RU2782588C1 - Способ обнаружения гена антибиотикоустойчивости mecA Staphylococcus aureus в ультранизких концентрациях и специфические олигонуклеотиды для использования в способе - Google Patents
Способ обнаружения гена антибиотикоустойчивости mecA Staphylococcus aureus в ультранизких концентрациях и специфические олигонуклеотиды для использования в способе Download PDFInfo
- Publication number
- RU2782588C1 RU2782588C1 RU2021139121A RU2021139121A RU2782588C1 RU 2782588 C1 RU2782588 C1 RU 2782588C1 RU 2021139121 A RU2021139121 A RU 2021139121A RU 2021139121 A RU2021139121 A RU 2021139121A RU 2782588 C1 RU2782588 C1 RU 2782588C1
- Authority
- RU
- Russia
- Prior art keywords
- meca
- staphylococcus aureus
- antibiotic resistance
- resistance gene
- seq
- Prior art date
Links
- 229940076185 Staphylococcus aureus Drugs 0.000 title claims abstract description 113
- 241000191967 Staphylococcus aureus Species 0.000 title claims abstract description 113
- 230000003115 biocidal Effects 0.000 title claims abstract description 112
- 229920000272 Oligonucleotide Polymers 0.000 title claims abstract description 22
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 58
- 230000003321 amplification Effects 0.000 claims abstract description 56
- 238000001514 detection method Methods 0.000 claims abstract description 50
- 229920002391 Guide RNA Polymers 0.000 claims description 57
- 108020005004 Guide RNA Proteins 0.000 claims description 57
- 108010081734 Ribonucleoproteins Proteins 0.000 claims description 29
- 102000004389 Ribonucleoproteins Human genes 0.000 claims description 29
- 229920003013 deoxyribonucleic acid Polymers 0.000 claims description 20
- 241001112693 Lachnospiraceae Species 0.000 claims description 19
- 108010008532 Deoxyribonuclease I Proteins 0.000 claims description 9
- 102000007260 Deoxyribonuclease I Human genes 0.000 claims description 9
- 239000011541 reaction mixture Substances 0.000 claims description 8
- 239000000523 sample Substances 0.000 claims description 6
- 239000007850 fluorescent dye Substances 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 3
- 239000000047 product Substances 0.000 description 28
- 239000011159 matrix material Substances 0.000 description 19
- 238000003752 polymerase chain reaction Methods 0.000 description 18
- 229920000033 CRISPR Polymers 0.000 description 14
- 102000004169 proteins and genes Human genes 0.000 description 13
- 108090000623 proteins and genes Proteins 0.000 description 13
- 238000010354 CRISPR gene editing Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000004166 bioassay Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 150000007523 nucleic acids Chemical group 0.000 description 8
- 230000001717 pathogenic Effects 0.000 description 8
- 229920000160 (ribonucleotides)n+m Polymers 0.000 description 7
- 238000000246 agarose gel electrophoresis Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 244000052616 bacterial pathogens Species 0.000 description 6
- 108020004707 nucleic acids Proteins 0.000 description 6
- 244000052769 pathogens Species 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 229920001850 Nucleic acid sequence Polymers 0.000 description 5
- 230000000845 anti-microbial Effects 0.000 description 5
- 239000012472 biological sample Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000001404 mediated Effects 0.000 description 5
- 101700080605 NUC1 Proteins 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 101700006494 nucA Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000002194 synthesizing Effects 0.000 description 4
- 241000701806 Human papillomavirus Species 0.000 description 3
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 3
- 201000009910 diseases by infectious agent Diseases 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229940079593 drugs Drugs 0.000 description 3
- 229960003085 meticillin Drugs 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 210000001519 tissues Anatomy 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- PLYRYAHDNXANEG-MYLVMTIQSA-N (2S,3R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxy-N-methyloxolane-2-carboxamide Chemical compound OC1[C@@H](O)[C@@H](C(=O)NC)O[C@H]1N1C2=NC=NC(N)=C2N=C1 PLYRYAHDNXANEG-MYLVMTIQSA-N 0.000 description 2
- 210000004369 Blood Anatomy 0.000 description 2
- 108010082319 CRISPR-Associated Protein 9 Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L MgCl2 Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 102000018120 Recombinases Human genes 0.000 description 2
- 108010091086 Recombinases Proteins 0.000 description 2
- 206010041925 Staphylococcal infection Diseases 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 230000001580 bacterial Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000007374 clinical diagnostic method Methods 0.000 description 2
- 230000000295 complement Effects 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002068 genetic Effects 0.000 description 2
- 238000010362 genome editing Methods 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N iso-propanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006011 modification reaction Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 101710036216 ATEG_03556 Proteins 0.000 description 1
- 101700005407 CRIS Proteins 0.000 description 1
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 description 1
- 101000343557 CRISPR-associated endonuclease Cas12a Proteins 0.000 description 1
- 238000010453 CRISPR/Cas method Methods 0.000 description 1
- 210000000349 Chromosomes Anatomy 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 229940045505 Klebsiella pneumoniae Drugs 0.000 description 1
- 241000588747 Klebsiella pneumoniae Species 0.000 description 1
- 210000003563 Lymphoid Tissue Anatomy 0.000 description 1
- 101710003000 ORF1/ORF2 Proteins 0.000 description 1
- 210000002381 Plasma Anatomy 0.000 description 1
- 101700030467 Pol Proteins 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 229940055023 Pseudomonas aeruginosa Drugs 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 210000003296 Saliva Anatomy 0.000 description 1
- 210000002966 Serum Anatomy 0.000 description 1
- 229920001891 Small hairpin RNA Polymers 0.000 description 1
- 210000003802 Sputum Anatomy 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 101700017245 clfA Proteins 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 230000001419 dependent Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000003394 haemopoietic Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 230000002458 infectious Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 230000000813 microbial Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000001105 regulatory Effects 0.000 description 1
- 101710004466 rgy Proteins 0.000 description 1
- 101710030364 rgy1 Proteins 0.000 description 1
- 101710030359 rgy2 Proteins 0.000 description 1
- 230000001235 sensitizing Effects 0.000 description 1
- 231100000202 sensitizing Toxicity 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002520 smart material Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001225 therapeutic Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Abstract
Изобретение относится к области биотехнологии, в частности к олигонуклеотиду для предварительной амплификации высококонсервативного фрагмента гена антибиотикоустойчивости mecA Staphylococcus aureus и к содержащему его набору. Изобретение позволяет эффективно выявлять ген антибиотикоустойчивости mecA Staphylococcus aureus после проведения специфической амплификации фрагмента этого гена. Изобретение обеспечивает выявление единичных копий гена антибиотикоустойчивости mecA Staphylococcus aureus. 3 н. и 2 з.п. ф-лы, 9 ил., 6 табл., 5 пр.
Description
Изобретение относится к области генной инженерии и биотехнологии, а именно к числу средств - направляющих РНК, которые могут быть использованы в системах CRISPR-Cas12 в составе рибонуклеопротеиновых комплексов для выявления (обнаружения, детекции) гена антибиотикоустойчивости mecA Staphylococcus aureus, а также к диагностическим способам и наборам.
Изобретение позволяет in vitro выявлять единичные копии гена антибиотикоустойчивости mecA Staphylococcus aureus.
Направляющие РНК, описанные в настоящей заявке, могут быть использованы для детекции гена антибиотикоустойчивости mecA Staphylococcus aureus после проведения специфической амплификации фрагментов ДНК гена mecA. Амплификация при этом может быть проведена различными способами, среди которых полимеразная цепная реакция (PCR); петлевая изотермическая амплификация (LAMP); геликаза-зависимая амплификация (HDA); рекомбиназа-опосредованная амплификация (RPA); амплификация со смещением цепи (SDA); амплификация, основанная на последовательности нуклеиновых кислот (NASBA); опосредованная транскрипцией амплификация (ТМА); амплификация, опосредованная никирующим ферментом (NEAR); круговая амплификация (RCA) и многие другие виды амплификации.
Направляющие РНК, описанные в настоящей заявке, могут быть использованы для разработки высокочувствительных и высокотехнологичных диагностических систем нового поколения на основе CRISPR технологий для борьбы с распространением антибиотикоустойчивых бактериальных патогенов.
Для решения эпидемиологических задач по расшифровке вспышек инфекционных болезней, выявления и идентификации возбудителя, а также детекции специфических бактериальных генов необходимы разработка и внедрение в практику работы надзорных и мониторинговых служб современных технологий молекулярной эпидемиологии. Одной из таких технологий является использование элементов генетического редактирования системы CRISPR-Cas. Данная технология развивается достаточно эффективно в отношении создания средств лечения некоторых болезней, несмотря на ряд трудностей, связанных с возникновением непредвиденных мутаций. При углубленных исследованиях в области применения CRISPR-Cas системы, было выяснено, что она может быть использована для тонких диагностических процедур при выявлении возбудителя/ей инфекции у человека, а также их генотипирования.
В 2018 году было показано, что один из ферментов CRISPR системы - Cas12 после распознавания своей целевой ДНК-мишени начинает неспецифически гидролизовать одноцепочечную, а также двухцепочечную ДНК. Такое свойство Cas12 можно использовать в качестве индикатора присутствия определенной мишени, например, генома вируса или бактерии. Исследователи использовали это открытие для создания технологической платформы обнаружения нуклеиновых кислот, известной как DETECTR (DNA Endonuclease Targeted CRISPR Trans Reporter - ДНК-нацеленная эндонуклеаза CRISPR транс репортер). Впервые DETECTR была использована для выявления и генотипирования вируса папилломы человека (HPV). Предложенная платформа объединяет нуклеазу Cas12a, ее направляющую РНК, специфичную к нуклеиновой кислоте HPV, флуоресцентную репортерную молекулу. Технология DETECTR используется для обнаружения целевой ДНК-мишени после предварительной амплификации [J.S. Chen, Е. Ma, L.B. Harrington, М. Da Costa, X. Tian, J.M. Palefsky, J.A. Doudna, CRISPR-Cas 12a target binding unleashes indiscriminate single-stranded DNase activity, Science 360(6387) (2018) 436-439].
He менее важным приложением системы CRISPR-Cas является идентификация бактериальных патогенов и детекция специфических бактериальных генов. Так, например, с помощью платформы SHERLOCK удалось корректно генотипировать ряд штаммов Escherichia coli и Pseudomonas aeruginosa при низкой перекрестной реактивности. Кроме того, платформа SHERLOCK использована для дифференциации клинических изолятов Klebsiella pneumoniae с двумя различными генами антибиотикоустойчивости, что открывает значительные перспективы к созданию мультиплексных систем для одновременной идентификации бактеральных патогенов и выявления у них генов антибиотикоустойчивости.
В связи с этим крайне актуальной является задача разработки новых эффективных методик выявления генов антибиотикоустойчивости у бактериальных патогенов, основанных на генетических технологиях, таких как CRISPR-Cas.
В ходе изучения уровня техники были найдены научные статьи, описывающие разработку и получение терапевтических направляющих РНК для элиминации метициллин-устойчивых Staphylococcus aureus с помощью технологии CRISPR-Cas [Р. Gholizadeh, S. Dao, K. Ganbarov, et al., How CRISPR-Cas System Could Be Used to Combat Antimicrobial Resistance, Infect Drug Resist. 13 (2020) 1111-1121, https://doi.org/10.2147/IDR.S247271; M.A.B. Shabbir, M.Z. Shabbir, Q. Wu et al., CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens, Ann Clin Microbiol Antimicrob 18 (2019) 21, https://doi.org/10.1186/sl2941-019-0317-x; K. Kiga, XE. Tan, R. Ibarra-Chavez et al., Development of CRISPR-Cas 13a-based antimicrobials capable of sequence-specific killing of target bacteria, Nat Commun 11 (2020) 2934, https://doi.org/10.1038/s41467-020-16731-6; Q. Liu, Y. Jiang, L. Shao et al., CRISPR/Cas9-based efficient genome editing in Staphylococcus aureus, Acta biochimica et biophysica Sinica 49(9) (2017) 764-770, https://doi.org/10.1093/abbs/gmx074; K. Wang, M. Nicholaou, Suppression of Antimicrobial Resistance in MRSA Using CRISPR-dCas9, American Society for Clinical Laboratory Science 30(4) (2017) 207-213, https://doi.org/10.29074/ascls.30.4.207; D. Palacios Araya, K.L. Palmer, B.A. Duerkop, CRISPR-based antimicrobials to obstruct antibiotic-resistant and pathogenic bacteria, PLoS pathogens 17(7) (2021) el 009672, https://doi.org/10.1371/journal.ppat.1009672; Z. Wu, L. Zhang, D. Qiao et al., Functional Analyses of Cassette Chromosome Recombinase C2 (CcrC2) and Its Use in Eliminating Methicillin Resistance by Combining CRISPR-Cas9, ACS synthetic biology 7(11) (2018) 2590-2599, https://doi.org/10.1021/acssynbio.8b00261]. Кроме того, были найдены научные статьи, описывающие применение системы направленного редактирования генома CRISPR-Cas для выявления гена антибиотикоустойчивости mecA у Staphylococcus aureus.
М.А. English и соавторы описали технологию для выявления нуклеиновых кислот на гидрогелевых носителях с помощью Cas12a, где в качестве мишени выступал ген антибиотикоустойчивости mecA у Staphylococcus aureus. Чувствительность описанного метода составляет 100 копий гена антибиотикоустойчивости mecA у Staphylococcus aureus на реакцию [М.A. English, L.R. Soenksen, R.V. Gayet, et al., Programmable CRISPR-responsive smart materials, Science (New York, N.Y.) 365(6455) (2019) 780-785, https://doi.org/10.1126/science.aaw5122].
В сентябре 2021 года A. Suea-Ngam и соавторы представили технологию E-Si-CRISPR. В основе E-Si-CRISPR электрохимический биосенсор CRISPR-Cas без амплификации, использующий металлизацию серебром, для обнаружения метициллин-устойчивого Staphylococcus aureus с помощью Cas12a. Чувствительность описанного метода составляет 100 копий гена антибиотикоустойчивости mecA у Staphylococcus aureus на реакцию [A. Suea-Ngam, P.D. Howes, A.J. DeMello, An amplification-free ultra-sensitive electrochemical CRISPR/Cas biosensor for drug-resistant bacteria detection, Chemical science, 12(38) (2021) 12733-12743, https://doi.org/10.1039/dlsc02197d].
K. Guk и соавторы описали CRISPR-опосредованный метод ДНК-FISH (от англ., Fluorescence in situ hybridization - Флуоресцентная гибридизация in situ) для простого, быстрого и высокочувствительного обнаружения гена антибиотикоустойчивости mecA у Staphylococcus aureus с помощью белка dCas9. Чувствительность описанного метода составляет 10 КОЕ/мл [K. Guk, J.О. Keem, S.G. Hwang et al., A facile, rapid and sensitive detection of MRSA using a CRIS PR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex, Biosensors & bioelectronics 95 (2017) 67-71, https://doi.org/10.1016/j.bios.2017.04.016].
Также были найдены патенты на изобретения, описывающие разработку и получение направляющих РНК для регулирования состава микробных популяций с помощью программируемых нуклеаз, в том числе CRISPR-Cas, а также для сенсибилизации и/или устранения целевых патогенных бактерий (US 20200282026, US 10760065, CN 106167808, WO 2019225246) и их генотипирования (CN 106167821). Кроме того, были обнаружены патенты, в которых программируемые нуклеазы, в том числе CRISPR-Cas, использовались для выявления и поиска целевых последовательностей нуклеиновых кислот (US 20150056629).
Из уровня техники известны решения, направленные на разработку и получение направляющих РНК для выявления нуклеиновых кислот возбудителя с помощью CRISPR-Cas (патенты CN 111378722, CN 111321234). Недостатками упомянутых изобретений является их чувствительность, которая не превышает 2 копий на реакцию.
Ближайшим аналогом изобретения является патент «Kit based on CRISPR and application thereof» (CN 112410343), в котором описывается набор для выявления clfA и mecA, содержащий специфические олигонуклеотиды, композицию crРНК, белок Cas12a и одноцепочечный флуоресцентный ДНК-зонд 5`-6-FAM-TTTTTTTTTTTT-BHQ1-3`. Недостатками описанного анализа является его относительно небольшая чувствительность - композиция может обнаруживать только 1000-кратное разведение предварительно амплифицированной последовательности-мишени.
Исходя из этого, возникает техническая проблема, заключающаяся в необходимости получения направляющих РНК для выявления единичных копий гена антибиотикоустойчивости mecA Staphylococcus aureus in vitro и разработке соответствующих способов обнаружения гена антибиотикоустойчивости mecA Staphylococcus aureus.
Предложенная технология перспективна для разнообразных применений, включая количественное определение ДНК/РНК, быструю мультиплексную детекцию экспрессии, другие виды чувствительной детекции, например, выявление загрязнения образцов нуклеиновыми кислотами. Технология основанная на CRISPR-Cas является многофункциональной, устойчивой к ошибкам технологией детекции ДНК, пригодной для быстрой постановки диагнозов, включая инфекционные заболевания, и генотипирования инфекционных агентов и выявление генов антибиотикоустойчивости бактериальных патогенов.
Применение предложенной технологии делает возможным создание диагностических систем нового поколения, которые будут обладать следующими свойствами:
• высокая чувствительность;
• возможность проведения диагностики у постели больного;
• возможность проведения диагностики в полевых условиях без применения специализированного высокотехнологичного оборудования;
• скорость и простота анализа;
• сниженная стоимость анализа;
• отсутствие необходимости оснащения диагностической лаборатории дорогостоящим оборудованием;
• отсутствие необходимости проведения выделения нуклеиновых кислот возбудителя.
Изобретение относится к новым средствам - направляющим РНК, которые могут быть использованы в системах CRISPR-Cas 12 для ультрачувствительного выявления, идентификации, обнаружения или детекции гена антибиотикоустойчивости mecA Staphylococcus aureus в биологических образцах.
Технической задачей предложенного изобретения является разработка новых средств - направляющих РНК, которые могут быть использованы в системах CRISPR-Cas12 с белками Cas12, такими как белок LbCpf1 из Lachnospiraceae, для ультрачувствительного выявления гена антибиотикоустойчивости mecA Staphylococcus aureus.
При осуществлении настоящего изобретения, согласно приведенной в формуле изобретения совокупности существенных признаков, достигается неожиданный технический результат - возможность ультрачувствительного выявления гена антибиотикоустойчивости mecA Staphylococcus aureus до единичных копий гена антибиотикоустойчивости mecA Staphylococcus aureus в одной реакции. Изобретение не имеет коммерчески доступных аналогов и обладает высокой эффективностью выявления гена антибиотикоустойчивости mecA Staphylococcus aureus.
Технический результат достигается за счет:
• разработки молекул направляющих РНК, которые могут быть использованы в системах CRISPR-Cas12 для ультра чувствительного выявления гена антибиотикоустойчивости mecA Staphylococcus aureus, где указанные направляющие РНК выбраны из последовательностей SEQ ID NO: 1 и SEQ ID NO: 2, способны связываться с целевыми высоко консервативными участками гена антибиотикоустойчивости mecA Staphylococcus aureus, содержат РНК-шпильку, которая распознается РНК-направляемой ДНК-эндонуклеазой LbCpf1 из Lachnospiraceae, с обеспечением выявления единичных копий гена антибиотикоустойчивости mecA Staphylococcus aureus.
• применения РНК-направляемой ДНК-эндонуклеазы LbCpf1 из Lachnospiraceae, полученных согласно способу, разработанному авторами ранее (Патент RU №2707542, дата приоритета 28.03.2019), для создания рибонуклеопротеиновых комплексов (РПК) системы CRISPR-Cas, пригодных для детекции гена антибиотикоустойчивости mecA Staphylococcus aureus в ультра низких концентрациях (единичные копии).
• разработки набора специфических олигонуклеотидов, выбранных из SEQ ID NO: 3-5, для предварительной амплификации фрагмента гена антибиотикоустойчивости mecA Staphylococcus aureus.
• оптимизации условий проведения предварительной амплификации фрагмента гена антибиотикоустойчивости mecA Staphylococcus aureus.
• определения условий проведения ультрачувствительной детекции гена антибиотикоустойчивости mecA Staphylococcus aureus и установления последовательности стадий метода.
Направляющие РНК согласно настоящему изобретению соответствуют высоко консервативным фрагментам гена антибиотикоустойчивости mecA Staphylococcus aureus. Наиболее предпочтительны направляющие РНК, распознающиеся РНК-направляемой ДНК-эндонуклеазой LbCpf1 из Lachnospiraceae, характеризующиеся, имеющие или содержащие нуклеотидную последовательность, выбранную из:
• SEQ ID NO: 1;
• SEQ ID NO: 2;
• или идентичной любой из них по меньшей мере на 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99%,
• или комплементарной любой из них,
• или гибридизующейся с любой из них в строгих условиях.
Набор специфических олигонуклеотидов для проведения предварительной амплификации фрагмента гена антибиотикоустойчивости mecA Staphylococcus aureus согласно настоящему изобретению соответствуют высоко консервативному участку гена антибиотикоустойчивости mecA Staphylococcus aureus. Наиболее предпочтительны олигонуклеотиды, характеризующиеся, имеющие или содержащие нуклеотидную последовательность, выбранную из:
• SEQ ID NO: 3;
• SEQ ID NO: 4;
• SEQ ID NO: 5;
• или идентичной любой из них по меньшей мере на 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% или 99%,
• или комплементарной любой из них,
• или гибридизующейся с любой из них в строгих условиях.
Согласно предложенному изобретению получают рибонуклеопротеиновые комплексы (РПК), состоящие из по меньшей мере одной направляющей РНК и РНК-направляемой ДНК-нуклеазы системы CRISPR-Cas LbCpf1 из Lachnospiraceae, пригодные для использования для выявления гена антибиотикоустойчивости mecA Staphylococcus aureus в ультранизких концентрациях (единичные копии).
Препараты РПК представляют собой растворы, содержащие направляющую РНК, выбранную из SEQ ID NO: 1 и SEQ ID NO: 2, объединенную с белком системы CRISPR-Cas (LbCpf1 из Lachnospiraceae) или лиофильно высушенные РПК.
Полученные направляющие РНК могут быть использованы в составе набора для обнаружения гена антибиотикоустойчивости mecA Staphylococcus aureus с инструкцией по применению.
Способ обнаружения гена антибиотикоустойчивости mecA Staphylococcus aureus предусматривает:
i) проведение предварительной амплификации материала образца от пациента, предположительно содержащего Staphylococcus aureus с использованием одного или нескольких специфических олигонуклеотидов, выбранных из SEQ ID NO: 3-5, с целью получения мишени - предварительно амплифицированного фрагмента гена антибиотикоустойчивости mecA Staphylococcus aureus,
ii) приготовление реакционной смеси для детекции, содержащей мишень, полученную на стадии (i); рибонуклеопротеиновый комплекс системы CRISPR-Cas, сформированный из РНК-направляемой ДНК-эндонуклеазы LbCpf1 из Lachnospiraceae, и по меньшей мере одной направляющей РНК с SEQ ID NO: 1 и SEQ ID NO: 2; флюоресцентный зонд и буфер для детекции,
iii) проведение 30-60 циклов детекции в реакционной смеси, полученной на стадии (ii), в амплификаторе,
с обнаружением таким образом гена антибиотикоустойчивости mecA Staphylococcus aureus.
Предварительно амплифицированный фрагмент гена антибиотикоустойчивости mecA Staphylococcus aureus согласно предложенному способу может быть представлен фрагментом с 1168 по 1336 п.о. (размером 169 п.о.) гена антибиотикоустойчивости mecA Staphylococcus aureus и/или фрагментом с 1168 по 1481 п.о. (размером 314 п.о.) гена антибиотикоустойчивости mecA Staphylococcus aureus.
Предложенный способ обеспечивает выявление гена антибиотикоустойчивости mecA Staphylococcus aureus в ультранизких концентрациях, вплоть до единичных копий.
Специфический олигонуклеотид для использования в способе выбирается из группы SEQ ID NO: 3-5 и используется для предварительной амплификации высококонсервативного фрагмента гена антибиотикоустойчивости mecA Staphylococcus aureus, который распознается рибонуклеопротеиновым комплексом.
Набор для использования в способе обнаружения гена антибиотикоустойчивости mecA Staphylococcus aureus содержит рибонуклеопротеиновый комплекс системы CRISPR-Cas, сформированный из РНК-направляемой ДНК-эндонуклеазы LbCpf1 из Lachnospiraceae, и по меньшей мере одной направляющей РНК с SEQ ID NO: 1 и SEQ ID NO: 2; флюоресцентный зонд, буфер для детекции и инструкцию по применению.
Набор может дополнительно включать компоненты для проведения предварительной амплификации высококонсервативного фрагмента гена антибиотикоустойчивости mecA Staphylococcus aureus, в том числе один или несколько специфических олигонуклеотидов, выбранных из SEQ ID NO: 3-5.
При этом по меньшей мере одна направляющая РНК в составе набора может находиться в комплексе с белком системы CRISPR-Cas (LbCpf1 из Lachnospiraceae) в одном контейнере или отдельно в разных контейнерах.
Предложенная технология позволяет определить единичные копии гена антибиотикоустойчивости mecA Staphylococcus aureus в биологических образцах пациента, выбранных из жидкости и/или ткани, предположительно содержащих Staphylococcus aureus. Биологическим образцом может быть образец крови, сыворотки или плазмы крови, клеток крови, слюны, мокроты, лимфоидных тканей, тканей кроветворных органов и других биологических материалов от пациента, которые могут быть использованы для анализа на наличие гена антибиотикоустойчивости mecA Staphylococcus aureus.
Краткое описание чертежей
Фиг. 1. Визуализация амплифицированного фрагмента mecA-1280 гена антибиотикоустойчивости mecA Staphylococcus aureus (размером 169 п.о.) после предварительной амплификации с использованием олигонуклеотидов For 1280/1412 и Rev 1280 при помощи электрофореза в агарозном геле, где цифрами 1-9 обозначены:
1 - Продукт, полученный в ходе амплификации 20000 фг модельной матрицы pGEM-T-mecA-1280;
2 - Продукт, полученный в ходе амплификации 2000 фг модельной матрицы pGEM-T-mecA-1280;
3 - Продукт, полученный в ходе амплификации 200 фг модельной матрицы pGEM-T-mecA-1280;
4 - Продукт, полученный в ходе амплификации 20 фг модельной матрицы pGEM-T-mecA-1280;
5 - Продукт, полученный в ходе амплификации 2 фг модельной матрицы pGEM-T-mecA-1280;
6 - Продукт, полученный в ходе амплификации 0,2 фг модельной матрицы pGEM-T-mecA-1280;
7 - Продукт, полученный в ходе амплификации 0,02 фг модельной матрицы pGEM-T-mecA-1280;
8 - Продукт, полученный в ходе амплификации 0,002 фг модельной матрицы pGEM-T-mecA-1280;
9 - отрицательный контроль, не содержащий модельной матрицы pGEM-T-mecA-1280;
М - стандарты молекулярных масс: снизу вверх 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1500, 2000, 3000 пар нуклеотидов (GeneRuler 100 bp Plus, Thermo Fisher Scientific, США).
Фиг. 2. Визуализация амплифицированного фрагмента mecA-1412 гена антибиотикоустойчивости mecA Staphylococcus aureus (размером 314 п.о.) после предварительной амплификации с использованием олигонуклеотидов For 1280/1412 и Rev 1412 при помощи электрофореза в агарозном геле, где цифрами 1-9 обозначены:
1 - Продукт, полученный в ходе амплификации 20000 фг модельной матрицы pGEM-T-mecA-1412;
2 - Продукт, полученный в ходе амплификации 2000 фг модельной матрицы pGEM-T-mecA-1412;
3 - Продукт, полученный в ходе амплификации 200 фг модельной матрицы pGEM-T-mecA-1412;
4 - Продукт, полученный в ходе амплификации 20 фг модельной матрицы pGEM-T-mecA-1412;
5 - Продукт, полученный в ходе амплификации 2 фг модельной матрицы pGEM-T-mecA-1412;
6 - Продукт, полученный в ходе амплификации 0,2 фг модельной матрицы pGEM-T-mecA-1412;
7 - Продукт, полученный в ходе амплификации 0,02 фг модельной матрицы pGEM-T-mecA-1412;
8 - Продукт, полученный в ходе амплификации 0,002 фг модельной матрицы pGEM-T-mecA-1412;
9 - отрицательный контроль, не содержащий модельной матрицы pGEM-T-mecA-1412;
М - стандарты молекулярных масс: снизу вверх 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1500, 2000, 3000 пар нуклеотидов (GeneRuler 100 bp Plus, Thermo Fisher Scientific, США).
Фиг. 3. Значения флуоресценции в конечной точке (60 цикл анализа, 60 минут) для предварительно амплифицированных фрагментов модельной матрицы pGEM-T-mecA-1280, обработанных рибонуклеопортеиновыми комплексами, содержащими белок LbCpf1 и направляющую РНК crRNA mecA №1280.
Фиг. 4. Значения флуоресценции в конечной точке (60 цикл анализа, 60 минут) для предварительно амплифицированных фрагментов модельной матрицы pGEM-T-mecA-1412, обработанных рибонуклеопортеиновыми комплексами, содержащими белок LbCpf1 и направляющую РНК crRNA mecA №1412.
Фиг. 5. Значения флуоресценции в конечной точке (60 цикл анализа, 60 минут) для предварительно амплифицированных мишеней mecA-1280 и mecA-1412 Staphylococcus aureus, обработанных рибонуклеопортеиновыми комплексами, содержащим направляющие РНК crRNA mecA №1280 и crRNA mecA №1412.
Фиг. 6. Визуализация амплифицированного с клинических образцов фрагмента mecA-1280 гена антибиотикоустойчивости mecA Staphylococcus aureus (размером 169 п.о.) после предварительной амплификации с использованием олигонуклеотидов For 1280/1412 и Rev 1280 при помощи электрофореза в агарозном геле.
Фиг. 7. Визуализация амплифицированного с клинических образцов фрагмента mecA-1412 гена антибиотикоустойчивости mecA Staphylococcus aureus (размером 314 п.о.) после предварительной амплификации с использованием олигонуклеотидов For 1280/1412 и Rev 1412 при помощи электрофореза в агарозном геле.
Фиг. 8. Значения флуоресценции в конечной точке (60 цикл анализа, 60 минут) для предварительно амплифицированной с клинических образцов мишени mecA-1280 гена антибиотикоустойчивости mecA Staphylococcus aureus, обработанной рибонуклеопортеиновыми комплексами, содержащим направляющую РНК crRNA mecA №1280.
Фиг. 9. Значения флуоресценции в конечной точке (60 цикл анализа, 60 минут) для предварительно амплифицированной с клинических образцов мишени mecA-1412 гена антибиотикоустойчивости mecA Staphylococcus aureus, обработанной рибонуклеопортеиновыми комплексами, содержащим направляющую РНК crRNA mecA №1412.
Примеры осуществления изобретения
ПРИМЕР 1: ПОДБОР ПОСЛЕДОВАТЕЛЬНОСТЕЙ-МИШЕНЕЙ В ГЕНЕ АНТИБИОТИКОУСТОЙЧИВОСТИ MECA STAPHYLOCOCCUS AUREUS ДЛЯ СОЗДАНИЯ НАПРАВЛЯЮЩИХ РНК
Для подбора последовательностей-мишеней в гене антибиотикоустойчивости mecA Staphylococcus aureus для создания направляющих РНК были использованы современные алгоритмы in silico анализа нуклеотидных последовательностей и программы, находящиеся в открытом доступе, включая Benchling (https://www.benchling.com/molecular-biology/). Был составлен перечень участков в гене антибиотикоустойчивости mecA Staphylococcus aureus с теоретически рассчитанной вероятностью их расщепления в высоко консервативных участках (Таблица 1). Направляющие РНК, специфически узнающие высоко консервативный участок гена антибиотикоустойчивости mecA Staphylococcus aureus, представлены уникальными последовательностями SEQ ID NO: 1 и SEQ ID NO: 2.
ПРИМЕР 2: ПОДГОТОВКА МАТЕРИАЛА ДЛЯ ОБНАРУЖЕНИЯ ГЕНА АНТИБИОТИКОУСТОЙЧИВОСТИ MECA STAPHYLOCOCCUS AUREUS МЕТОДОМ ПРЕДВАРИТЕЛЬНОЙ АМПЛИФИКАЦИИ
Подготовку материала для обнаружения гена антибиотикоустойчивости mecA Staphylococcus aureus проводили методом предварительной амплификации. В качестве модельных матриц гена антибиотикоустойчивости mecA Staphylococcus aureus биологического образца использовали плазмидные ДНК:
1) pGEM-T-mecA-1280, содержащую в своем составе фрагмент гена антибиотикоустойчивости mecA Staphylococcus aureus с 1168 по 1336 п.о. (размером 169 п.о.), и
2) pGEM-T-mecA-1412, содержащую в своем составе фрагмент гена антибиотикоустойчивости mecA Staphylococcus aureus с 1168 по 1481 п.о. (размером 314 п.о.)
Предварительную амплификацию участков, соответствующих фрагментам гена антибиотикоустойчивости mecA Staphylococcus aureus, проводили с использованием специфических олигонуклеотидов с SEQ ID NO: 3 и SEQ ID NO: 4 для получения фрагмента mecA-1280 и SEQ ID NO: 3 и SEQ ID NO: 5 для получения фрагмента mecA-1412, приведенных в Таблице 2.
ПЦР-продукты, кодирующие фрагменты mecA-1280 и mecA-1412 гена антибиотикоустойчивости mecA Staphylococcus aureus, получали в реакции амплификации с использованием ПЦР-смеси-2 blue (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Россия) и специфических олигонуклеотидов For 1280/1412 и Rev 1280, For 1280/1412 и Rev 1412, соответственно (ГенТерра, Россия). Размер амплифицированного фрагмента mecA-1280 составлял 169 пары нуклеотидов, mecA-1412-314 пар нуклеотидов (Таблица 3).
Температурный профиль амплификации для получения ПЦР-продуктов фрагментов гена антибиотикоустойчивости mecA Staphylococcus aureus:
1. денатурация: 95°С в течение 3 минут;
2. 40 циклов амплификации:
95°С - 15 сек,
55°С - 45 сек,
72°С - 30 сек;
3. финальная элонгация: 72°С в течение 5 минут.
В ходе подготовки материала для обнаружения гена антибиотикоустойчивости mecA Staphylococcus aureus методом предварительной амплификации проводили титрование модельных матриц pGEM-T-mecA-1280 и pGEM-T-mecA-1412 путем приготовления серийных разведений (Таблица 4).
Для оценки эффективности предварительной амплификации полученные фрагменты гена антибиотикоустойчивости mecA Staphylococcus aureus визуализировали при помощи электрофореза в агарозном геле (Фиг. 1, 2).
Подготовленный описанным способом материал использовали для экспериментов по выявлению гена антибиотикоустойчивости mecA Staphylococcus aureus с помощью рибонуклеопротеиновых комплексов LbCpf1 из Lachnospiraceae, содержащих направляющие РНК crRNA mecA №1280 и crRNA mecA №1412, без предварительной очистки.
ПРИМЕР 3: ПОЛУЧЕНИЕ НАПРАВЛЯЮЩИХ РНК И СОЗДАНИЕ РИБОНУКЛЕОПРОТЕИНОВЫХ КОМПЛЕКСОВ ДЛЯ ОБНАРУЖЕНИЯ ГЕНА АНТИБИОТИКОУСТОЙЧИВОСТИ MECA STAPHYLOCOCCUS AUREUS
Для получения направляющих РНК для обнаружения гена антибиотикоустойчивости mecA Staphylococcus aureus был разработан набор специфических олигонуклеотидов, приведенных в Таблице 5. Получение направляющих РНК проводили в несколько этапов:
1. получение ПЦР-продукта с использованием набора специфических олигонуклеотидов (Таблица 5), кодирующего направляющую РНК, способную связываться с целевым высоко консервативным участком гена антибиотикоустойчивости mecA Staphylococcus aureus, содержащую РНК-шпильку, которая распознается РНК-направляемой ДНК-эндонуклеазой LbCpf1 из Lachnospiraceae;
2. очистка ПЦР-продукта, кодирующего направляющую РНК, специфичную к фрагменту гена антибиотикоустойчивости mecA Staphylococcus aureus;
3. синтез направляющей РНК, специфичной к фрагменту гена антибиотикоустойчивости mecA Staphylococcus aureus;
4. очистка направляющей РНК, специфичной к фрагменту гена антибиотикоустойчивости mecA Staphylococcus aureus.
ПЦР-продукт, кодирующий направляющую РНК crRNA mecA №1280, получали в реакции амплификации с использованием ПЦР-смеси-2 blue (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Россия) и специфических олигонуклеотидов T7pr и crRNA 1280 (ГенТерра, Россия). Размер амплифицированного фрагмента, кодирующего crRNA mecA №1280, составлял 62 пары нуклеотидов.
ПЦР-продукт, кодирующий направляющую РНК crRNA mecA №1412, получали в реакции амплификации с использованием ПЦР-смеси-2 blue (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Россия) и специфических олигонуклеотидов T7pr и crRNA 1412 (ГенТерра, Россия). Размер амплифицированного фрагмента, кодирующего crRNA mecA №1412, составлял 62 пары нуклеотидов.
Температурный профиль амплификации для получения ПЦР-продуктов, кодирующих направляющие РНК:
1. денатурация: 95°С в течение 3 минут;
2. 35 циклов амплификации:
95°С - 15 сек,
55°С - 45 сек,
72°С - 30 сек;
3. финальная элонгация: 72°С в течение 5 минут.
ПЦР-продукты, кодирующие направляющие РНК, специфичные к фрагментам гена антибиотикоустойчивости mecA Staphylococcus aureus, визуализировали при помощи электрофореза в агарозном геле.
Очистку ПЦР-продуктов, кодирующих направляющие РНК, специфичные к фрагментам гена антибиотикоустойчивости mecA Staphylococcus aureus, проводили с использованием коммерчески доступного набора ISOLATE II PCR and Gel Kit (BioLine, США) согласно инструкции производителя. Очищенные ПЦР-продукты, кодирующие направляющие РНК, специфичные к фрагментам гена антибиотикоустойчивости mecA Staphylococcus aureus, использовали в качестве матрицы для синтеза направляющих РНК.
Синтез направляющих РНК, специфичных к фрагментам гена антибиотикоустойчивости mecA Staphylococcus aureus, осуществляли методом in vitro транскрипции с использованием коммерчески доступных наборов реагентов (HiScribe™ Т7 High Yield RNA Synthesis Kit, NEB, США) согласно инструкции производителя. Продукты реакции in vitro транскрипции переосаждали из реакционной смеси добавлением хлорида натрия до конечной концентрации 400 mM и равного объема изопропилового спирта. Такие модификации протокола производителя, внесенные авторами, позволяют увеличить выход продукта реакции и получить желаемую концентрацию финального препарата направляющей РНК.
Создание готового рибонуклеопротеинового комплекса, содержащего белок семейства CRISPR-Cas LbCpf1 из Lachnospiraceae, и направляющую РНК авторы проводили по стандартному протоколу с некоторыми модификациями [С. Anders, М. Jinek, In vitro enzymology of Cas9, Methods Enzymol. 546 (2014) 1-20, https://doi.org/10.1016/B978-0-12-801185-0.00001-5].
Непосредственно перед объединением с Cas-белком препарат направляющей РНК (в количестве 250 нг) прогревали при 90°С в течение 5 минут и позволяли медленно остыть до комнатной температуры (инкубация при комнатной температуре не менее 10 минут). Такое прогревание необходимо для формирования корректной конформации шпильки, содержащейся в направляющей РНК. Многие производители коммерческих препаратов Cas-белков пропускают данный этап при подготовке рибонуклеопротеинового комплекса.
Для формирования готового рибонуклеопротеинового комплекса 250 нг Cas-белка LbCpf1 из Lachnospiraceae и подготовленную направляющую РНК смешивали и инкубировали 15 минут при комнатной температуре. Полученный таким способом рибонуклеопротеиновый комплекс готов для выявления гена антибиотикоустойчивости mecA Staphylococcus aureus.
ПРИМЕР 4: ОБНАРУЖЕНИЕ ЕДИНИЧНЫХ КОПИЙ ГЕНА АНТИБИОТИКОУСТОЙЧИВОСТИ MECA STAPHYLOCOCCUS AUREUS С ПОМОЩЬЮ РИБОНУКЛЕОПРОТЕИНОВЫХ КОМПЛЕКСОВ CRISPR/CAS НА ПРИМЕРЕ МОДЕЛЬНОЙ МАТРИЦЫ
Предварительно амплифицированный материал, полученный способом, описанным в Примере 2, использовали в качестве матрицы для обнаружения гена антибиотикоустойчивости mecA Staphylococcus aureus с помощью рибонуклеопротеиновых комплексов CRISPR-Cas, полученных способом, описанным в Примере 3.
Для обнаружения гена антибиотикоустойчивости mecA Staphylococcus aureus с помощью рибонуклеопротеиновых комплексов CRISPR-Cas готовили реакционную смесь, содержащую следующие компоненты:
• 10× буфер (100 mM TrisHCl рН 8,0, 1 М NaCl);
• 50 mM MgCl2 (конечная концентрация в реакционной смеси 10 mM);
• 250 нг рибонуклеопротеинового комплекса (LbCpf1 из Lachnospiraceae и направляющие РНК crRNA mecA №1280, crRNA mecA №1412);
• 10 pmol флуоресцентный зонд (6FAM-TTATT-BHQ1);
• Мишень (предварительно амплифицированные фрагменты гена антибиотикоустойчивости mecA Staphylococcus aureus);
• вода mQ.
Реакционные смеси, содержащие все необходимые компоненты, помещали в амплификатор QuantStudio 5 (Thermo Fisher Scientific, США) и задавали следующие параметры реакции:
30-60 циклов:
37°С - 35 сек,
37°С - 25 сек, съемка флуоресценции.
В первую очередь были проведены эксперименты по обнаружению единичных копий гена антибиотикоустойчивости mecA Staphylococcus aureus с помощью рибонуклеопротеиновых комплексов CRISPR-Cas, сформированных на основе LbCpf1 из Lachnospiraceae, с использованием в качестве мишени модельных матриц - плазмидной ДНК pGEM-T-mecA-1280, содержащей в своем составе фрагмент гена антибиотикоустойчивости mecA Staphylococcus aureus с 1168 по 1336 п.о. размером 169 п.о., и плазмидной ДНК pGEM-T-mecA-1412, содержащей в своем составе фрагмент гена антибиотикоустойчивости mecA Staphylococcus aureus с 1168 по 1481 п.о. размером 314 п.о.
Было показано, что рибонуклеопротеиновые комплексы CRISPR-Cas обладают способностью выявлять единичные копий гена антибиотикоустойчивости mecA Staphylococcus aureus. Типичные результаты анализа приведены на примерах значений флуоресценции в конечной точке для предварительно амплифицированных мишеней mecA-1280 и mecA-1412 гена антибиотикоустойчивости mecA Staphylococcus aureus, обработанных рибонуклеопортеиновыми комплексами, содержащими направляющие РНК crRNA mecA №1280, crRNA mecA №1412 и белок LbCpf1, на Фиг. 3 и Фиг. 4, соответственно. Отметим, что в среднем уже на 39-ом цикле анализа (39 минут) значение сигнала, полученного в ходе детекции единичных копий (1,7 копий/реакция) гена антибиотикоустойчивости mecA Staphylococcus aureus, превышало значение «шума» (неспецифической флуоресценции контрольного образца, не содержащего мишени) минимум вдвое, а к 45-ому циклу (45 минут анализа) - в 3 и более раз.
В ходе работ была оценена эффективность выявления единичных копий гена антибиотикоустойчивости mecA Staphylococcus aureus, содержащегося в составе модельных матриц, с использованием различных направляющих РНК. Было показано, что рибонуклеопротеиновые комплексы CRISPR-Cas, сформированные на основе LbCpf1 из Lachnospiraceae и направляющих РНК, выявляют единичные копии гена антибиотикоустойчивости mecA Staphylococcus aureus с похожей эффективностью: crRNA mecA №1280 ≈ crRNA mecA №1412 (Фиг. 5).
ПРИМЕР 5: ОБНАРУЖЕНИЕ ГЕНА АНТИБИОТИКОУСТОЙЧИВОСТИ МЕСА STAPHYLOCOCCUS AUREUS С ПОМОЩЬЮ РИБОНУКЛЕОПРОТЕИНОВЫХ КОМПЛЕКСОВ CRISPR/CAS НА ОГРАНИЧЕННОЙ ПАНЕЛИ КЛИНИЧЕСКИХ ОБРАЗЦОВ
Разработанные направляющие РНК были апробированы на ограниченной панели клинических образцов (16 шт.), содержащих Staphylococcus aureus, несущую ген антибиотикоустойчивости mecA (ранее подтверждено методом секвенирования следующего поколения).
Для обнаружения единичных копий гена антибиотикоустойчивости mecA Staphylococcus aureus с помощью рибонуклеопротеиновых комплексов CRISPR-Cas была проведена предварительная амплификация фрагментов этого гена. Для проведения предварительной амплификации из 16 биологических образцов, полученных от пациентов, с помощью коммерчески доступного набора DNeasy Blood & Tissue Kit (QIAGEN, США) были выделены ДНК согласно инструкции производителя.
ПЦР-продукты, кодирующие фрагменты гена антибиотикоустойчивости mecA Staphylococcus aureus, получали в реакции амплификации с использованием ПЦР-смеси-2 blue (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Россия) как описано в Примере 2, применяя описанный температурный профиль и продолжительность реакции амплификации. Полученные продукты визуализировали при помощи электрофореза в агарозном геле (Фиг. 6, 7).
Полученный таким способом материал использовали в качестве матрицы для обнаружения единичных копий гена антибиотикоустойчивости mecA Staphylococcus aureus с помощью рибонуклеопротеиновых комплексов CRISPR-Cas, полученных способом, описанным в Примере 3.
Обнаружение копий гена антибиотикоустойчивости mecA Staphylococcus aureus с помощью рибонуклеопротеиновых комплексов CRISPR-Cas проводили способом, описанным в Примере 4.
В ходе проведенного анализа было показано, что рибонуклеопротеиновые комплексы CRISPR-Cas обладают способностью выявлять ген антибиотикоустойчивости mecA Staphylococcus aureus в препаратах ДНК, выделенных из клинических образцов. При этом в среднем уже на 28 цикле (28 минут) анализа значение сигнала превышало значение «шума» (неспецифической флуоресценции контрольного образца, не содержащего мишени) более чем в 5 раз, а к 47 циклу (47 минут) анализа - более чем в 10 раз (Таблица 6).
Типичные результаты анализа приведены на примерах значений флуоресценции в конечной точке (60 цикл анализа, 60 минут) для предварительно амплифицированных мишеней mecA-1280 и mecA-1412 гена антибиотикоустойчивости mecA Staphylococcus aureus (16 независимых клинических образцов), обработанных рибонуклеопортеиновыми комплексами, содержащими направляющие РНК crRNA mecA №1280, crRNA mecA №1412 и белок LbCpf1, на Фиг. 8 и Фиг. 9, соответственно.
Эффективность выявления гена антибиотикоустойчивости mecA Staphylococcus aureus, содержащегося в составе препаратов ДНК, выделенных из клинических образцов, с использованием различных направляющих РНК в составе рибонуклеопротеиновых комплексов CRISPR-Cas, сформированных на основе LbCpf1 из Lachnospiraceae, оцененная по соотношению значений сигнала к значению «шума» при детекции, можно представить в следующем порядке по убыванию: crRNA mecA №1412>crRNA mecA №1280 (Таблица 6).
Таким образом, разработанные направляющие РНК позволяют ультрачувствительно выявлять единичные копии гена антибиотикоустойчивости mecA Staphylococcus aureus, и способны обнаруживать его препаратах ДНК, выделенных из клинических образцов, после предварительной амплификации в составе рибонуклеопротеиновых комплексов CRISPR-Cas.
--->
Перечень последовательностей
<110> ФБУН ЦНИИ Эпидемиологии Роспотребнадзора
<120>
<160> NUMBER OF SEQ ID NO: NOS: 5
<210> SEQ ID NO: NO 1
<211> 40
<212> RNA
<213> artificial
<400> SEQUENCE 1 (crRNA mecA №1280):
aau uuc uac uaa gug uag auu gcc aac cuu uac cau cga u 40
<210> SEQ ID NO: NO 2
<211> 40
<212> RNA
<213> artificial
<400> SEQUENCE 2 (crRNA mecA №1412):
aau uuc uac uaa gug uag auu uac ugc cua auu cga gug c 40
2
<210> SEQ ID NO: NO 3
<211> 20
<212> DNA
<213> artificial
<400> SEQUENCE 3 (For 1280/1412):
cct ctg ctc aac aag ttc ca 20
<210> SEQ ID NO: NO 4
<211> 22
<212> DNA
<213> artificial
<400> SEQUENCE 4 (Rev 1280):
atc ttg taa cgt tgt aac cac c 22
<210> SEQ ID NO: NO 5
<211> 23
<212> DNA
<213> artificial
<400> SEQUENCE 5 (Rev 1412):
ctt ggt ata tct tca cca aca cc 23
<---
Claims (9)
1. Способ обнаружения гена антибиотикоустойчивости mecA Staphylococcus aureus, содержащий:
i) проведение предварительной амплификации материала образца от пациента, предположительно содержащего Staphylococcus aureus, с использованием одного или нескольких специфических олигонуклеотидов, выбранных из SEQ ID NO: 3-5, с целью получения мишени – предварительно амплифицированного фрагмента гена антибиотикоустойчивости mecA Staphylococcus aureus,
ii) приготовление реакционной смеси для детекции, содержащей мишень, полученную на стадии (i); рибонуклеопротеиновый комплекс системы CRISPR-Cas, сформированный из РНК-направляемой ДНК-эндонуклеазы LbCpf1 из Lachnospiraceae, и по меньшей мере одной направляющей РНК c SEQ ID NO: 1 и SEQ ID NO: 2; флюоресцентный зонд и буфер для детекции,
iii) проведение 30-60 циклов детекции в реакционной смеси, полученной на стадии (ii), в амплификаторе,
с обнаружением таким образом гена антибиотикоустойчивости mecA Staphylococcus aureus.
2. Способ по п.1, где предварительно амплифицированный фрагмент гена антибиотикоустойчивости mecA Staphylococcus aureus представлен фрагментом с 1168 по 1336 п.о. (размером 169 п.о.) гена антибиотикоустойчивости mecA Staphylococcus aureus и/или фрагментом с 1168 по 1481 п.о. (размером 314 п.о.) гена антибиотикоустойчивости mecA Staphylococcus aureus.
3. Способ по п.1 или 2, где способ обеспечивает выявление гена антибиотикоустойчивости mecA Staphylococcus aureus в ультранизких концентрациях, вплоть до единичных копий ДНК.
4. Специфический олигонуклеотид, выбранный из SEQ ID NO: 3-5, для использования в способе по пп.1, 2 или 3 для предварительной амплификации высококонсервативного фрагмента гена антибиотикоустойчивости mecA Staphylococcus aureus, который распознается рибонуклеопротеиновым комплексом.
5. Набор для использования в способе обнаружения гена антибиотикоустойчивости mecA Staphylococcus aureus по пп.1, 2 или 3, содержащий один или несколько специфических олигонуклеотидов по п.4, рибонуклеопротеиновый комплекс системы CRISPR-Cas, сформированный из РНК-направляемой ДНК-эндонуклеазы LbCpf1 из Lachnospiraceae, и по меньшей мере одной направляющей РНК c SEQ ID NO: 1 и SEQ ID NO: 2; флюоресцентный зонд, буфер для детекции и инструкцию по применению.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2782588C1 true RU2782588C1 (ru) | 2022-10-31 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2820306C1 (ru) * | 2023-12-05 | 2024-06-03 | Федеральное бюджетное учреждение науки "Центральный научно-исследовательский институт эпидемиологии" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора) | Способ обнаружения гена антибиотикоустойчивости bla-TEM-1B в ультранизких концентрациях и специфические олигонуклеотиды для использования в способе |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2707542C1 (ru) * | 2019-03-28 | 2019-11-27 | Федеральное бюджетное учреждение науки "Центральный научно-исследовательский институт эпидемиологии" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора) | Способ получения препарата рекомбинантной нуклеазы CAS, по существу, свободного от бактериальных эндотоксинов, полученный данным способом препарат и содержащий его набор для использования в системе CRISPR/Cas |
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2707542C1 (ru) * | 2019-03-28 | 2019-11-27 | Федеральное бюджетное учреждение науки "Центральный научно-исследовательский институт эпидемиологии" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора) | Способ получения препарата рекомбинантной нуклеазы CAS, по существу, свободного от бактериальных эндотоксинов, полученный данным способом препарат и содержащий его набор для использования в системе CRISPR/Cas |
Non-Patent Citations (1)
Title |
---|
SHIN U. et al., Analysis of Wild Type LbCpf1 Protein, and PAM Recognition Variants, in a Cellular Context. Front Genet. 2021, vol. 11, 571591. GAO P. et al., Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res. 2016, vol. 26, N 8, pp. 901-13. MCCARTHY H. et al., Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol. 2015, vol. 5, 1. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2820306C1 (ru) * | 2023-12-05 | 2024-06-03 | Федеральное бюджетное учреждение науки "Центральный научно-исследовательский институт эпидемиологии" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора) | Способ обнаружения гена антибиотикоустойчивости bla-TEM-1B в ультранизких концентрациях и специфические олигонуклеотиды для использования в способе |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4590573B2 (ja) | 感染症起因菌の迅速同定方法 | |
US8735067B2 (en) | Asymmetric PCR amplification, its special primer and application | |
JP2007125032A (ja) | 微生物検査室における日常的診断用の臨床検体からの通常の細菌病原体および抗生物質耐性遺伝子を迅速に検出および同定するための特異的および普遍的プローブおよび増幅プライマー | |
RU2782588C1 (ru) | Способ обнаружения гена антибиотикоустойчивости mecA Staphylococcus aureus в ультранизких концентрациях и специфические олигонуклеотиды для использования в способе | |
RU2782314C1 (ru) | Система CRISPR-Cas12 для выявления гена антибиотикоустойчивости mecA Staphylococcus aureus в ультранизких концентрациях | |
RU2782315C1 (ru) | Способ получения препарата рибонуклеопротеинового комплекса CRISPR-Cas и препарат для выявления гена антибиотикоустойчивости mecA Staphylococcus aureus в ультранизких концентрациях | |
RU2745637C1 (ru) | Способ получения препарата рибонуклеопротеинового комплекса CRISPR/Cas и препарат для выявления гена антибиотикоустойчивости bla VIM-2 (металло-бета-лактамаза класс B VIM-2) Pseudomonas aeruginosa в ультранизких концентрациях | |
Shi et al. | Duplex real-time fluorescent recombinase polymerase amplification for the rapid and sensitive detection of two resistance genes in drug-resistant Staphylococcus aureus | |
KR20190134202A (ko) | 패혈증-유발 그람 음성균 검출용 mlpa 프로브 및 그 용도 | |
RU2734520C1 (ru) | Способ обнаружения гена антибиотикоустойчивости blaVIM-2 (металло-бета-лактамаза класс B VIM-2) Pseudomonas aeruginosa в ультранизких концентрациях и специфические олигонуклеотиды для использования в способе | |
RU2791880C1 (ru) | Способ обнаружения гена exoU, кодирующего экзотоксин системы секреции третьего типа, Pseudomonas aeruginosa в ультранизких концентрациях и специфические олигонуклеотиды для использования в способе | |
RU2791879C1 (ru) | Система CRISPR-Cas12 для выявления гена exoU, кодирующего экзотоксин системы секреции третьего типа, Pseudomonas aeruginosa, в ультранизких концентрациях | |
RU2743861C1 (ru) | Система CRISPR-Cas для выявления гена антибиотикоустойчивости blaVIM-2 (металло-бета-лактамаза класс B VIM-2) Pseudomonas aeruginosa в ультранизких концентрациях | |
RU2782739C1 (ru) | Способ получения препарата рибонуклеопротеинового комплекса CRISPR-Cas и препарат для выявления гена exoU, кодирующего экзотоксин системы секреции третьего типа, Pseudomonas aeruginosa | |
RU2829103C1 (ru) | Система CRISPR-Cas12 для выявления гена антибиотикоустойчивости bla-TEM-1B в ультранизких концентрациях | |
RU2820307C1 (ru) | Способ получения препарата рибонуклеопротеинового комплекса CRISPR-Cas и препарат для выявления гена антибиотикоустойчивости bla-TEM-1B в ультранизких концентрациях | |
RU2820306C1 (ru) | Способ обнаружения гена антибиотикоустойчивости bla-TEM-1B в ультранизких концентрациях и специфические олигонуклеотиды для использования в способе | |
RU2720768C1 (ru) | Система CRISPR-Cas для детекции провирусной ДНК вируса иммунодефицита человека, интегрированной в геном человека, в ультранизких концентрациях | |
GB2606158A (en) | Amplification of single stranded DNA | |
RU2720769C1 (ru) | Способ получения препарата рибонуклеопротеинового комплекса CRISPR/CAS и препарат для детекции провирусной ДНК вируса иммунодефицита человека, интегрированной в геном человека, в ультранизких концентрациях | |
RU2764023C1 (ru) | Система CRISPR-Cas12 для выявления РНК вируса SARS-CoV-2 в ультранизких концентрациях | |
RU2720767C1 (ru) | Способ обнаружения провирусной ДНК вируса иммунодефицита человека, интегрированной в геном человека, в ультранизких концентрациях и специфические олигонуклеотиды для использования в способе | |
RU2764021C1 (ru) | Способ обнаружения РНК вируса SARS-CoV-2 в ультранизких концентрациях и специфические олигонуклеотиды для использования в способе | |
RU2747819C1 (ru) | Способ получения препарата рибонуклеопротеинового комплекса CRISPR/Cas и препарат для выявления ДНК вируса Джона Каннингема (JCPyV) в ультранизких концентрациях | |
RU2747820C1 (ru) | Система CRISPR-Cas для выявления ДНК вируса Джона Каннингема (JCPyV) в ультранизких концентрациях |