RU2784198C1 - Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов - Google Patents

Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов Download PDF

Info

Publication number
RU2784198C1
RU2784198C1 RU2022104875A RU2022104875A RU2784198C1 RU 2784198 C1 RU2784198 C1 RU 2784198C1 RU 2022104875 A RU2022104875 A RU 2022104875A RU 2022104875 A RU2022104875 A RU 2022104875A RU 2784198 C1 RU2784198 C1 RU 2784198C1
Authority
RU
Russia
Prior art keywords
diffusion coefficient
point
sensor
time
galvanic
Prior art date
Application number
RU2022104875A
Other languages
English (en)
Inventor
Вадим Павлович Беляев
Максим Павлович Беляев
Павел Серафимович Беляев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ")
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ")
Application granted granted Critical
Publication of RU2784198C1 publication Critical patent/RU2784198C1/ru

Links

Images

Abstract

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса для определения коэффициента диффузии в строительных изделиях из капиллярно-пористых материалов, а также в пищевой, химической и других отраслях промышленности. Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов заключается в том, что в исследуемом изделии создают равномерное начальное содержание распределенного в твердой фазе растворителя, гидроизолируют верхнюю плоскую поверхность образца, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия, располагают электроды гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия, фиксируют момент времени достижения заданного значения сигнала гальванического датчика и рассчитывают коэффициент диффузии. При этом измеряют изменение во времени сигнала дополнительного гальванического датчика, электроды которого располагают на этой поверхности по концентрической окружности относительно точки импульсного воздействия на другом расстоянии от нее, фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов соответственно первого датчика E 1 и второго датчика E 2 из диапазона (0,7–0,9) E e на нисходящих ветвях кривых изменения сигналов во времени этих двух датчиков. Техническим результатом является повышение точности измерения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов. 1 ил.

Description

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса для определения коэффициента диффузии в строительных изделиях из капиллярно-пористых материалов, а также в пищевой, химической и других отраслях промышленности.
Известен способ определения коэффициента массопроводности и потенциалопроводности массопереноса (А.С. 174005, кл. G 01 k N 421, 951, 1965), заключающийся в импульсном увлажнении слоя материала и измерении на заданном расстоянии от этого слоя изменения влагосодержания материала во времени. Коэффициент массопроводности вычисляется по установленной зависимости. Недостатком этого способа являются осуществление разрушающего контроля опытного образца при размещении датчиков во внутренних слоях исследуемого тела, невозможность определения коэффициента диффузии других растворителей, кроме воды, большая трудоемкость метода при подготовке образцов, необходимость индивидуальной градуировки датчиков по каждому материалу.
Наиболее близким является способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов (патент РФ на изобретение № 2492457, G 01 N 27/26, 15/08, 10.09.2013, Бюл. № 25), заключающийся в создании в исследуемом изделии равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности изделия в контакт с импульсным точечным источником растворителя, гидроизоляции этой поверхности, расположении электродов гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия, определении времени достижения максимума ЭДС гальванического преобразователя и расчете по нему коэффициента диффузии по установленной зависимости.
Недостатком этого способа являются невысокая точность определения момента достижения максимума ЭДС, где производная сигнала преобразователя по времени близка к нулю, и наблюдается недостаточная чувствительность измеряемого параметра к изменению времени.
Техническая задача предлагаемого технического решения предполагает повышение точности измерения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов.
Техническая задача достигается тем, что в способе определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов, имеющих по крайней мере одну плоскую поверхность (например, цементные или гипсовые плиты), включающем создание в исследуемом изделии равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности изделия в контакт с импульсным точечным источником растворителя, гидроизоляции этой поверхности, расположении электродов гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия, фиксировании момента времени достижения заданного значения сигнала гальванического датчика и расчета коэффициента диффузии.
В отличие от прототипа (патент РФ на изобретение № 2492457, G 01 N 27/26, 15/08, 10.09.2013 Бюл. № 25) измеряют изменение во времени сигнала дополнительного гальванического датчика, электроды которого располагают на этой поверхности по концентрической окружности относительно точки импульсного воздействия на другом расстоянии от нее, фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов соответственно первого датчика E 1 и второго датчика E 2 из диапазона (0,7–0,9) E e на нисходящих ветвях кривых изменения сигналов во времени этих двух датчиков, а расчет коэффициента диффузии производят по формуле:
Figure 00000001
,
где r 1 и r 2 – расстояние между электродами соответственно первого и второго гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия; E e - максимально возможное значение сигнала датчиков, соответствующее переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния.
Сущность предлагаемого способа заключается в следующем: к плоской поверхности изделия с равномерным начальным распределением растворителя (в том числе и нулевым) прижимается зонд с импульсным точечным источником дозы растворителя и расположенными на двух концентрических окружностях разного диаметра относительно точки импульсного воздействия на изделие электродами двух гальванических преобразователей. После импульсной подачи дозы растворителя в точку на поверхности изделия зонд обеспечивает гидроизоляцию поверхности изделия в зоне действия источника растворителя и прилегающей к ней области контроля распространения диффузанта. После подачи импульса растворителя (мгновенного увлажнения точки на поверхности изделия) фиксируют два момента времени τ1 и τ2, при которых достигаются равные значения сигнала гальванического преобразователя на нисходящих ветвях кривых изменения сигналов во времени двух датчиков, рассчитывают коэффициент диффузии растворителя в исследуемом материале по установленной зависимости, что обеспечивает повышение точности контроля.
Процесс распространения растворителя в массивном изделии из капиллярно-пористых материалов (при условии, что минимальные размеры изделия относительно точки импульсного воздействия превышают 10 r 2, где r 2 - расстояние от точки импульсного воздействия до электродов наиболее удаленного от нее гальванического преобразователя) после нанесения такого импульса описывается краевой задачей массопереноса в неограниченной среде при нанесении импульсного воздействия от точечного источника массы.
В этом случае изменение концентрации растворителя в капиллярно-пористом материале в зоне действия источника описывается функцией:
Figure 00000002
, (1)
где
Figure 00000003
- концентрация растворителя на поверхности сферы радиусом r относительно точки импульсного подвода дозы растворителя к образцу в момент времени τ; D - коэффициент диффузии растворителя;
Figure 00000004
– плотность абсолютно сухого исследуемого материала; Q – количество жидкой фазы, подведенной из дозатора к плоской поверхности изделия исследуемого капиллярно-пористого материала.
Коэффициент диффузии растворителя D при организации данного процесса массопереноса в изделии связан соотношением:
Figure 00000005
, (2)
где τ max – время, соответствующее максимуму на кривой U(r 0,τ) изменения концентрации на расстоянии r 0 от источника.
Расчетная зависимость для определения искомого коэффициента диффузии получена на основании следующих исследований. После импульсного воздействия дозой растворителя на заданном расстоянии r 0 от точечного источника наблюдается изменение концентрации в виде характерных кривых, имеющих восходящую ветвь от начала импульсного воздействия до момента τmax и нисходящую ветвь, наблюдаемую после наступления момента τmax. При этом одинаковые значения концентрации U *, достигаемые в моменты времени τ1 и τ2 на нисходящих ветвях кривых изменения концентрации во времени на расстояниях соответственно r 1 и r 2 могут быть определены из выражения (1) с учетом (2):
Figure 00000006
(3)
Figure 00000007
(4)
Деление (3) на (4) приводит к следующему выражению:
Figure 00000008
. (5)
Из (5), с учетом выражения (2) для каждого из r 1 и r 2, получено расчетное выражение для определения искомого коэффициента диффузии:
Figure 00000009
(6)
Для определения искомого коэффициента диффузии в предлагаемом способе измерению в моменты времени τ1 и τ2 подлежат не значения концентрации
Figure 00000010
и
Figure 00000011
, а связанные с ними одинаковые значения ЭДС применяемого гальванического преобразователя в отсутствие предварительно найденной в результате градуировки статической характеристики. Для повышения точности необходимо, чтобы в данные моменты времени τ1 и τ2 измеряемое значение ЭДС находилось на среднем (рациональном) участке статической характеристики, характеризующегося стабильным сигналом преобразователя и высокой чувствительностью к изменению концентрации. Исследования показывают, что рациональный участок статической характеристики соответствует изменению ЭДС преобразователя в диапазоне:
(0,7–0,9) E e, (7)
где E e – сигнал преобразователя, соответствующий переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния (максимальный сигнал на плато насыщения статической характеристики). При значениях ЭДС преобразователя свыше 0,9 E e существенно возрастает разброс экспериментальных значений из-за существенной нелинейности статической характеристики и потери чувствительности преобразователя к изменению концентрации растворителя вблизи зоны насыщения из-за существенного ослабления связи молекул растворителя с твердой фазой контролируемого капиллярно-пористого материала. При значениях ЭДС преобразователя ниже 0,7 E e существенно возрастает разброс экспериментальных значений за счет нестабильности сигнала преобразователя, вызванного возрастанием электрического сопротивления контролируемого капиллярно-пористого материала в области низких значений концентрации растворителя.
Пример. Были проведены исследования коэффициента диффузии этанола в плитах, отформованных из пеногипсобетона, толщиной 50 мм, плотностью в сухом состоянии 600 кг/м3. Расстояние от точки нанесения дозы растворителя до расположения электродов гальванических преобразователей: x 1=4 мм и x 2=5 мм. Вносимая доза влаги составляла приблизительно 2×10-5 кг. Расчетное значение ЭДС, соответствующее моментам времени τ1 и τ2, выбиралось приблизительно равным 0,8 E e (фигура 1). В результате получены следующие значения: τ1=3995 с и τ2=3437 с. Рассчитанное по (6) значение коэффициента диффузии равно ≈ 3.62×10-9 м2/с.
Проведенные экспериментальные исследования показали, что случайная погрешность результата определения коэффициента диффузии влаги при доверительной вероятности
Figure 00000012
составляет ≈ 8 %. Длительность эксперимента не превышает 80 минут.

Claims (3)

  1. Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов, заключающийся в том, что в исследуемом изделии создают равномерное начальное содержание распределенного в твердой фазе растворителя, гидроизолируют верхнюю плоскую поверхность образца, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия, располагают электроды гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия, фиксируют момент времени достижения заданного значения сигнала гальванического датчика и рассчитывают коэффициент диффузии, отличающийся тем, что измеряют изменение во времени сигнала дополнительного гальванического датчика, электроды которого располагают на этой поверхности по концентрической окружности относительно точки импульсного воздействия на другом расстоянии от нее, фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов соответственно первого датчика E 1 и второго датчика E 2 из диапазона (0,7–0,9) E e на нисходящих ветвях кривых изменения сигналов во времени этих двух датчиков, а расчет коэффициента диффузии производят по формуле:
  2. Figure 00000013
    ,
  3. где r 1 и r 2 – расстояние между электродами соответственно первого и второго гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия; E e – максимально возможное значение сигнала датчиков, соответствующее переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния.
RU2022104875A 2022-02-24 Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов RU2784198C1 (ru)

Publications (1)

Publication Number Publication Date
RU2784198C1 true RU2784198C1 (ru) 2022-11-23

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2797140C1 (ru) * 2023-03-06 2023-05-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039527B2 (en) * 2003-10-01 2006-05-02 Caliper Life Sciences, Inc. Method for measuring diffusivities of compounds using microchips
RU2492457C1 (ru) * 2012-04-03 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО ТГТУ Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов
RU2677259C1 (ru) * 2018-03-07 2019-01-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Способ определения коэффициента диффузии в листовых ортотропных капиллярно-пористых материалах
RU2705651C1 (ru) * 2019-03-13 2019-11-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Способ определения коэффициента диффузии в листовых ортотропных капиллярно-пористых материалах

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039527B2 (en) * 2003-10-01 2006-05-02 Caliper Life Sciences, Inc. Method for measuring diffusivities of compounds using microchips
RU2492457C1 (ru) * 2012-04-03 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ФГБОУ ВПО ТГТУ Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов
RU2677259C1 (ru) * 2018-03-07 2019-01-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Способ определения коэффициента диффузии в листовых ортотропных капиллярно-пористых материалах
RU2705651C1 (ru) * 2019-03-13 2019-11-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Способ определения коэффициента диффузии в листовых ортотропных капиллярно-пористых материалах

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2797140C1 (ru) * 2023-03-06 2023-05-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов
RU2819561C1 (ru) * 2024-03-07 2024-05-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов

Similar Documents

Publication Publication Date Title
RU2492457C1 (ru) Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов
RU2549613C1 (ru) Способ определения коэффициента диффузии растворителей в массивных изделиях из ортотропных капиллярно-пористых материалов
Quinones et al. Comparison of three calibration procedures for TDR soil moisture sensors
Irvine et al. Non-destructive measurement of stem water content by time domain reflectometry using short probes
Trtnik et al. Measurement of setting process of cement pastes using non-destructive ultrasonic shear wave reflection technique
RU2659195C1 (ru) Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов
Belyaev et al. Implementation of nondestructive testing of massive products in measuring the diffusivity of solvents
RU2784198C1 (ru) Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов
Akram et al. Fringing field impedance sensor for hydration monitoring and setting time determination of concrete material
RU2643174C1 (ru) Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
RU2436066C1 (ru) Способ измерения коэффициента диффузии влаги в капиллярно-пористых листовых материалах
RU2782682C1 (ru) Способ определения коэффициента диффузии в листовых ортотропных капиллярно-пористых материалах
Villain et al. Characterization of water gradients in concrete by complementary NDT methods
RU2782850C1 (ru) Способ определения коэффициента диффузии в массивных изделиях из ортотропных капиллярно-пористых материалов
RU2677259C1 (ru) Способ определения коэффициента диффузии в листовых ортотропных капиллярно-пористых материалах
RU2756665C1 (ru) Способ определения коэффициента диффузии в листовых капиллярно-пористых материалах
Belyaev et al. Method of non-destructive control of the solvent diffusion coefficient in products made from anisotropic porous materials
RU2705706C1 (ru) Способ определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов
RU2682837C1 (ru) Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
RU2705651C1 (ru) Способ определения коэффициента диффузии в листовых ортотропных капиллярно-пористых материалах
RU2739749C1 (ru) Способ определения коэффициента диффузии в массивных изделиях из ортотропных капиллярно-пористых материалов
Freitas et al. Time Domain Reflectometry (TDR) technique–A solution to monitor moisture content in construction materials
RU2737065C1 (ru) Способ определения коэффициента диффузии растворителей в листовых капиллярно-пористых материалах
RU2732477C1 (ru) Способ и устройство для измерения абсолютной влажности материалов
RU2661447C1 (ru) Способ определения коэффициента диффузии растворителей в листовых ортотропных капиллярно-пористых материалах