участках газосборного коллектора, в переходах через водные преграды.
Изменение в темпах отбора добычи газа сказывается не только на гидравлические, но и на тепловые режимы эксплуатации промысловых газосборных сетей. Существует ряд факторов изменения тепловых режимов трубопроводов: надземная их прокладка, несовершенство теплоизоляции, снижение расходов газа и устьевых температур эксплуатационных скважин. Льдообразование является важной отличительной особенностью завершающего периода разработки месторождения. Температуры газа большинства (~85%) сеноманских шлейфов на входе в УКПГ в зимнее время оказываются ниже 0°С. Для предупреждения гидратообразования в качестве ингибитора применяется метанол, в том числе и для предупреждения льдообразования и устранения ледяных отложений.
Известен способ предупреждения и ликвидации газовых гидратов в системах добычи газа с использованием ингибиторов гидратообразования на основе метанола или гликолей, в частности, диэтиленгликоля, который используется для осушки природного газа [Истомин В.А., Квон В.Г. Предупреждение и ликвидация газовых гидратов в системах добычи газа, М.: ООО «ИРЦ Газпром, 2004 г., с. 128-137].
Существенным недостатком указанного способа является необходимость в подаче значительного количества метанола со стороны куста скважин, для того чтобы обеспечить концентрацию водометанольного раствора, достаточную для разложения льда на всем протяжении газосборного шлейфа, и, как следствие, это приводит к увеличению расхода метанола по УКПГ.
Также известен способ пуска шлейфов в эксплуатацию после длительной остановки, в котором производят поэтапно следующие операции: подготовительные работы; пуск и прогрев скважины на факел; заполнение шлейфа газом; подача ингибитора гидратообразования в шлейф; прогрев шлейфа и вывод его на рабочий режим [РД 9510-52-84, Инструкция по пуску шлейфов в эксплуатацию после длительной остановки, Тюмень, РЭМ ТюменНИИГипрогаза, 1984 г., с. 5-39].
Недостатками известного способа является то, что пуск и прогрев ствола скважины, а также прогрев шлейфа рекомендуется производить, продувая систему на факел в течение как минимум 30 мин, при этом обязательна подача ингибитора гидратообразования в шлейф со стороны продувки, кроме того, решение проблемы, когда большая часть льдообразований находится на дальней от точки продувки стороне, затрудняется по причине значительного охлаждения газа до околонулевых температур, снижая общую эффективность борьбы с отложениями льда.
Наиболее близким по технической сущности к заявляемому изобретению является способ пуска шлейфов газовых и газоконденсатных месторождений после длительной остановки [RU 2377400 C1, Е21В 43/24 (2006.01), опубл. 27.12.2009, Бюл. №36], при котором прогрев ГСК осуществляют осушенным газом, который пускают со стороны установки комплексной подготовки газа после дожимной компрессорной станции с температурой не ниже плюс 10°С и с расходом, обеспечивающим прогрев шлейфа от нескольких часов до суток до прогрева пород вокруг шлейфа и освобождения полости шлейфа от конденсированной фазы воды. Газ через шлейф и скважину закачивают в газоносный пласт. Также с целью уменьшения количества осушенного газа высокого давления, закачиваемого в пласт через прогреваемый шлейф, предлагается подача в шлейф (методом распыла в поток газа) со стороны УКПГ отработанного и уже не подлежащего регенерации раствора абсорбента, например, диэтиленгликоля.
Недостатками способа является значительные затраты времени на проведение прогрева ГСК, от нескольких часов до суток, что соответственно приводит к потерям добычи газа.
Технической проблемой, на решение которой направлен предлагаемый способ является сокращение времени на очистку газосборного коллектора от льдообразований и гидратных отложений, а также предотвращение потерь природного газа за счет закрытой схемы продувки обратным ходом с УКПГ через скважину в газоносный пласт.
Техническим результатом, на достижение которого направлено предлагаемое изобретение является повышение эффективности очистки газосборного коллектора от льдообразований и гидратных отложений.
Указанный технический результат достигается способом очистки газосборного коллектора куста скважины, который включает прогрев осушенным газом, который пускают со стороны установки комплексной подготовки газа после дожимной компрессорной станции, дополнительно, непосредственно во время подачи осушенного газа в шлейф, вводят ингибитор гидратообразования, новым является то, что нагрев ингибитора гидратообразования осуществляют в теплообменнике до температуры плюс 60°С, при этом нагрев происходит за счет пара, получаемого от передвижной парогенераторной установки, а подачу ингибитора гидратообразования в газосборный коллектор куста скважины осуществляют при помощи передвижного устройства подачи ингибитора в места наиболее вероятного скопления ледяных образований через регулирующее устройство.
Таким образом, за счет нагрева ингибитора гидратообразования (метанола) в теплообменнике до температуры плюс 60°С, при этом нагрев происходит за счет пара, получаемого от передвижной парогенераторной установки, а подача в ГСК осуществляется при помощи специальной техники для закачки ингибитора, через регулирующее устройство. Температура осушенного газа дополнительно повышается за счет подачи подогретого метанола, тем самым увеличивается эффективность устранения ледяных и гидратных отложений на стенках трубопровода. Благодаря подачи ингибитора в места наиболее вероятного скопления ледяных образований удалось снизить как период обработки, так и расход метанола на каждую операцию.
Сущность заявляемого способа поясняется нижеследующими фигурой и описанием.
На фиг. представлена технологическая схема, состоящая из следующих конструктивных элементов:
1 - фонтанная арматура;
2 - правая рабочая задвижка;
3 - правая контрольная задвижка;
4 - надкоренная задвижка;
5 - коренная задвижка;
6 - левая рабочая задвижка;
7 - левая контрольная задвижка;
8 - буферная задвижка;
9 - факельная задвижка;
10 - секущая задвижка скважины;
11 - очищаемый газосборный коллектор;
12 - передвижная парогенераторная установка;
13 - трубопровод подачи пара в теплообменник;
14 - трубопровод выхода пара в атмосферу;
15 - передвижное устройство подачи ингибитора;
16 - трубопровод подачи метанола в теплообменник;
17 - теплообменник;
18 - трубопровод подачи подогретого метанола;
19 - секущая задвижка подачи сухого газа в ГСК;
20 - задвижка на входе в УКПГ;
21 - трубопровод подачи газа на УКПГ;
22 - регулирующий клапан;
23 - трубопровод подачи сухого газа от ДКС.
Предлагаемый способ осуществляют следующим образом.
Перед очисткой газосборного коллектора 11, его отсекают с помощью закрытия входной задвижки на УКПГ 20, закрытием факельной задвижки 9, после чего открывают секущую задвижку скважины 10, на фонтанной арматуре 1 открывают рабочие задвижки 2 и 6, контрольные задвижки 3 и 7, надкоренную задвижку 4, коренную задвижку 5, буферная задвижка 8 всегда закрыта. После этого подключают передвижную парогенераторную установку 12 и подают пар по трубопроводу 13 через теплообменник 17 и далее по трубопроводу 14 пар выпускают в атмосферу, при этом происходит теплообмен с метанолом, который подается от передвижного устройства подачи ингибитора 15 по трубопроводу 16, после чего подогретый метанол до 60°С по трубопроводу 18 черед регулирующее устройство 22 поступает в трубопровод сухого газа от дожимной компрессорной станции 23. Далее осушенный газ высокого давления, вместе с подогретым метанолом по трубопроводу 23, через открытую задвижку 19 подается в очищаемый газосборный коллектор 11 и закачивается обратным ходом в скважину.
В качестве теплообменника используют известное устройство теплообменник труба в трубе, жестко смонтированном при помощи металлических труб высокого давления.
В качестве передвижного устройства подачи ингибитора используют известное устройство, например, кислотную установку на базе автомобиля Урал-4320 СИН-32, с емкостью объемом 6 м3 и насосной установкой в составе. Необходимое количество метанола для подачи в ГСК определяют с учетом протяженности газосборного коллектора и контролем остатка в емкости указанного устройства.
Достижение технического результата в предполагаемом изобретении оценивают за счет времени, затраченного для проведения операций по очистки газосборного коллектора, а также сокращения потерь углеводородного сырья.
Пример осуществления предлагаемого изобретения.
На предприятии ООО «Газпром добыча Уренгой», на газоконденсатном промысле №5 для повышения устьевых давлений на кусте газоконденсатных скважин (далее - КГС) и уменьшения гидравлических сопротивлений в местах отложений льда и гидратов были проведены испытания предлагаемого изобретения. Для этого перед опорожнением газосборного коллектора 11 куста скважин №5-160, его отсекли с помощью закрытия входной задвижки на УКПГ 20, закрытием факельной задвижки 9 скважины №5318, после чего открыли секущую задвижку 10 скважины №5318, а на соседней скважине №5359 закрыли. На фонтанной арматуре 1 скважины №5318 открыли рабочие задвижки 2 и 6, контрольные задвижки 3 и 7, надкоренную задвижку 4, коренную задвижку 5, буферная задвижка 8 всегда закрыта. После этого подключили передвижную парогенераторную установку 12 и подали пар по трубопроводу 13 через теплообменник 17 и далее по трубопроводу 14 в атмосферу. Метанол с помощью передвижного устройства подачи ингибитора на базе автомобиля Урал-4320 СИН-32 подают через теплообменник 17 по трубопроводу 16 и подогрели до температуры плюс 60°С. Далее в осушенный газ после ДКС высокого давления 5,0 МПа с температурой плюс 5°С, подали подогретый метанол через регулирующее устройство 22, и по трубопроводу 23 через открытую задвижку 19 подали в очищаемый газосборный коллектор 11 с последующей закачкой обратным ходом в скважину.
Для оценки эффективности предложенного способа в программном комплексе Aspen HYSYS были проведены технологические расчеты вариантов очистки газосборного коллектора скважин 5-160, результаты приведены в таблице.
Figure 00000001
Таким образом, использование предлагаемого изобретения позволило сократить потери природного газа без дополнительных монтажных работ в обвязке скважины и газосборном коллекторе, а также снизить удельный расход метанола.

Claims (1)

  1. Способ очистки газосборного коллектора куста скважины, включающий прогрев осушенным газом, который пускают со стороны установки комплексной подготовки газа после дожимной компрессорной станции, дополнительно, непосредственно во время подачи осушенного газа в шлейф, вводят ингибитор гидратообразования матанол, отличающийся тем, что нагрев ингибитора гидратообразования осуществляют в теплообменнике до температуры плюс 60°С, при этом нагрев происходит за счет пара, получаемого от передвижной парогенераторной установки, а подачу ингибитора гидратообразования в газосборный коллектор куста скважины осуществляют при помощи передвижного устройства подачи ингибитора в места наиболее вероятного скопления ледяных образований через регулирующее устройство.
RU2021136145A 2021-12-07 Способ очистки газосборного коллектора куста скважины RU2785098C1 (ru)

Publications (1)

Publication Number Publication Date
RU2785098C1 true RU2785098C1 (ru) 2022-12-02

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589434A (en) * 1985-06-10 1986-05-20 Exxon Production Research Co. Method and apparatus to prevent hydrate formation in full wellstream pipelines
RU2377400C1 (ru) * 2008-07-01 2009-12-27 Евгений Николаевич Астафьев Способ пуска шлейфов газовых и газоконденсатных месторождений после длительной остановки
RU2747601C1 (ru) * 2019-12-23 2021-05-11 Общество с ограниченной ответственностью "Газпром Уренгой" Способ ингибиторной обработки трубопровода
RU204858U1 (ru) * 2020-12-28 2021-06-16 Общество с ограниченной ответственностью "Завод паровых установок ЮНИСТИМ" Передвижная парообразующая установка
RU2761000C1 (ru) * 2020-10-02 2021-12-02 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Способ предупреждения льдообразования в газосборном трубопроводе

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589434A (en) * 1985-06-10 1986-05-20 Exxon Production Research Co. Method and apparatus to prevent hydrate formation in full wellstream pipelines
RU2377400C1 (ru) * 2008-07-01 2009-12-27 Евгений Николаевич Астафьев Способ пуска шлейфов газовых и газоконденсатных месторождений после длительной остановки
RU2747601C1 (ru) * 2019-12-23 2021-05-11 Общество с ограниченной ответственностью "Газпром Уренгой" Способ ингибиторной обработки трубопровода
RU2761000C1 (ru) * 2020-10-02 2021-12-02 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Способ предупреждения льдообразования в газосборном трубопроводе
RU204858U1 (ru) * 2020-12-28 2021-06-16 Общество с ограниченной ответственностью "Завод паровых установок ЮНИСТИМ" Передвижная парообразующая установка

Similar Documents

Publication Publication Date Title
CN110566173B (zh) 一种具有防冻性能的压裂系统
CN103510926B (zh) 一种海底可燃冰的开采方法及系统
RU2785098C1 (ru) Способ очистки газосборного коллектора куста скважины
CN100567858C (zh) 一种直接膨胀式地源热泵的回油控制方法
CN210768659U (zh) 高寒地区凿岩钻孔施工的除尘水箱防结冰系统
CN203978386U (zh) 一种油井注热氮气洗井系统
CN102606885B (zh) 石油天然气脱水净化装置余热回收伴热方法
WO2021239151A1 (zh) 一种天然气水合物新型开发装置及方法
CN108691520A (zh) 一种天然气低成本清洁生产方法
CN212614648U (zh) 一种天然气水合物新型开发装置
CN103089346B (zh) 汽轮机组强迫冷却系统
CN109162672A (zh) 一种天然气井口压力能发电的节流系统
CN201024999Y (zh) 中低压集气装置
RU2377400C1 (ru) Способ пуска шлейфов газовых и газоконденсатных месторождений после длительной остановки
CN204729059U (zh) 一种基于大丛式井组的采气管线清管系统
CN208332777U (zh) 用于冷热一体设备的预防冰堵系统
CN102410670B (zh) 一种煤矿废弃冻结管利用装置及其使用方法
RU2724676C1 (ru) Установка для генерации ультра-сверхкритического рабочего агента
CN202254495U (zh) 一种煤矿废弃冻结管利用装置
CN215063820U (zh) 一种适用于空冷系统的防冻装置
CN106869876A (zh) 一种提高油田采收率的循环采注装置
CN203940402U (zh) 一种基于钻井柴油机余热回收及利用的供热装置
CN214747393U (zh) 一种寒区隧道的保温系统
CN208310751U (zh) 用于改善稠油蒸汽驱后期驱油效果的蒸汽复合驱实验系统
CN209555145U (zh) 一种焦炉机侧除尘水封槽防冻加热系统